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Abstract: This paper addresses the problem of stabilizing uncertain nonlinear plants over
a shared limited-bandwidth packet-switching network for which both the time between con-
secutive accesses to each node (MATI) and the transmission and processing delays (MAD) for
measurements and control packets are bounded. While conventional control loops are designed to
work with circuit-switching networks, where dedicated communication channels provide almost
constant bit rate and delay, many networks, such as Ethernet, organize data transmission in
packets, carrying larger amount of information at less predictable rates. To avoid the bandwidth
waste due to the relatively large overhead inherent to packet transmission, we exploit the packet
payload to carry longer control sequences. To this aim we adopt a model-based approach to
remotely compute a predictive control signal on a suitable time horizon, which leads to effectively
reducing the bandwidth required to guarantee stability. Communications are assumed to be ruled
by a rather general protocol model, which encompasses many protocols used in practice. As a
distinct improvement over the state of the art, our result is shown to be robust with respect to
sector-bounded uncertainties in the plant model. Namely, an explicit bound on the combined
effects of MATI and MAD is provided as a function of the basin of attraction and the model
accuracy.

Keywords: Networked control systems, packet-switching networks, model-based control,
time-varying delays.

1. INTRODUCTION

A Networked Control System (NCS) is a system in which
sensors, actuators and controllers are spatially distributed
and exchange information through a shared, digital, finite
capacity channel. The use of the network as a communi-
cation medium and the distributed nature of the system
make traditional control theory not always applicable.
Issues such as quantization errors, data dropouts, variable
transmission intervals, variable communication delays, and
constrained access to the network, can no longer be ig-
nored (Hespanha et al. (2007)). The NCS literature has
separately addressed many of these problems, and some-
times the combinations thereof. An excellent discussion of
the state-of-the-art is reported in Heemels et al. (2010),
and the reader is referred there for a detailed analysis of
the literature towards the mentioned communication con-
straints. An essential aspect of NCS is the packet-switching
nature of many networks. As opposed to conventional
control loops, which are designed to work with circuit-
switching networks where dedicated communication chan-
nels provide almost constant bit rate and delay, networks
such as Ethernet organize data transmission in packets,
carrying larger amount of information at less predictable
rates.

⋆ This work was partially supported by the HYCON2 NoE, contract
number FP7-ICT-257462, and by the Contract IST 224428 (2008)
(STREP) "CHAT - Control of Heterogeneous Automation Systems:
Technologies for scalability, reconfigurability and security”.

The organization of control information in data packets,
which have relatively large transmission overhead, sub-
stantially alter the bandwidth/performance trade-off of
traditional design. For instance, important data-rate the-
orems (see e.g. Hespanha et al. (2002), Nair and Evans
(2003), Nair and Evans (2004)) expressing a fundamental
relationship between the degree of instability of a given
physical system and the minimum bit rate required to
stabilize it, do not account for the fact that data come in
packets with a minimum size (e.g. 84 bytes in Ethernet).
To simplify, transmitting a 16 bits record every millisec-
ond requires as much bandwidth in average as sending
a packet of 84 bytes every 48 milliseconds; however, the
implications on the effective sampling rate and feedback
control performance are apparent. How to recover part of
this performance is an objective of this study.
A second aspect inherent to packet-switching networks
is transmission overhead. For instance, every Ethernet
packet carries 38 bytes of headers and interframe sepa-
rations, and useless information is necessarily padded into
the payload to reach the minimum required packet length.
As a consequence, transmitting a few bits per packet
has essentially the same bandwidth cost as transmitting
hundreds of them. A new, specific trade-off hence arises
between packet rate and packet dimension for a given
estimation/control task.
While the above aspects have been observed and described
in the early literature on NCS (see e.g. the surveys by
Walsh and Ye (2001), Lian et al. (2001), Hespanha et al.
(2007)), only recently have appeared results which address



them explicitly in controller design. The goal can be suc-
cinctly described as to decrease the network utilization (in
terms of bandwidth, or packets per unit of time) with-
out compromising control performance. To achieve this,
Montestruque and Antsaklis (2004) pioneered the idea of
exploiting the empty portion of packet payload to carry
feedforward control sequences, computed in advance on
the basis of a model-based scheme. Following developments
along these lines generalized the technique to address
nonlinear systems (Quevedo et al. (2007)), time-varying
delays and packet dropouts (Polushin et al. (2008), Pin
and Parisini (2009)), as well as the constraints imposed
by communication protocols on state measurement access
(Chaillet and Bicchi (2008)).
In this paper we also adopt the feedforward approach
to send in a packet not only the control value to be
applied at a specific instant, but also a prediction of
the control law valid on a given time-horizon, so as to
better exploit the payload. In the same spirit of the above
model-based approaches, the control sequence is obtained
by simulating an (imprecise) model of the closed-loop
plant. The internal state of the model is asynchronously
updated by means of the measurements of the plant state
provided by sensors. Due to their spatial distribution,
only portions of the model state can be updated in each
instant. Therefore, we consider the constrained access to
the network to be ruled by a protocol deciding which
sensor node can communicate at each instant. The large
control-packet, sent by the remote controller, is stored in
an embedded memory on the plant side. Based on a local
re-synchronization, made possible by a time-stamping of
measurements, this strategy also allows to compensate the
effect of bounded communication delays in the control
loop. We build our model upon the powerful hybrid
formalism introduced in Nešíc and Teel (2004), and we
consider network imperfections affecting both sides of the
control loop. We provide explicit bounds on the Maximum
Allowable Delay (MAD) (see Heemels et al. (2010)) and
on the Maximum Allowable Transfer Interval (MATI) (see
Walsh et al. (1999), i.e. the maximum duration between
two successive communications) ensuring the semiglobal
exponential stability of the NCS.
The main contribution of this paper is a control strategy
for packet-switching networks ensuring the stability of an
uncertain nonlinear NCS affected by varying transmis-
sion intervals, varying (and potentially large) delays, and
constrained access to the network. Unlike the commonly
assumed small-delays hypothesis (see for instance Heemels
et al. (2010)), we can compensate for delays larger than
the transmission interval.
A line of work close to ours is reported in Polushin et al.
(2008), where the problem of stabilizing a nonlinear NCS
with feedforward control sequences is addressed. Such
sequences are computed by means of an approximate
discrete-time plant model. Authors assume that the ap-
proximation algorithm is the only source of uncertainty in
the model and that the inaccuracy of such a model can
be reduced at will in order to achieve the desired MATI.
In this paper, instead, we consider a robustness problem,
where the plant uncertainty is a given, and we provide
a bound on the MATI in terms of the model inaccuracy
(measured through its local Lipschitz constant).
Preliminary results concerning our approach were pre-
sented in Chaillet and Bicchi (2008). The present paper
extends that in at least three relevant aspects. We consider

Fig. 1. Networked Control System with packet-switching
network and protocol.

here uniformly global exponentially stable (UGES) proto-
cols, rather than the conservative class of invariably UGES
protocols (which do not include, for instance, the very
common Round Robin protocol). We significantly extend
the class of nonlinear plants by imposing only local Lip-
schitz conditions, instead of global ones. Finally, we take
directly into account, in the computation of the MATI, the
accuracy of the model used to build the prediction.

2. PROBLEM STATEMENT

2.1 Network Model

We consider a NCS constituted of a remote controller
receiving measurements from and sending commands to
a physical plant through a shared communication channel
(see Figure 1). Control sequences are sent over the digital
network as packets. An elementary embedded control
device receives, decodes, synchronizes these packets and
applies control commands to the plant. Measurements are
taken by physically distributed sensors and sent towards
the controller as packets encoded with sufficient precision
to neglect quantization effects. Sensors are assumed to be
embedded with the plant and hence synchronized with
it. Due to the distributed nature of the sensors, we also
assume that the measurement part of the network is
partitioned in ℓ nodes and only a unique node at a time
can send its information (i.e. only partial knowledge of the
plant state is available at each time instants).We consider
that measurements are taken and sent at instants {τmi }i∈N,
and are received by the remote controller at instants {τmi +
Tmi }i∈N. In other words, {Tmi }i∈N denote the (possibly
time-varying) measurement data delays, which cover both
processing and transmission delays on the measurement
chain. In the same way, control commands are computed,
encoded into packets and sent over the network at time
instants {τcj }j∈N. They reach the plant at instants {τ cj +
T cj }j∈N, where {T cj }j∈N denote the (possibly time-varying)
control data delays accounting both for computation and
transmission delays from the controller to the plant.

Assumption 1. (Network) The communication network
satisfies the following properties:
i) (MATI) There exist two constants τm, τc ≥ 0 such
that τmi+1 − τmi ≤ τm and τ cj+1 − τcj ≤ τc, ∀i, j ∈ N;

ii) (MAD) There exist two constants Tm, Tc ≥ 0 such
that Tmi ≤ Tm and T cj ≤ Tc, ∀i, j ∈ N;

iii) (No Zeno phenomenon) There exist constants
εm > 0 and εc > 0 such that εm ≤ τmi+1 − τmi , ∀i ∈ N
and εc ≤ τ cj+1 − τ cj , ∀j ∈ N.



Item i) in the previous assumptions imposes that the
MATI between two consecutive accesses to the network
is bounded both for measurements and control. Item
ii) imposes that the MADs, both on measurements and
control side, are bounded. Item iii) imposes that the
minimum time interval between two consecutive accesses
to the network by the nodes is lower bounded away from
zero, and similarly for the control side. The objective of
this paper is to provide explicit bounds on the MATIs
(τm and τc) and on the MADs (Tm and Tc) to guarantee
exponential stability of the closed-loop NCS based on a
specific control procedure.

2.2 Protocol Model

The access to the network is ruled by a protocol choosing,
at each instant τmi , which node communicates its data.
Decisions can be taken either according to the time index
i (static protocol) or based on the value of the error
e between the state estimate x̂ and the available state
measurements x from sensors (dynamic protocol). More
precisely, in the spirit of Nešíc and Teel (2004), we model
the network protocol as a time-varying discrete-time sys-
tem involving the error Rn ∋ e � x̂−x, n ∈ N≥1, that this
type of communication generates:

e(i+ 1) = h(i, e(i)) , ∀i ∈ N , (1)

where h : N×Rn → R
n. If the network were able to send

the measurement of the whole state at each time instant
τmi , then the function h would be identically zero; this is
an assumption commonly posed in the literature on NCSs
(see for instance Branicky et al. (2000), Zhivoglyadov and
Middleton (2003), Montestruque and Antsaklis (2004),
Seuret et al. (2005), Yue et al. (2005), Naghshtabrizi
and Hespanha (2006), Quevedo et al. (2007), Polushin
et al. (2008), Pin and Parisini (2009)) where network
effects are mostly modeled as sampling and delays. This
assumption may no longer be justified when sensors are
physically distributed. It is worth noting that we assume
the dynamics (1) to model only the communication error
induced by the distributed nature of sensor nodes, while
the modeling of delay effects is deferred to the next section.
A different approach to the communication errors and
protocol can be found in Heemels et al. (2010).
Purely static protocols involve a function h which takes
as an argument the time index i only. An example of
such protocols is the Round Robin (RR) protocol, which
executes a cyclic inspection of each node. On the opposite,
some network protocols purely rely on the current value of
the error, in which case h is independent of i: this is the
case of the Try-Once-Discard (TOD) protocol (Walsh et al.
(1999)). The objective of most communication protocols
is to decrease some function of the transmission error e at
each transmitted packet. A particularly relevant class of
such protocols is the one that ensures an exponential decay
of this error. We recall here a slightly modified version of
the definition in Nešíc and Teel (2004) to focus on the class
of protocols we deal with in this work.

Assumption 2. (UGES Protocol) The protocol modeled by
the discrete-time system (1) is uniformly globally exponen-
tially stable (UGES) and admits an associated Lyapunov
function with bounded gradient. That is, there exist a
function W0 : N × Rn → R≥0 locally Lipschitz in the
second argument, and constants a, a, c > 0 and ρ0 ∈ [0, 1)
such that, for all e ∈ Rn and all i ∈ N,

a |e| ≤W0(i, e) ≤ a |e| (2)

W0(i+ 1, h(i, e)) ≤ ρ0W0(i, e) , (3)

and for almost all e ∈ Rn and all i ∈ N∣∣∣∣
∂W0

∂e
(i, e)

∣∣∣∣ ≤ c. (4)

It is worth stressing that the UGES protocols considered
here are not necessarily invariably UGES, as assumed in
Chaillet and Bicchi (2008). The latter property is rather
restrictive, as it excludes, for instance, the commonly
adopted Round Robin protocol.

2.3 The plant and its model

We assume that a nominal feedback controller is given,
which would be able, in the absence of the effects induced
by the network, to globally exponentially stabilize the real
plant. More precisely, we assume the following.

Assumption 3. (Nominal GES) There exists a continu-
ously differentiable function κ : Rn → R

m such that the
closed-loop system

ẋ = f(x, u) (5)

u = κ(x) (6)

is globally exponentially stable (GES), so that there exists
a differentiable function V : Rn → R≥0 and constants
α,α,α, d > 0 such that the following conditions hold for
all x ∈ Rn

α |x|2 ≤ V (x) ≤ α |x|2
∂V

∂x
(x)f(x, κ(x)) ≤ −α |x|2
∣∣∣∣
∂V

∂x
(x)

∣∣∣∣ ≤ d |x| .

In order to compute the control signal, the remote con-
troller makes use of a state estimate based on an approx-
imate model f̂ of the plant f . Both the plant and its
model are considered to be zero at the origin (f(0, κ(0)) =

f̂(0, κ(0)) = 0). The strategy developed in this paper
relies on the assumption that the plant, its model and the
nominal controller are all locally Lipschitz.

Assumption 4. (Local Lipschitz) Given some constants
Rx, Ru > 0, there exist some positive constants λf and
λκ

1 such that for all x1, x2 ∈ BRx and all u1, u2 ∈ BRu ,
the following inequalities hold

|f(x1, u1)− f(x2, u2)| ≤ λf (|x1 − x2|+ |u1 − u2|) (7)

|κ(x1)− κ(x2)| ≤ λκ |x1 − x2| . (8)

It is worth noting that the previous assumption represents
a further important relaxation with respect to Chaillet
and Bicchi (2008), where all involved vector fields were
assumed to be globally Lipschitz.
Finally, we assume that the plant model inaccuracy is
sector-bounded.

Assumption 5. (Sector-Bounded Model Inaccuracy) Given
Rx, Ru > 0, there exists a nonnegative constant λff̂ such
that for all x ∈ BRx and all u ∈ BRu ,∣∣∣f̂(x, u)− f(x, u)

∣∣∣ ≤ λ
ff̂
(|x|+ |u|) . (9)

The constant λff̂ thus measures the model accuracy: the

closer the model f̂ is to the real system f , the smaller
is λ

ff̂
(in the ideal case of perfect modeling, it would be

zero). Note that Assumption 5 allows to cope with both
parametric uncertainties and unmodeled dynamics.
1 We stress that λκ can be chosen independently of Ru.



3. A MODEL-BASED STRATEGY

3.1 Modeling the overall setup

We develop here a model-based strategy exploiting the
relatively large payload of a packet. At each reception
of a new measurement, the remote controller updates an
estimate of the current state of the plant and computes a
prediction of the control signal over a fixed time horizon
T
p
0 by numerically running the model f̂ . This signal is
then coded and sent in a single packet at the next network
access. When received by the plant, it is decoded and re-
synchronized by the embedded computer, based on the
time-stamping of the original measurement. We assume
here that the plant and its sensors have a common clock;
however, we also stress that in our strategy there is no
need for clock synchronization between the plant and the
remote controller.
In order to guarantee that a relevant control signal is
always available, the fixed time horizon T

p
0 on which each

state prediction is achieved is chosen as

T
p
0 ≥ Tc + Tm + τm + τc. (10)

This prediction horizon guarantees, in view of Assumption
1, that a control sequence corresponding to the present
time is always loaded in the embedded buffer.
For sake of mathematical rigor, we introduce first a model
accounting for infinitely many state variables and infinitely
many duplicates of the model f̂ . In Section 3.2, we show
how to properly reduce them to a finite number. Therefore,
for any measurement taken at τmi , i ∈ N, we consider a
new estimate state variable x̂i, valid over the time interval
[τmi , τmi + T

p
0 ], whose evolution is given by

˙̂xi(t) = f̂(x̂i(t), κ(x̂i(t))), ∀t ∈ [τmi , τmi + T
p
0 ]

x̂i(τ
m+
i ) = x(τmi ) + h(i, x̂i−1(τ

m
i )− x(τmi )). (11)

Each variable is updated at time τm+i according to the
protocol h. Usually, when dealing with a unique variable,
the update of an estimate is performed by means of the
error between the measurement and the variable itself. In
our case, instead, a new estimate variable x̂i is created
at each τmi , with the previous variable x̂i−1 containing the
latest value of the estimate. Hence, the error we compute at
time τmi is between the measurement made on x(τmi ) and
the previous estimate variable x̂i−1(τ

m
i ). In this way all

measurements are used to continuously update the internal
model.
The infinite sequence of evolutions for the simulated dy-
namics (11) is schematically depicted at the top of Fig-
ure 2, above the time line. Each simulated evolution is
represented by a straight line starting at times τmi , i ∈ N
(explicitly reported at their left). Different line styles rep-
resent different evolutions for the estimate variables. The
time line reports the instants τmi +Tmi , i ∈ N at which the
measurements x(τmi ) reach the controller. It is important
to remark that the dynamics (11) actually evolves in a
virtual (simulated) time. The measurement x(τmi ) reaches
the controller at τmi +Tmi and then triggers the simulation
of the dynamics (11) for a virtual time interval [τmi , τmi +
T
p
0 ]. The actual time spent for this simulation and for the
computation of the predicted control signal is, in fact, part
of the delay T cj . What we have done in (11), is to consider
the estimate dynamics ‘stretched’ on the real time as if it
ran concurrently with the plant. This notation trick allows
us to cast the overall system in a compact model similar
to the one in Nešíc and Teel (2004).
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Fig. 2. Excerpt of a sequence of estimate variables and
feedforward signals along with the control signal ap-
plied to the plant.

At each instant τ cj a new control signal uj(·) is computed.
It is based on the estimate variable x̂γ(j), where γ(j)
denotes the index of the latest measurement received
before τ cj . More precisely, the function γ : N→ N is defined
as

γ(j) � max
{
i ∈ N | τmi + Tmi < τcj

}
, ∀j ∈ N .

It can be easily verified that, in view of Assumption 1, the
time horizon T c0 for the control signal has to satisfy

T c0 ≥ Tc + τc (12)

in order to guarantee that a valid control signal is always
available to the embedded controller. Note that the re-
quired time horizon T c0 for the control signal is smaller
than the time horizon T

p
0 used for prediction, as it does

not need to account for measurement MAD and MATI.
We thus define an infinite number of feedforward control
signals as

ûj(t) = κ(x̂γ(j)(t)), ∀t ∈ [τ cj , τcj + T c0 ], ∀j ∈ N .

At each reception of a new control packet (i.e. at instants
τ cj + T cj ), the embedded buffer is updated. Consequently,
the control signal applied to the plant is given by

û(t) = ûj(t), ∀t ∈ [τ cj + T cj , τ
c
j+1 + T cj+1). (13)

Both the feedforward signals ûj and the control û are de-
picted at the bottom of Figure 2. Line styles are consistent
with those of the estimate evolutions used to build the
control signals. Vertical arrows show which estimate vari-
able x̂γ(j) is chosen for the computation of the feedforward
signal ûj at time instant τ

c
j , and which control signal ûj is

used at τ cj +T cj to update the embedded controller. In the
particular example of Figure 2, it can be noticed that ûj
and ûj+1 are computed with respect to the same estimate
x̂i since γ(j) = γ(j + 1) = i. On the other hand, x̂i+1 is
not directly used by any control since γ(j + 2) = i+ 2.

3.2 A reduced NCS model

The model considered so far makes use of infinitely many
state estimate variables x̂i and control signals ûj . They
can be reduced to a finite number by noticing that they
are all defined over compact time intervals and that “old”
variables are no longer used after a while. State estimates
variables are stored in a finite memory and new values are
cyclically written on dismissed variables. We must prevent
that a variable is accidentally reset while still in use for
the computation of a control signal. In particular, x̂γ(j)
cannot be reset during the interval [τmγ(j), τ

c
j+1 + T cj+1].



Hence, the dimension of such a memory, in terms of
number of variables, is given by the maximum number of
measurements that can be received during the life horizon
T p0 of an estimate variable. Recalling that T p0 accounts
also for the interval during which no measurements are
received, whose length is bounded by τm, the dimension
N of the memory is given by

N �

⌊
T
p
0 − τm

εm

⌋
+ 1. (14)

Therefore, we use only N state variables xcr , r ∈
{1, . . . , N}, to store the state estimates. They are cyclically
updated according to the following relation

xcr(t) � x̂i(t) iff η(t, i, r) = 1,

where η : R≥0 × N × {1, . . . , N} → {0, 1} is the function
defined as

η(t, i, r) �

{
1 if t ∈ (τmi , τmi+1] and µ(i) = r
0 otherwise, (15)

which identifies the index of the relevant state estimate,
and µ : N→ {1, . . . , N} is defined as

µ(i) � ((i− 1)modN) + 1 (16)

to make a cyclic update of the state estimates in the
memory. By means of the vectors x̄, xc, e ∈ RNn defined
as x̄ � [xT , . . . , xT ]T , xc � [xTc1 , . . . , x

T
cN
]T and e =

[eT1 , . . . , e
T
N ]
T � xc − x̄, the closed-loop dynamics of the

NCS can be compactly written as

ẋ = F (t, x̄, e) (17a)

ė = G(t, x̄, e) (17b)

e(τm+i ) = H(i, e(τmi )), (17c)

where

F (t, x̄, e) = f(x, u(t, e+ x̄)) (18a)

G(t, x̄, e) =






f̂(e1 + x, κ(e1 + x))− f(x, u(t, e+ x̄))
...

f̂(eN + x, κ(eN + x))− f(x, u(t, e+ x̄))






(18b)

H(i, e) =






e1 + (h(i, eN)− e1) η(t, i, 1)
e2 + (h(i, e1)− e2) η(t, i, 2)

...
eN + (h(i, eN−1)− eN) η(t, i,N)




 . (18c)

The control signal u in (18a) and (18b) is given by 2

u(t, xc) �
N∑

k=1

κ(xck)ν(t, j, k), ∀j ∈ N, (19)

where the function ν : R≥0 × N × {1, . . . , N} → {0, 1} is
defined as

ν(t, j, k) �

{
1

if t ∈ (τ cj + T cj , τ
c
j+1 + T cj+1]

and µ(γ(j)) = k
0 otherwise.

This compact notation carries the advantage to involve a
finite number of state variables and to fit the framework
of Nešíc and Teel (2004). Note that the control signal in
(13) now reads û(t) = u(t, xc(t)).

4. MAIN RESULTS

We start by stating that the obtained protocol (17c) and
(18c) inherits the UGES property from the original one

2 Since ν(t, j, k) �= 0 only when µ(γ(j)) = k, the control input in
(19) is independent of j contrarily to what the notation suggests.

(1). Due to space constraints proofs have been omitted
and can be found in Greco et al. (2010).

Proposition 1. Under Assumption 2, the protocol modeled
by the discrete-time system (17c) and (18c) is UGES
and admits an associated Lyapunov function W : N ×
R
Nn → R≥0 given by

W (k, e) �
N∑

r=1

W0(k, er)η(t, k, r) ,

where η is defined in (15), and satisfying for all k ∈ N and
all e ∈ RNn:

aL |e| ≤W(k, e) ≤ aH |e| (20)

W (k + 1,H(k, e)) ≤ ρ0W(k, e) (21)∣∣∣∣
∂W

∂e
(k, e)

∣∣∣∣ ≤ c , (22)

with aL � a for N = 1 and aL �
a

N
min

{
1,
( a
a

)2 1
ρ0

}
for

N > 1, and aH � a.

Let us now present a local result on the exponential
stability of the NCS (17). It provides an explicit bound
(cf. (23) below) on the measurement MATI τm in terms of
the characteristic parameters of the network-free closed-
loop system, the protocol, the regularity assumptions on
the dynamics and the model precision.

Theorem 1. Assume that Assumptions 1-3 hold. Given
some R > 0, fix Rx = R and Ru = λκR and suppose
that Assumptions 4-5 hold with these constants. Let a, a,
ρ0, c, α, α, α, d, λff̂ , λf , λκ, aL, aH be generated by

these assumptions and by Proposition 1. Assume that the
following conditions on τm, τc, Tm, Tc, εm hold

τm ∈ [εm, τ⋆m), τ⋆m �
1

L
ln

(
Hγ2 + aLL

Hγ2 + aLρ0L

)
(23)

N =

⌊
Tc + Tm + τc

εm

⌋
+ 1 (24)

where L � c
aL

(√
N
(
λff̂ (1 + λκ) + λf

)
+

(√
N − 1 +N − 1

)
λfλκ

)
, H � cNλff̂ (1 + λκ) and γ2 �

d
α

√
α
α
λfλκ. Then, the origin of the NCS (17) is exponen-

tially stable with radius of attraction

R̃ =
R

K
(25)

where K �
√
2

1−γ1γ2 max {k2 (1 + γ1) , k1 (1 + γ2)}, γ1 �

exp(Lτm)−1
aLL(1−ρ0 exp(Lτm))H, k1 �

aH
ρ0aL

and k2 �
√

α
α
.

It is important to remark that the bound (23) on the
measurement MATI is also related to the dimension of the
memory N , whose definition (24), obtained by (14) for
T
p
0 = Tc + Tm + τm + τc, embeds the other relevant com-
munication parameters: MADs and control MATI. The
pair (23)-(24) thus imposes a trade-off between the two
MATIs and the MADs. The packet-based strategy aims
at enlarging the control MATI τc, but a larger τc could
require a larger memory N and hence could produce a
lower measurement MATI τm. Moreover, conditions (23)-
(24) bind the four relevant parameters (i.e. Tc, Tm, τc
and τm) together and with the constant εm, bounding the
minimum time between two consecutive accesses to the
network. Furthermore, depending on the parameter R for
which Assumptions 4 and 5 hold, an explicit estimate R̃



of the radius of attraction can be computed, cf. (25). Note
that, since Theorem 1 guarantees only local properties, As-
sumption 3 could be relaxed to local exponential stability
of the nominal plant, over a sufficiently large domain. It
can be shown (see Greco et al. (2010)) that the MATI and
memory requirements of the previous theorem can always
be satisfied.
In general, the radius of attraction R̃ of the resulting NCS
guaranteed by Theorem 1 cannot be arbitrarily specified
due to the possible dependency of the constants L and
H (and consequently K) in the parameter R ruling the
domain on which Assumptions 4 and 5 hold. To see
this more clearly, consider, for instance, the case of K
proportional to R. Relation (25) shows that, in this case,
the radius of the initial condition R̃ would be a constant
irrespective of the amplitude of R. One could even imagine
that, in some situations, R̃ actually shrinks when R is
enlarged. Hence, in order to ensure that the set of initial
conditions can be arbitrarily enlarged, we must add some
constraints on the growth rate of the constant K or,
equivalently, on some of the Lipschitz constants. After
reporting a definition of semiglobal exponential stability
which is adapted to our NCS framework, we present our
main result in this regard in Theorem 2.

Definition 1. The NCS (17) is said to be semiglobally

exponentially stable if, for any R̃ > 0, there exist positive
constants τ⋆m(R̃), τ⋆c (R̃), T ⋆m(R̃), T ⋆c (R̃) and ε⋆m(R̃), as
introduced in Assumption 1, such that its origin is expo-
nentially stable on BR̃.

Theorem 2. Suppose that Assumptions 1-4 hold for all
Rx, Ru > 0 and that there exists σ ∈ (0, 1) such that

lim
s→∞

λf (s)λκ(s)

sσ
<∞. (26)

Then, the NCS (17) is semiglobally exponentially stable.

The above result guarantees that, provided sufficient reg-
ularity of the dynamics involved (i.e. Lipschitz constants
sublinear in the size of the domain over which they are
computed), any prescribed compact domain of attraction
can be reached if MADs and MATIs are small enough.

5. CONCLUSIONS

The problem of stabilizing nonlinear time-invariant plants
over a limited-bandwidth packet-switching network has
been considered. We presented a model-based approach
to remotely compute a predictive control signal on a
given time horizon. We considered a robustness problem,
where the plant uncertainty is given a priori, and we
provided a bound on the combined effects of the MATI
and MAD as a function of the basin of attraction and
the model precision. Our future research will focus on
the exploitation of the packetization of measurements to
further reduce the bandwidth occupation and to better
cope with model parameter variations.
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