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Desynchronization of coupled phase oscillators, with application to the
Kuramoto system under mean-field feedback

Alessio Franci, Elena Panteley, Antoine Chaillet and Françoise Lamnabhi-Lagarrigue

Abstract— This note introduces two notions of desynchro-
nization for interconnected phase oscillators by requiring that
phases drift away from one another either at all times or
in average. It provides a characterization of each of these
two notions based on the grounded variable associated to the
system, and relates them to a classical notion of instability
valid in Euclidean spaces. An illustration is provided through
the Kuramoto system, which is shown to be desynchronizable
by proportional mean-field feedback.

I. INTRODUCTION

While most control applications aim at making a dynamical
system converge to some prescribed behavior, control theory
may sometimes be used to induce disorder in the dynamics.
For instance, the possibility of disordering the output response
of a system finds application in fluid mixing, optimization of
abrasive machines, secure communication, heartbeat regulation,
electromagnetic interference reduction, electrical load regula-
tion, or acoustic noise attenuation. These applications have
motivated the development of chaotification control laws, also
called anti-control [28], [13], [5], [6]. For the particular case of
interconnected agents, inducing more disorder in the dynamics
results in the desynchronization of the involved agents. The de-
velopment of desynchronizing control laws for coupled phase-
oscillators has recently found application in the treatment of
neurological diseases, cf. e.g. [11], [4], [27], [22].

While desynchronization owns quite an intuitive meaning, its
formal definition is not straightforward. One way of guarantee-
ing sufficient disorder in a network of oscillators is to induce
chaos in the incremental dynamics of their outputs (i.e. the dy-
namics ruling the phase differences of each pair of oscillators).
This is the approach followed by chaotification techniques [28],
[13], [5], [6]. However, chaos may be too strong a requirement
in some particular applications and most anti-control techniques
may require too much knowledge on the oscillators state to be
practically implemented.

On the other hand, simply guaranteeing that phases are not
synchronized is not enough in most practical applications. To
see this, consider a pair of oscillators whose phases difference,
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although not constant, remains at all times in a small neigh-
boorhood of a given value. In this case, all classical definitions
of synchronization are violated as the oscillators are neither
phase synchronized [25], nor phase-locked [11] or frequency-
synchronized [3] (as their phases difference is not constant).
Nevertheless, for practical concerns, such a system cannot be
considered as desynchronized since the phases difference re-
mains “almost constant” at all times. In fact, such a situation
would rather correspond to “approximative synchronization” as
defined in [3]. In a nutschell, desynchronization is not simply
the negation of synchronization.

In the textbook [20], and references therein, desynchro-
nization is informally intended as the absence of approximate
synchronization. This requirement translates in asking that the
phase difference between two oscillators grows unbounded
when lifted to the real line. The existence of unbounded tra-
jectories is also the problem treated in [19]. As we show in the
sequel, asking that the phase-difference is unbounded may not
suffice to exclude asymptotic synchronization either.

The objective of this paper is then to define desynchroniza-
tion in a rigorous manner for general networks of interconnected
phase oscillators, and to provide a geometric and topological
interpretation of this property by linking it to existing concepts
of instability [18]. Roughly speaking, a pair of oscillators will
be considered as desynchronized if their phases are perma-
nently drifting away. Since this concept (referred to as strong
desynchronization in Section II) is quite demanding due to the
requirement of all-time phase drift, we also propose a relaxed
notion, called practical desynchronization, that imposes phase
drift only in average over a given time window (Secion III). For
each of these properties, we propose a characterization inolv-
ing the grounded variables of the system, i.e. the differences
between the oscillators’ phases and their mean. These concepts
are illustrated in Section IV through the Kuramoto system [16],
for which we show that a proportional mean-field feedback can
induce desynchronization.

Notation. Given N ∈ N≥1, IN denotes the N ×
N indentity matrix, ~1N is the N -dimesional vector whose
entries are all 1, TN denotes the N -torus and N 6=N :={

(i, j) ∈ {1, . . . , N}2 : i 6= j
}

. Given x ∈ Rn, |x| denotes
the Euclidean norm of x. Given x ∈ Rn and r ≥ 0, we
denote by Br(x) the closed ball of radius r centered at x. Given
i ∈ {1, . . . , N}, ei ∈ RN is the vector with only zero entries,
except the i-th which is equal to 1. Given x ∈ RN , x⊥ :={
z ∈ RN : x>z = 0

}
. The solution of a system ẋ = f(x, t)

starting at x0 ∈ Rn at time t0 ∈ R is denoted by x(·; t0, x0)
everywhere it exists. Given a set U ⊂ Rn, x(t; t0, U) :=
{x(t; t0, x0) : x0 ∈ U}. µ denotes the Lebesgue measure on



the set under consideration.

II. DESYNCHRONIZATION AND ITS CHARACTERIZATION

The dynamics of a network of coupled nonlinear phase
oscillators can be expressed as

θ̇ = F (θ, t), (1)

where F : TN×R→ RN satisfies the Caratheodory conditions
and F (·, t) is locally Lipschitz for each t ∈ R. Since F (·, t) is
defined on a compact space and it is locally Lipschitz, it is also
bounded and globally Lipschitz. This ensures, together with the
Caratheodory conditions, existence and unicity of the solution
[14, Theorems 3.1 and 5.1] and forward completeness of (1).
Each component θi, i = 1, . . . , N , of θ is the phase of the os-
cillator i. The function F describes both the internal dynamics
of each oscillator and the coupling between different oscillators.
This class of systems encompasses the phase oscillators studied
in [4], of which the Kuramoto system [16] is probably the most
famous representative (cf. Section IV for a deeper analysis).

A. Definitions and first properties
A pair (i, j) ∈ N6=N of coupled oscillators (1) undergoes

frequency synchronization [3] if, given t0 ∈ R and θ0 ∈ TN ,

|θ̇i(t)− θ̇j(t)| = 0, ∀t ∈ R, (2)

where θi(·) := θi(·; t0, θ0) and similarly for θj(·). This relation
guarantees a constant phase difference between the oscillators i
and j, which is also referred to as phase-locking. A particular
case of phase-locking is when this phase difference is zero, thus
making θi(t) and θj(t) equal at all times. This stronger property
is referred to as phase synchronization. When these properties
hold asymptotically (i.e. as time goes to infinity), we refer to
these properties as asymptotic phase-locking and asymptotic
synchronization respectively [25], [20].

Asymptotic phase-locking is guaranteed (at least locally) if
an asymptotically stable fixed point exists for the incremental
dynamics ruling θi − θj . In the presence of exogenous dis-
turbances or unmodelled dynamics, this asymptotically stable
fixed point may present some robustness properties. We speak in
this case of practical phase-locking [11], which can be formally
characterized as1

|θi(t)− θj(t)− δij | ≤ εij , ∀t ∈ R, (3)

where δij ∈ [0; 2π) and ε ≥ 0. When (3) holds only for a subset
of pairs of oscillators, it is also referred to as partial entrainment
[1]. Since θ ∈ TN , the above constraint is trivially satisfied
if ε is greater than π. On the other hand, for small values of
ε, the condition (3) imposes that the phase difference between
oscillators i and j, while not remaining constant, exhibit small
oscillations around some constant values δij .

For desynchronization to have a practical relevance in most
applications, it must exclude the two situations described by
(2) and (3) and their asymptotic counterparts. Simply asking
that the phase difference between two oscillators becomes un-
bounded when lifted on the real line may not be enough. Con-
sider for instance the non-autonomous dynamics θ̇± = ω± δω

t .

1We stress that the constant δij and εij may depend on the inital
conditions (t0, θ0).

Then θ+(t)− θ−(t) = 2δω ln(t), which grows unbounded, yet
limt→∞ θ̇+(t) − θ̇−(t) = 0, meaning that asymptotic phase-
locking is achieved. Another natural requirement to make sure
that the system is desynchronized is then to ask that the phases
of oscillators i and j permanently drift away from one another,
i.e. |θ̇i(t)− θ̇j(t)| > 0, for all t ∈ R. However, this requirement
alone may not be enough either, since, for example, asymptotic
synchronization, that is limt→∞ θ̇i(t)− θ̇j(t) = 0, may satisfy
it (if the convergence is achieved in infinite time only). For a
pair of oscillators to be desynchronized, we therefore ask that
the relative drift be uniformly bounded away from zero. This
requirement ensures that the considered oscillators have their
phases mutually drifting at all times and keeping on evolving in
the torus with uniformly non-zero frequency difference. These
conditions can be cast in a compact form in the following
definition.

Definition 1 (Strong desynchronization) A pair (i, j) ∈ N 6=N
of oscillators is said to be strongly desynchronized for (1) if
there exists Ωij > 0 such that, for all θ0 ∈ TN and all t0 ∈ R,

|θ̇i(t; t0, θ0)− θ̇j(t; t0, θ0)| ≥ Ωij , ∀t ∈ R. (4)

Given m ∈
¶

1, . . . , N(N−1)
2

©
, the network of coupled phase

oscillators (1) is said to be m-strongly desynchronized if it
contains m distinct pairs of desynchronized oscillators. If m =
N(N−1)

2 then (1) is said to be completely strongly desynchro-
nized.

Definition 1 satisfies two basic requirements: 1) it excludes
synchronization and practical synchronization, also asymptoti-
cally; 2) it is naturally satisfied by an ensemble of uncoupled
oscillators, provided the natural frequencies are not identical.
However, we stress that Definition 1 does not exclude p : q
resonances2 with p 6= q.

In order to give a geometrical interpretation of this property,
we introduce the grounded variable ψ ∈ RN associated to (1).
Given some θ0 ∈ TN and some t0 ∈ R, the evolution of ψ is
defined as

ψ̇(t; t0, θ0) :=

Å
IN −

1

N
~1N~1

>
N

ã
θ̇(t; t0, θ0), ∀t ∈ R

ψ(t0; t0, θ0) = θ0 (5)

which constitutes a non-autonomous dynamics on RN . We refer
to (5) as the grounded dynamics of (1). We stress that (5) could
have been equivalently defined on either RN or TN . Indeed,
since θ̇(t, t0, θ0) ∈ RN , for all t, t0 ∈ R and all θ0 ∈ TN ,
(5) induces a well defined non-autonomous vector field on both
RN and TN . For future convenience we define here (5) as a
dynamical system on RN . Noticing that 1

N
~1>N θ̇ = 1

N

∑N
i=1 θ̇i,

this dynamics describes the evolution of the system (1) in a
moving reference frame with speed equal to the instantaneous
mean frequency 1

N

∑N
j=1 θ̇j(t). This implies that ψ̇(t) ∈ ~1⊥N ⊂

RN , for all t ∈ R, where ψ(·) := ψ(·; t0, θ0), that is the
grounded dynamics has zero mean-drift, and ~1>Nψ(t) ≡ ~1>Nθ0.
In addition, it is possible to show that asymptotic phase-locking

2A pair of oscillator is said to be in a p : q resonance, if the difference
|pθi − qθj | lifted to the real line remains bounded for all time, for some
p, q ∈ N>0.



of (1) corresponds to the existence of an asymptotically stable
set for (5) (cf. e.g. [15]).

B. Complete instability

We introduce here the topological concept that serves as the
basis of the characterization of desynchronization. This concept
pertains to non-autonomous dynamical systems of the form

ẋ = G(x, t), (6)

whereG : Rn×R→ Rn satisfies the Caratheodory conditions,
and G(·, t) is continuous and locally Lipschitz, which ensures
existence and unicity of the solution [14, Theorems 3.1 and 5.1].

Definition 2 (Complete instability, [18]) The dynamical sys-
tem (6) is said to be completely unstable if all its points are
wandering, that is for all x0 ∈ Rn and t0 ∈ R, there
exists a neighborhood U of x0 and a time T > 0, such that
x(t; t0, U) ∩ U = ∅ for all t ≥ T + t0.

Complete instability can be considered as the complementary of
asymptotic stability. Indeed, complete instability implies that,
given any point, one can find a sufficiently small neighborhood
around it, such that, after a sufficiently long time, the trajectories
of the system leave the neighborhood and never go back in.
The above definition is of no relevance to systems evolving in a
compact space, as in this case the α- and ω-limit sets are always
non-empty3 [2].

In the following lemma we give a sufficient condition for (6)
to be completely unstable.

Lemma 1 (Sufficient condition for complete instability)
Suppose that (6) is forward complete. Suppose moreover that
there exists a vector α ∈ Rn and a constant α > 0 such that,
for all x0 ∈ Rn and t0 ∈ R, the solution of (6) satisfies

α>G(x(t; t0, x0), t) ≥ α, ∀t ∈ R.

Then (6) is completely unstable.

Proof of Lemma 1. From the assumption of the lemma it
simply holds by integration that

α>(x(t; t0, x0), t)− x0) ≥ ᾱ(t− t0). (7)

Recalling that, for all y ∈ Rn, |α||y| ≥ α>y, (7) implies that

|x(t; t0, x0), t)− x0| ≥
ᾱ

|α|
(t− t0). (8)

Given T > 0, consider the neighborhood U of x0 defined as
U := Br0(x0), where r0 := ᾱT

4|α| . From (8) it follows that
x(t; t0, x0), t) 6∈ U for all t ≥ T

2 + t0, which ends the proof. �

3The ω- (resp. α-) limit set of a point x0 is the union of all the points x̄ for
which there exists an increasing (resp. decreasing) and unbounded sequence
of time instants {tn}n∈N ⊂ R such that limn→∞ x(tn; t0, x0) = x̄

C. Desynchronization as complete instability
Based on the considerations above, we now state the fol-

lowing theorem, which gives a geometrical and topological
characterization of strong desynchronization in the sense of
Definition 1.

Theorem 1 (Characterization of strong desynchronization)
There exists a pair of strongly desynchronized oscillators θi, θj ,
(i, j) ∈ N6=N for the system (1), if and only if there exists a
constant ᾱ > 0, such that, for all θ0 ∈ TN and t0 ∈ R, the
grounded dynamics (5) satisfies

ψ̇(t; t0, θ0)>(ei − ej) ≥ ᾱ, ∀t ∈ R, (9)

along the solutions of (1). In particular, if the pair (i, j) is
strongly desynchronized, then the grounded dynamics (5) asso-
ciated to (1) is completely unstable.

Proof of Theorem 1. Necessity: Assume that the pair (i, j) is
strongly desynchronized. Then there exists a constant Ωij > 0
such that, given any θ0 ∈ TN and t0 ∈ R, it holds that |θ̇i(t)−
θ̇j(t)| ≥ Ωij for all t ∈ R, where θ(·) := θ(·; t0, θ0). Without
loss of generality, we can pick i, j in such a way that θ̇i(t) −
θ̇j(t) ≥ Ωij for all t ∈ R (otherwise, just flip the indexes i and
j). Then, it holds from (5) that, for all t ∈ R,

ψ̇(t)>(ei − ej) = ψ̇i(t)− ψ̇j(t) = θ̇i(t)− θ̇j(t) ≥ Ωij ,

where ψ(·) := ψ(·; t0, θ0). In particular, the solutions of
(5) integrated along (1) satisfy ψ̇(t)>(êi − êj) ≥ Ωij . The
necessity part is then proved by picking ᾱ = Ωij .
Sufficiency: Given θ0 ∈ TN and t0 ∈ R, let (9) hold for some
ᾱ > 0. Then, for all t ∈ R, it holds that

ᾱ ≤ ψ̇(t)>(ei − ej) = ψ̇i(t)− ψ̇j(t) = θ̇i(t)− θ̇j(t).

The sufficiency part is then proved by picking Ωij = α.
The rest of the statement follow by Lemma 1. �

Theorem 1 highlights two properties of desynchronized dy-
namical systems: one geometrical, and the other topological.
The first one, geometrical property, is contained in (9). It states
that the grounded dynamics (5) is uniformly drifting away along
the direction given by ei − ej ∈ ~1⊥N . If we plug the mean-
drift back in, and project the resulting dynamics on the torus
(to recover the original phase dynamics (1)), this means that
in the (θi, θj) sub-torus the trajectories of (1) are (locally)
uniformly drifting away from the synchronization sub-manifold
Dij := {θ ∈ TN : θi = θj} (Figure 1). The topolog-
ical characterization comes directly from the second part of
the statement. In particular the grounded dynamics associated
to a desynchronized system satisfies the complete instability
property of Definition 2. We point out that this characterization
complements the one associated to phase-locking, that is the
asymptotic stability of the grounded dynamics.

Given m ∈
¶

1, . . . , N(N−1)
2

©
, the following corollary,

which is a direct consequence of Theorem 1, gives a characteri-
zation ofm-strong desynchronization and therefore of complete
strong desynchronization. We stress that the above geometrical
interpretation (Figure 1) extends to all the m pairs of strongly
desynchronized oscillators.
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Fig. 1. Geometric interpretation of desynchronization

Corollary 1 (Characterization of m-strong and complete
strong desynchronization) Given m ∈

¶
1, . . . , N(N−1)

2

©
, if

(1) is m-strongly desynchronized then its associated grounded
dynamics (5) is completely unstable.

III. PRACTICAL DESYNCHRONIZATION

A. Definition

For particular applications, strong desynchronization may
appear to be a too demanding requirement. For example, in
electrical treatment of neurological diseases, only the average
rate of discharge of the neurons is of interest [26], [24], [17],
[21], [23]. More generally, the presence of exogenous distur-
bances, small coupling, or unmodelled dynamics may let the
requirement of Definition 1 be too restrictive. The permanent
phase drift imposed in Definition 1 impedes the instantaneous
frequencies to be equal even on short time intervals. Intuitively,
such a frequency similarity would not affect the overall desyn-
chronization if it happens sufficiently rarely. Hence, we relax
that definition by replacing the pointwise inequality (4) by the
less restrictive assumption that the difference of frequencies be
bounded from below in average, uniformly over some moving
window of length T . This situation can be considered as the
opposite of practical synchronization [11].

Definition 3 (Practical Desynchronization) A pair (i, j) ∈
N6=N of oscillators is said to be practically desynchronized for
(1) if there exists Ωij , Tij > 0 such that, for all θ0 ∈ TN and
t0 ∈ R,

1

Tij

∣∣∣∣∣
∫ t+Tij

t

Ä
θ̇i(τ ; t0, θ0)− θ̇j(τ ; t0, θ0)

ä
dτ

∣∣∣∣∣ ≥ Ωij , (10)

for all t ∈ R. Given m ∈
¶

1, . . . , N(N−1)
2

©
, the network

of coupled phase oscillators (1) is said to be m-practically
desynchronized if it contains m distinct pairs of practically
desynchronized oscillators. If m = N(N−1)

2 then (1) is said
to be completely practically desynchronized.

In the following proposition we show that if (1) is time-
invariant, then uniformity of (10) in θ0 suffices to ensure its
uniformity in time. This lets (10) be easier to check in practice
(see also Theorem 2 below).

Proposition 1 Suppose that (1) is time-invariant. Given
Tij ,Ωij > 0, assume that there exists a pair of oscillators

(i, j) ∈ N6=N satisfying (10) for all θ0 ∈ TN , and for some
t = t∗ ∈ R. Then (10) holds for all t ∈ R.

Proof of Proposition 1 Since the dynamics (1) is time invariant
we can pick, without loss of generality, t∗ = 0 in the statement
of the proposition. Let θ0 ∈ TN . Since (1) defines a smooth
bounded dynamics, θ(t; t0, θ0) exists for all time. Fix any
t ∈ R, and let θ(t) := θ(t; t0, θ0). The system (1) being
time invariant, and since (10) holds uniformly in the initial
conditions, it also holds that

1

Tij

∣∣∣∣∣
∫ t+Tij

t

Ä
θ̇i(τ ; t0, θ0)− θ̇j(τ ; t0θ0)

ä
dτ

∣∣∣∣∣
=

1

Tij

∣∣∣∣∣
∫ Tij

0

Ä
θ̇i(τ ; t0, θ(t))− θ̇j(τ ; t0, θ(t)

ä
dτ

∣∣∣∣∣
≥ Ωij .

Since t ∈ R is arbitrary, the proposition is proved. �

B. Characterization of practical desynchronization
In order to extend the interpretation developped in Section II-

C to the case of practical synchronization, we introduce an
averaged system associated to (1). Given any T > 0, any
θ0 ∈ TN , and any t0 ∈ R, the T -averaged system associated to
(1) is defined as

˙ˇ�〈θ(t; t0, θ0)〉T :=
1

T

∫ t+T

t

θ̇(τ ; t0, θ0)dτ,

〈θ(t0; t0, θ0)〉T := θ0, (11)

for all t ∈ R. The averaged system evolves with the av-
erage instantaneous frequency of the system (1) over a slid-
ing time window of length T . We point out that, since
1
T

∫ t+T
t

θ̇(τ ; t0, θ0)dτ ∈ RN for all t ∈ R, (11) is a well
defined non-autonomous dynamics on TN .

The following lemma, whose proof is trivial and is omitted,
shows that the practical desynchronization of (1) corresponds to
the strong desynchronization of its averaged system.

Lemma 2 (Desynchronization of the averaged system)
There exists a pair (i, j) ∈ N6=N of practically desynchronized
oscillators for the system (1), (that is θi, θj satisfy (10) for
some Ωij , Tij > 0) if and only if the Tij-averaged system (11)
associated to (1), satisfies

|
˙ˇ�〈θi(t; t0, θ0)〉Tij −

˙ˇ�〈θj(t; t0, θ0)〉Tij | ≥ Ωij , ∀t ∈ R, (12)

that is 〈θi〉Tij and 〈θj〉Tij are strongly desynchronized.

At the light of the above lemma we are able to give a
characterization of practical desynchronization. For all T ≥ 0,
the T -averaged grounded dynamics ψT ∈ RN associated to
(11) is given by

ψ̇T (t; t0, θ0) :=

Å
IN −

1

N
~1N~1

>
N

ã
˙ˇ�〈θ(t; t0, θ0)〉T

ψT (t0; t0, θ0) = θ0. (13)

The following corollary, which is a direct consequence of
Theorem 1 and Lemma 2, provides a complete characterization
of practical desynchronization.



Corollary 2 (Characterization of practical desynchroniza-
tion) There exists a pair (i, j) ∈ N 6=N of practically desynchro-
nized oscillators for system (1) if and only if there exist some
constants ᾱ, T > 0, such that, for all θ0 ∈ TN and all t0 ∈ R,
the T -averaged grounded dynamics (13) satisfies

ψ̇T (t; t0, θ0)>(ei − ej) ≥ ᾱ, ∀t ∈ R. (14)

In particular, if the pair (i, j) is practically desynchronized,
the T -averaged grounded dynamics (13) associated to (1) is
completely unstable.

IV. DESYNCHRONIZATION OF THE KURAMOTO SYSTEM
THROUGH MEAN-FIELD FEEDBACK

The Kuramoto system under mean-field feedback (MFF)
appears as a simple model of coupled oscillators under the
influence of a scalar MFF. In [11], [9] it was studied with
the scope of efficient desynchronization of brain cells for the
treatment of neurological diseases by electrical stimulation. In
those references the following model is derived

θ̇i = ωi +
1

N

N∑
j=1

(kij + γij) sin(θj − θi)

− 1

N

N∑
j=1

γij sin(θj + θi), ∀i = 1, . . . , N, (15)

where θi represents the phase of the oscillator i, the parame-
ters kij represent the interconnection gains, and γij are gains
resulting from the application of the proportional mean-field
feedback. See [11] and [9] for details.

It was shown in [11] that, for almost all interconnection
topology and almost all value of the feedback gain, phase-
locking is impossible under MFF. In the next theorem we show
that practical desynchronization can actually be achieved by
MFF. In other words, we give a sufficient condition to assure
that a given couple of oscillators is practically desynchronized
while the ensemble keeps on oscillating (Figure 2).

Theorem 2 (Practical desynchronization of the Kuramoto
system under MFF) Suppose that there exists i, j ∈ N 6=N , such
that

Ωij :=

|ωi−ωj |−
1

N

N∑
h=1

|γih+γjh|
Å
πν

2ω
+
ν2

6ω2

ã
− 1

N

N∑
h=1

|εih+εjh|

> 0, (16)

where ν := 2 maxh=1,...,N

Ä
|ω̃h|+ 1

N

∑N
h′=1 |γhh′ + εhh′ |

ä
,

ω := 1
N
~1>Nω, ω̃h := ωh − ω̄, and εhh′ := khh′ + γhh′ , for all

h, h′ = 1, . . . , N .
Then the pair of oscillators (i, j) is practically desynchronized.

The sufficient condition (16) can readily be used in
practical applications to explicitly compute the minimum
number of desynchronized pairs of oscillators. The term
1
N

∑N
h=1|γih+γjh|

Ä
πν
2ω + ν2

6ω2

ä
is small provided the mean nat-

ural frequency ω̄ is large. In the opposite case, one rather
expects the mean-field feedback to block the oscillations, as
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Fig. 2. Evolution of the phases of (17) for large natural frequencies when
a proportional mean-field feedback with gain γ = −2k0 is switched on at
time t = 20. The mean-field feedback induces desynchronization.

described in [10], [12]. The term
∑N
h=1|εih+εjh| guides the

feedback gain design to obtain oscillators desynchronization
by imposing to minimize the closed-loop diffusive coupling
strength kij+γij . In terms of the grounded dynamics associated
to (18), Corollary 2 implies that its average system is completely
unstable (Figure 3).
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Fig. 3. Evolution of the grounded dynamics of (17) for large natural
frequencies when a proportional mean-field feedback with gain γ = −k0
is switched on at time t = 20

In the case when the coupling is given by the all-to-all
topology, and each oscillator contributes in the same way at the
measured mean-field and receives the input with same intensity,
the interconnection and feedback gains become kij = k0 and
γij = γ, for all i, j = 1, . . . , N . In this case (15) reduces to

θ̇i = ωi +
(k0 + γ)

N

N∑
j=1

sin(θj − θi)

− γ

N

N∑
j=1

sin(θj + θi), ∀i = 1, . . . , N. (17)

The diffusive coupling term (k0 + γ)
∑N
j=1 sin(θj−θi) can be

eliminated by choosing γ = −k0, and (17) reduces to

θ̇i = ωi +
k0

N

N∑
j=1

sin(θj + θi), ∀i = 1, . . . , N. (18)

Theorem 2 then relaxes in this case to the following corollary.

Corollary 3 (Practical desynchronization of the all-to-all
Kuramoto system under MFF) Suppose that there exists i, j ∈
N6=N , such that

Ωi,j := |ωi − ωj | − 2k0

Å
πν

2ω
+

ν2

6ω2

ã
> 0, (19)



where ν := 2 maxh=1,...,N (|ω̃h|+ k0), ω := 1
N
~1>Nω, and

ω̃h := ωh − ω̄, for all h = 1, . . . , N .
Then the pair of oscillators (i, j) is practically desynchronized.

Inequality (19) is always satisfied, provided that ωi 6= ωj and
ω̄ is sufficiently large (Figures 2 and 3). Indeed, the minimum
coupling strength that ensures asymptotic phase-locking of
(17) in the absence of mean-field feedback does not depend on
the absolute magnitude of the natural frequencies, but only on
their dispersion [8], [15], [7], [11]. One thus expects the value
of k0 guaranteeing phase-locking in the absence of MFF to be
independent of ω̄.

Proof of Theorem 2
The whole proof is based on the following claim, whose proof
follows from elementary trigonometry and is omitted for space
reasons. The interested reader can find it in [10].

Claim 1 For all θ0 ∈ TN , the trajectory of (18) satisfies, for all
i, j = 1, . . . , N ,

ω

π

∣∣∣∣∣
∫ π/ω

0

sin
(
θi(τ) + θj(τ)

)
dτ

∣∣∣∣∣ ≤
Å
πν

2ω
+

ν2

6ω2

ã
.

Invoking Proposition 1 and Claim 1, it follows that, for all θ0 ∈
TN , all i, j ∈ N6=N , and all t ∈ R, the trajectory of (18) satisfies

ω

π

∣∣∣∣∣
∫ t+π/ω

t

Ä
θ̇i(τ)− θ̇j(τ)

ä
dτ

∣∣∣∣∣
≥ |ωi − ωj |

−
∑
l=i,j

N∑
h=1

γlh
N

ω

π

∣∣∣∣∣
∫ t+π/ω

t

sin(θl(τ) + θh(τ))dτ

∣∣∣∣∣
−
∑
l=i,j

N∑
h=1

εlh
N

ω

π

∣∣∣∣∣
∫ t+π/ω

t

sin(θl(τ)− θh(τ))dτ

∣∣∣∣∣ , ∀t ≥ 0

≥|ωi−ωj |−
1

N

N∑
h=1

|γih+γjh|
Å
πν

2ω
+
ν2

6ω2

ã
− 1

N

N∑
h=1

|εih+εjh|

> 0,

where the last inequality comes from assumption (16). Recall-
ing Definition 3, this proves the theorem. �
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