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Abstract. The spacecraft formation control problem sets high demands to the
performance, especially with respect to positional accuracy. The problem is fur-
ther complicated due to scarce fuel resources and limited actuation effects, in
addition to the many sources of disturbances. This paper addresses the problem
of finding the optimal gains of spacecraft formation controllers. By optimal, we
mean the gains that minimizes a cost functional which penalizes both the control
efforts and the state deviation, while still guaranteeing stability of the closed-loop
systems in the presence of disturbances.
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1 INTRODUCTION

Formations of spacecraft are mainly motivated by their flexibility and increased baseline
length compared to monolithic spacecraft. They are complex systems which require
precise control to maintain relative trajectories, even in the presence of disturbances.
These disturbances are often only described by the statistical or averaged characteristics
of the perturbing signals (e.g. amplitude, energy, average energy, etc.), and are due to
for instance intervehicle interference, solar wind and radiation and gravitational effects.
To account for the limited fuel resources, the control law should minimize the fuel
consumption, while still guaranteeing a predefined accuracy.

Ignoring the disturbances, an optimal control, that is the control input that mini-
mizes some sensible cost function, can be derived using the Hamilton-Jacobi-Bellman
equation or Pontryagin’s maximum principle. With the introduction of H∞ methods, by
[19], one can specify the level of plant uncertainty and the signal gain from disturbance
inputs to error outputs [4]. Although the H∞ control problem was initially stated for
systems described by transfer matrices, the ideas were soon translated into a state space
setting [18], by realizing that the H∞ norm is the L2 induced norm in the time domain.
The nonlinear equivalent of the H∞ problem was shown by [13] to be determined by
the Hamilton-Jacobi-Isaacs (HJI) equation or inequality. An analytic solution to the HJI
equation is general difficult to find. With the introduction of the inverse optimal control
problem by [5], the performance index is a posteriori determined rather than a priori.
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In [10] this idea was applied to systems with disturbances, and it was shown that input-
to-state stabilizability is a necessary and sufficient condition for what is known as the
inverse optimal gain assignment problem to be solvable. The sufficiency part is rely-
ing on the Sontag type control law introduced in [16]. By solving the inverse optimal
control problem solutions to a whole family of HJI equations are found. In [8] the link
between optimality and closed-loop stability was further investigated by relating the
cost function to a Lyapunov function, with the purpose of an optimal selection of the
controller design parameters.

The problem of study in this paper is similar to the problem in [8], however we do
not use the Lyapunov function as our cost function. Instead we introduce a new cost
function, and solve the optimization problem with the stability constraints based on the
Lyapunov analysis. The Lyapunov analysis of was performed in a previous paper by
the authors, [6], and a guarantee for a hard bound on the state norm for input-to-state
stable (ISS) systems in presence of signals with limited moving average were found.
Furthermore, it was shown that the Lyapunov function can give an explicit estimate
of the maximum of the disturbances’ moving average that can be tolerated for a given
precision. For the sake of completeness, some of the results are repeated here. In this
paper we address the problem of finding the optimal gains, subject to constraints im-
posed by the Lyapunov analysis to achieve the above mentioned precision and stability.
We consider a cost functional that is quadratic in both state and control variables, and
the optimization is performed using fmincon, because of its ability to handle nonlinear
constraints. We emphasize that we are not doing optimal control in usual sense, as the
the controller and observer has already been designed without necessarily optimality in
mind. It is obvious that the performance is restricted by parameterization of the chosen
control law.

Notation and terminology A continuous function α :R≥→R≥0 is of class K (α∈
K ), if it is strictly increasing and α(0) = 0. If, in addition, α(s)→∞ as s→∞, then α is
of class K∞ (α∈K∞). A continuous function β : R≥0×R≥0→R≥0 is said to be of class
K L if, β(·, t) ∈K for any t ∈R≥0, and β(s, ·) is decreasing and tends to zero as s tends
to infinity. The solutions of the differential equation ẋ = f (x,u) with initial condition
x0 ∈ Rn is denoted by x(·;x0,u). We use | · | for the Euclidean norm of vectors and the
induced norm of matrices. The closed ball in Rn of radius δ≥ 0 centered at the origin is
denoted by Bδ, i.e. Bδ := {x∈Rn : |x| ≤ δ}. | · |

δ
denotes the distance to the ball Bδ, that

is |x|
δ

:= infz∈Bδ
|x− z|. U denotes the set of all measurable locally essentially bounded

signals u : R≥0→Rp. For a signal u ∈U, ‖u‖∞ := ess supt≥0|u(t)|. The maximum and
minimum eigenvalues of a symmetric matrix A are denoted by λmax(A) and λmin(A),
respectively. In and 0n denote the identity and zero matrices of Rn×n respectively. We
use E for the expectancy operator.

2 ISS SYSTEMS AND SIGNALS WITH LOW MOVING
AVERAGE

We start by recalling some classical definitions related to the stability and robustness of
nonlinear systems of the form

ẋ = f (x,u), (1)
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where x∈Rn, u∈U and f :Rn×Rp→Rn is locally Lipschitz and satisfies f (0,0) = 0.

Definition 1. Let δ be a nonnegative constant and W ⊂ U. The ball Bδ is said to
be globally exponentially stable (GES) for (1) with respect to W if there exists some
positive constants k1 and k2 such that the solution of (1) satisfies

|x(t;x0,u)| ≤ δ+ k1|x0|e−k2t , ∀t ≥ 0. (2)

for all x0 ∈ Rn and all u ∈W .

We next recall the definition of ISS, originally introduced in [15].

Definition 2. The system ẋ = f (x,u) is said to be input-to-state stable (ISS) if there
exist β ∈ K L and γ ∈ K∞ such that, for all x0 ∈ Rn and all u ∈U, the solution of (1)
satisfies

|x(t;x0,u)| ≤ β(|x0|, t)+ γ(‖u‖∞) , ∀t ≥ 0 . (3)

ISS thus imposes an asymptotic decay of the norm of the state up to a function of
the amplitude ‖u‖∞ of the input signal.

We also recall the following well-known Lyapunov characterization of ISS, origi-
nally established in [12] and thus extending the original characterization proposed by
Sontag in [17].

Proposition 1. The system (1) is ISS if and only if there exist α,α,γ ∈ K∞ and κ > 0
such that, for all x ∈ Rn and all u ∈ Rp,

α(|x|)≤V (x)≤ α(|x|) (4)
∂V
∂x (x) f (x,u)≤−κV (x)+ γ(|u|) . (5)

γ is then called a supply rate for (1).

The input signals we consider in this paper are slightly more restrictive than those
in for instance [1], but the advantage is that a hard bound on the state norm can be
guaranteed. Namely, we consider input signals with bounded moving average.

Definition 3. Given some constants E,T > 0 and some function γ∈K , the set Wγ(E,T )
denotes the set of all signals u ∈U satisfying∫ t+T

t
γ(|u(s)|)ds≤ E , ∀t ∈ R≥0 .

The main concern here is the measure E of the maximum energy that can be fed
into the system over a moving time window of given length T . These quantities are the
only information on the disturbances that are taken into account in the control design.
More parsimonious control laws than those based on the disturbances’ amplitude or
energy can therefore be expected. We stress that signals of this class are not necessarily
globally essentially bounded, nor are they required to have a finite energy. Robustness
to this class of signals thus constitutes an extension of the typical properties of ISS
systems.

With input signals with bounded moving average, the following result of [6] guar-
antees global exponential stability of some neighborhood of the origin.
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Corollary 1. Assume there exists a continuously differentiable function V : Rn→R≥0,
class K∞ function γ, functions α(s) = csp and α(s) = csp, with c,c, p positive constants,
and a positive constant κ such that (4) and (5) hold for all x ∈Rn and all u ∈Rp. Then,
given any T,δ > 0, the ball Bδ is GES for (1) with any signal u ∈Wγ (E,T ) provided
that

E(T,δ)≤ cδp

2
eκT −1

2eκT −1
.

3 SPACECRAFT FORMATION CONTROL

The results of Section 2 were in [6] exploited to demonstrate robustness of a spacecraft
formation control in a leader-follower configuration. We will here only include the parts
necessary to keep this section self-contained. For further details, the reader is referred
to the original paper.

3.1 Spacecraft models

The model for the leader spacecrafts motion with respect to a moving coordinate frame
is given by

p̈+C (ν̇o) ṗ+D(ν̇o, ν̈o) p+n(ro, p) = Fl (6)

while the model for follower spacecraft with respect to the leader is given by

ρ̈+C (ν̇o) ρ̇+D(ν̇o, ν̈o)ρ+n(ro + p,ρ) = Ff −Fl , (7)

where Fl := (ul + dl)/ml , Ff := (u f + d f )/m f , and where subscripts l and f stand for
the leader and follower spacecraft respectively. p is the position of the leader spacecraft
with respect to a coordinate frame in a Keplerian orbit, where as ρ is the position of the
follower spacecraft with respect to the leader. ml and m f are the spacecraft’ masses, ul
and u f are the control inputs, and dl and d f denote all exogenous perturbations acting
on the spacecraft. Furthermore,

C (ν̇o) := 2ν̇oC̄, C̄ :=

0 −1 0
1 0 0
0 0 0

 ,

D(ν̇o, ν̈o) := ν̇
2
oD̄+ ν̈oC̄, D̄ := diag(−1,−1,0),

and

n(ro, p) := µ
(

ro + p
|ro + p|3 −

ro

|ro|3
)
,

with ro being the origin of the coordinate reference frame, and νo the true anomaly. We
make the following assumptions on the first and second derivatives of νo:

Assumption 1 The true anomaly rate ν̇o and true anomaly rate-of-change ν̈o of the
reference frame satisfy ‖ν̇o‖∞ ≤ βν̇o and ‖ν̈o‖∞ ≤ βν̈o , for some positive constants βν̇o

and βν̈o .
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3.2 Controller and observer design

In [6] the proposed controller of the leader spacecraft were:

ul =ml

[
p̈d +C (ν̇o) ṗd +D(ν̇o, ν̈o) p+n(ro, p)− kl (ṗ0− ṗr)

]
(8)

with pd being the reference trajectory, el = p− pd the tracking error, p̃ = p− p̂ the
estimation error, ṗr = ṗd− `lel , ṗ0 = ˙̂p− `l p̃, and with velocity estimate provided by

˙̂p =al +(ll + `l) p̃ (9)
ȧl =p̈d + ll`l p̃ . (10)

The controller for the follower spacecraft has a similar structure, given by

u f =m f

[
p̈d + ρ̈d +C (ν̇o)(ṗd + ρ̇d)+D(ν̇o, ν̈o)(p+ρ)+n(ro + p,ρ)+n(ro, p)

− kl (ṗ0− ṗr)− k f (ρ̇0− ρ̇r)
]

(11)

with ρ being the reference trajectory, e f = ρ−ρd the follower spacecraft tracking error,
ρ̃ = ρ− ρ̂ the estimation error, auxiliary signals ρ̇r = ρ̇d − ` f e f and ρ̇0 = ˙̂ρ− ` f ρ̃, and
with the observer

˙̂ρ =a f +(l f + ` f ) ρ̃ (12)
ȧ f =ρ̈d + l f ` f ρ̃ (13)

The parameters kl , ll , `l , k f , l f and ` f denote some positive tuning gains. The closed-
loop system may now be summarized into the equations

Ẋ = A(ν̇o(t),θ)X +Bd , (14)

where X := (X>l ,X>f )
> with Xl := (e>l , ė

>
l , p̃>, ˙̃p>)> and X f := (e>f , ė

>
f , ρ̃
>, ˙̃ρ>)>, d :=

(d>l ,d>f )
>, θ := (kl , `l , ll ,k f , ` f , l f )

> and A := blckdiag(Al ,A f ) with

Ai(ν̇o) :=


03 I3 03 03
a21 a22(ν̇o) a23 a24
03 03 03 I3
a41 a42(ν̇o) a43 a44

 , (15)

for i ∈ {l, f}. Out of notational compactness, the following matrices have been used:
a21 := a41 := −ki`iI3, a22 := a42 := −C(ν̇o)− kiI3, a23 := ki`iI3, a24 := kiI3 , a43 :=
(ki− li)`iI3 and a44 := (ki− li− `i)I3. Finally, B := (B>l ,B

>
f )
> with

Bl :=
1

ml


03 03
I3 03
03 03
I3 03

 and B f :=
1

mlm f


03 03
−m f I3 mlI3

03 03
−m f I3 mlI3

 .
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3.3 Robustness of the overall formation

The following result establishes robustness of the controlled formation to a wide class
of disturbances:

Proposition 2. Let Assumption 1 hold. Let the controller of the leader spacecraft be
given by (8)-(10) and the controller of the follower spacecraft be given by (11)-(13)
with, for each i ∈ {l, f}, li ≥ 2ki, ki > 2k?i , where

k?i :=

{
`i + β̃i if ki− `i ≤ ki`

2
i

β̃i/`
2
i otherwise,

with

β̃i := βν̇o

√
2`2

i +1+

(
1+

m2
f

m2
l

) (
l2
i +1

)
m2

i
. (16)

Given any precision δ > 0 and any time window T > 0, consider any average energy
satisfying

E ≤ 1
4

min
i∈{l, f}

{
`2

i −
1
2

√
4`4

i +1+
1
2

}
δ

2 eκT −1
2eκT −1

, (17)

where

κ :=
mini∈{l, f} k?i /maxi∈{l, f}

{
ki
`i

}
maxi∈{l, f}

{
`2

i +
1
2

√
4`4

i +1+ 1
2

} . (18)

Then, for any d ∈Wγ(E,T ) where γ(s) := s2, the ball Bδ is GES for the overall forma-
tion summarized by (14).

The proof of the proposition is found in [6].
As already stressed, the results recalled in Section 2 allow to expect more parsimo-

nious solicitation of the actuators than classical ISS-based reasonings. However, such
an improvement will only be made practical if the gains of Proposition 2 are tuned in
an adequate manner. The rest of the document focuses on this issue.

4 Optimal controller and observer gain tuning

Of simplicity we will in the following consider the unperturbed version of (14),

Ẋ = A(ν̇o(t),θ)X , (19)

since d is only characterized by its moving average and therefore difficult to incorporate
in the optimization problem we will set forth in the sequel. One possibility to incorpo-
rate the disturbance into the optimization problem would be to look at the worst case
scenario, which is typical of differential game problems or the inverse optimal gain as-
signment problem mentioned in the introduction. The worst case excitation due to the
disturbances with limited moving average, can for a linear system be found using the
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results of [7]. We however, aim at finding the parameters θ, which are the best com-
promise between fast state convergence and limited control efforts, while ignoring the
effect of the disturbance. If the problem is posed as an optimization problem, a com-
mon choice is to use a cost function which quadratically penalizes control and state
deviation, i.e. a cost function of the form

J(θ) =
∫ th

t0
X(τ)>QX(τ)+u(τ)>Ru(τ)dτ (20)

with weighting matrices Q ∈ R24×24 and R ∈ R6×6 both being symmetric and positive
definite, optimization horizon th and u = (u>l ,u

>
f )
>, where

ul = ml

[
D(ν̇o, ν̈o)el− kl (ṗ0− ṗr)

]
(21)

and
u f = m f

[
D(ν̇o, ν̈o)(el + e f )− kl (ṗ0− ṗr)− k f (ρ̇0− ρ̇r)

]
(22)

are the terms of (8) and (11), respectively, that we want to penalize. It can be noticed,
that we have chosen not to penalize the feed-forward terms from the reference and the
gravity compensation in (8) and (11). The cost (20), can be written as:

J(θ) =
∫ th

t0
X>(τ)(Q+(T +Ξ)>R(T +Ξ))X(τ)dτ (23)

with

T := m f

[ ml
m f

kl`lI3
ml
m f

klI3 − ml
m f

kl`lI3 − ml
m f

klI3 03 03 03 03

kl`lI3 klI3 −kl`lI3 −klI3 k f ` f I3 k f I3 −k f ` f I3 −k f I3

]
, (24)

and

Ξ :=
[

mlD(ν̇o, ν̈o) 03
03 m f D(ν̇o, ν̈o)

][
I3 03 03 03 03 03 03 03
I3 03 03 03 I3 03 03 03

]
. (25)

We now introduce the state transition matrix Φ(t, to) which is the unique solution of

∂

∂t
Φ(t, t0) = A(ν̇o(t),θ)Φ(t, t0) , (26)

with initial condition
Φ(t0, t0) = I24 . (27)

The solution to (19) is
X(t) = Φ(t, t0)X0 , (28)

and is used to rewrite the cost function into the following form

J(θ) = X>0

∫ th

t0
Φ
>(τ, t0)(Q+(T +Ξ(τ))>R(T +Ξ(τ)))Φ(τ, t0)dτX0 . (29)
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We will avoid dependency of the cost function on initial conditions, and will assume that
X0 are randomized variables with zero mean, and covariance matrix equal to identity,
that is E{X0X>0 }= I24. By defining

P(th, t0) :=
∫ th

t0
Φ
>(τ, t0)(Q+(T +Ξ(τ))>R(T +Ξ(τ)))Φ(τ, t0)dτ (30)

and using the fact that

E{X>0 P(th, t0)X0}= E{traceX>0 P(th, t0)X0}
= E{traceX0X>0 P(th, t0)}
= traceE{X0X>0 }P(th, t0)
= traceP(th, t0) ,

our optimization problem can be formulated as

min
θ

E{J(θ)}= min
θ

traceP(th, t0) (31)

subject to
∂

∂t
Φ(t, t0) = A(ν̇o(t),θ)Φ(t, t0) , (32)

with Φ(t0, t0) = I24,

∂

∂t
P(t, t0) = Φ

>(t, t0)(Q+(T +Ξ(t))>)R(T +Ξ(t)))Φ(t, t0) , (33)

with P(t0, t0) = (Q+(T +Ξ(t0))>R(T +Ξ(t0))), for each i ∈ {l, f},

li ≥ 2ki (34)
ki > 2k?i (35)

where

k?i :=

{
`i + β̃i if ki− `i ≤ ki`

2
i

β̃i/`
2
i otherwise,

(36)

with

β̃i := βν̇o

√
2`2

i +1+

(
1+

m2
f

m2
l

) (
l2
i +1

)
m2

i
, (37)

and

kl , `l ,k f , ` f ∈ [0,2] (38)
ll ∈ [0,10] (39)
l f ∈ [0,15] . (40)

The constraints (38)-(40) are introduced to more efficiently solve the problem. The
problem was solved using the interior point algorithm of the function fmincon in MAT-
LAB.
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The true anomaly, νo, of the reference frame can be obtained by numerical integra-
tion of the equation

ν̇o (t) =
√

µ(1+ eo cosνo (t))
2( 1

2 (ra + rp)(1− e2
o)
)3/2 , (41)

where radius of perigee and apogee is chosen as rp = 107m and ra = 3×107m, respec-
tively. The true anomaly rate and rate of change are calculated using (41) and

ν̈o (t) =
−2µeo (1+ eo cosνo (t))

3 sinνo (t)( 1
2 (rp + ra)(1− e2

o)
)3 . (42)

The eccentricity can be calculated from ra and rp to be eo = 0.5, and we see from (42),
that the constant βν̈o in Assumption 1 can be chosen as βν̈o = 4×10−7. The constant βν̇o

in Assumption 1 can be chosen as βν̇o = 8×10−4 as seen from (41). We have assumed
that the reference frame is initially at perigee, that is νo (t0) = 0 and ν̇o (t0) = vp/rp,
where

vp =

√
2µ
(

1
rp
− 1

(rp + ra)

)
. (43)

The horizon of the problem was chosen as th = 30, and the optimization problem was
solved using R= I24 and Q with ones along the diagonal except that Q(2,2) =Q(3,3) =
Q(14,14) = Q(15,15) = 20. It can be argued that choosing the elements of R and Q is
as hard as finding the parameters θ in the original problem. However, with the com-
mon choice of diagonal Q and R, choosing Q and R is more intuitive in the authors
opinion. The optimization problem, was solved with all combinations of initial condi-
tions θi ∈ {0,1,2}, and the results are summarized in Table 1. The reason for solving

Parameter kl `l ll k f ` f l f
Best value 0.3382 0.2658 2.0048 0.3738 0.3302 1.7644

Mean 0.3280 0.2809 1.6541 0.3855 0.3154 1.8660

Table 1. Optimization result of 729 iterations, covering all combinations of initial conditions
θi ∈ {0,1,2}. By Best value, we mean the parameters which gives the lowest cost function value.

the optimization problem with several different initial values, is to find, if not a global
minimum, then at least a good local minimum. Looking at mean values in Table 1, we
see that the parameters ll and l f are most affected by different initial guesses for the
parameters.

The parameters giving the lowest cost function were then used as initial guess, and
the problem was solved with different values for the horizon th. The results in Table 2
suggests that the found parameters represent a good local minimum.

4.1 Simulations
We will now provide simulations of the spacecraft formation, using the gains achieved
from the optimization procedure in the previous section. For simplicity, we choose
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Horizon kl `l ll k f ` f l f
20 0.3195 0.2743 1.5802 0.3829 0.3200 1.8948
50 0.3382 0.2658 2.0048 0.3738 0.3302 1.7644

100 0.3382 0.2658 2.0048 0.3738 0.3302 1.7644
300 0.3415 0.3089 1.9524 0.3631 0.3245 1.7608

1000 0.3382 0.2658 2.0048 0.3738 0.3302 1.7644

Table 2. Optimization result with different values of the horizon length th.

the desired trajectory of the leader spacecraft to coincide with the reference orbit, i.e.
pd(·)≡ (0,0,0)>. The reference orbit is generated by numerical integration of

r̈o =−
µ

|ro|3
ro, (44)

with ro (0) = (rp,0,0) and ṙo (0) = (0,vp,0), with vp as in (43). Initial values of the
leader spacecraft are p(0) = (2,−2,3)> and ṗ(0) = (0.4,−0.8,−0.2)>. The initial
values of the observer are chosen as p̂(0) = (0,0,0)> and al (0) = (0,0,0)>.

The reference trajectory of the follower spacecraft are chosen as the solutions of a
special case of the Clohessy-Wiltshire equations, cf. [3]. We use

ρd (t) =

 10cosνo (t)
−20sinνo (t)

0

 . (45)

This choice imposes that the two spacecraft evolve in the same orbital plane, and that
the follower spacecraft makes a full rotation about the leader spacecraft at each orbit
around the Earth. The initial values of the follower spacecraft are ρ(0) = (9,−1,2)>

and ρ̇(0) = (−0.3,0.2,0.6)>. The initial parameters of the observer are chosen to be
ρ̂(0) = ρd (0) = (10,0,0)> and a f (0) = (0,0,0)>. We use m f = ml = 25 kg both in the
model and the control structure.

With θ as the best value in Table 1, we find from (18) that κ = 0.0901. Over a
10 second interval (i.e. T=10), the average excitation must satisfy E(T,δ)≤ 0.0061δ2,
according to (17). We consider two types of disturbances acting on the spacecraft: “im-
pacts” and continuous disturbances. The “impacts” have random amplitude, but with
maximum of 1.5 N in each direction of the Cartesian frame. For simplicity, we as-
sume that at most one impact can occur over each 10 second interval, and we assume
that the duration of each impact is at most 0.1s. The continuous disturbances are taken
as sinusoids, also acting in each direction of the Cartesian frame, and are chosen to
be (0.1sin0.01t,0.25sin0.03t,0.3sin0.04t)> for both spacecraft. Notice from (7) that
the relative dynamics are influenced by disturbances acting on the leader and follower
spacecraft, so the effect of the continuous part of the disturbance on the relative dynam-
ics is zero. It can easily be shown that the disturbances satisfy the following:∫ t+10

t
|d(τ)|2dτ≤ 1.42 , ∀t ≥ 0 .
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Fig. 1. Leader spacecraft.

Figure 1(a), 1(b) and 1(c) show the position tracking error, position estimation error
and control history of the leader spacecraft, whereas Figure 2(a), 2(b) and 2(c) are the
equivalent figures for the follower spacecraft. Figure 1(d) and 2(d) show the effect of
dl and d f − dl acting on the formation. Notice in Figure 2(d) that the effect of the
continuous part of the disturbance is canceled out (since we consider relative dynamics
and both spacecraft are influenced by the same continuous disturbance), whereas the
effect of the impacts has increased compared to the effect of the impacts on the leader
spacecraft. Since E = 1.42, and should satisfy E ≤ 0.0061δ2, this gives a very large δ.
As can be seen from Figure 1(a), 1(b), 2(a), 2(b) the actual precision reached, is much
better than the theoretical expectations. The reason for this is that the constraints on the
control gains are based on Lyapunov analysis, which in general yields very conservative
results, and also conservative estimates of the disturbances the control system is able to
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Fig. 2. Follower spacecraft.

handle. However, we stress that the constraints on the gains based on moving average
of the disturbance are much more relaxed than those obtained through a classical ISS
approach, i.e. relying on the disturbance magnitude. Figure 1(c) and Figure 2(c), shows
that the conservative estimates results in large transients in the actuation, but by finding
the optimal parameters, the control efforts are heavily reduced compared to [6], while
the tracking errors are kept at a reasonable level.
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