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Résumé : Les systèmes de dialogue sont des interfaces homme-machine qui utilisent le
language naturel comme medium d’interaction. La simulation d’utilisateurs a pour objec-
tif de simuler le comportement d’un utilisateur humain afin de générer artificiellement des
dialogues. Cette étape est souvent essentielle dans la mesure où collecter et annoter des cor-
pus de dialogues est un processus coûteux, bien que nécessaire à l’utilisation de méthodes
d’apprentissage artificiel (tel l’apprentissage par renforcement qui peut être utilisé pour ap-
prendre la politique du gestionnaire de dialogues). Les simulateurs d’utilisateurs existants
cherchent essentiellement à produire des comportements d’utilisateurs qui soient statistique-
ment consistants avec le corpus de dialogues. La contribution de cet article est d’utiliser l’ap-
prentissage par renforcement inverse pour bâtir un nouveau simulateur d’utilisateur. Cette
nouvelle approche est illustrée par la simulation du comportement d’un modèle d’utilisateur
(artificiel) sur un problème à trois attributs pour un système d’information touristiques. Le
comportement du nouveau simulateur d’utilisateur est évalué selon plusieurs métriques (de
l’interaction au dialogue).

1 Introduction

User simulation for spoken dialogue systems (SDS) is a research field aiming at generating ar-
tificial interactions so as to automatically assess the quality of dialogue strategies Eckert et al.
(1997) or to train machine-learning-based dialogue management systems Schatzmann et al. (2006).
A majority of existing methods for user simulation mainly focus on reproducing user behaviors
which have the same statistical consistency as in some dialogue corpus Pietquin & Dutoit (2006);
Schatzmann et al. (2007); Georgila et al. (2005). However, with regard to man-machine interac-
tion, human users tend to adapt themselves according to the dialogue management engine while
corpora are usually obtained using a specific dialogue system. If user simulation is used for trai-
ning machine-learning-based dialogue systems Lemon & Pietquin (2007), the dialogue management
is continuously modified and nothing guarantees that the user simulation remains close to what
the user behavior would be facing a novel dialogue management strategy. This is also the case
in human-human interaction where the communicating subjects choose what to say and how to
say it based on the (alleged) ability of the other subject. Thus, simulating the user behavior only
based on the frequency of occurrence of user acts (given the context) may fail to simulate the
human behavior precisely. Moreover, statistical similarity is often used to assess the quality of user
simulation Pietquin & Hastie (2011).

In this paper the task of simulating human users is perceived as a sequential decision making
under uncertainty problem and the user, when deciding to generate a dialogue act in a given
context, is supposed to follow a long-term policy. One way to estimate the user policy from a
dialogue corpus (annotated in user perspective) is to employ reinforcement learning (RL) Sutton
& Barto (1998) for policy optimization. However RL-based optimization requires a reward function,
describing how good it is for the user to accomplish an action in a given context, to be defined in
advance. Manually specifying the reward function of the user is one possible option but is often an
impossible task if the behavior to be simulated is complex Abbeel & Ng (2004).
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Here the task of simulating the user is defined as an imitation learning problem. Inverse Rein-
forcement Learning (IRL) Ng & Russell (2000) is employed to estimate the reward function of
the user (i.e., what satisfies the user when interacting with the machine). The estimated reward
function is then used by a (direct) RL algorithm for retrieving the strategy of the user which is
supposed to be optimal w.r.t. the inferred reward function. The novelty of the proposed approach
from the authors perspective breaks down as follows : (i) user simulation is treated as a sequential
decision making problem, (ii) IRL is used for the first time in the dialogue management domain
(to estimate the reward function of the user) and (iii) the estimated objective function of the user
can be used as a mean to assess the performance of the user simulator Pietquin & Hastie (2011).
Overall the primary contribution of the paper is to settle the main framework of IRL-based user
simulation and demonstrate the feasibility of the method on a simple problem.

The paper starts with a description of a formalism for modeling sequential decision making in
Section 2. Then formal description of IRL is presented in Section 3. Following which casting the
task of user modeling as a Markov Decision Process (MDP) and employing IRL to learn the reward
function of the user is discussed in Section 4. Section 5 outlines the experimental setup for learning
the user behavior of a hand-crafted user model, along with the evaluation strategy. Eventually,
Section 6 concludes and outlines the future directions of work.

2 Markov Decision Processes
In machine learning, the problem of sequential decision making under uncertainty is generally

treated in the framework of the Markov Decision Processes Bellman (1957). Formally, an MDP is
defined as a tuple {S, A, P,R, γ} where S is the state space, A is the action space, P : S×A → P(S)
a set of Markovian transition probabilities, R : S → R the reward function and γ a discount factor
weighting long-term rewards. A learning agent steps from state to state accomplishing actions. At
any given time step, the agent is in a state si ∈ S and transits to si+1 according to p(.|si, ai) upon
(choosing and) performing an action ai ∈ A according to a policy π : S → A. After each transition
the agent receives a reward ri = R(si). The quality of the policy π followed by the agent can be
quantified by the state-action value function or Q-function (Qπ : S ×A → R) defined as :

Qπ(s, a) = E[
∞∑

i=0

γiri|s0 = s, a0 = a] (1)

The optimal policy π∗ is the one for which the Q-function is maximum for each state-action pair :
π∗ = arg maxπ Qπ(s, a). The optimal policy leads to an optimal Q-function Q∗(s, a) and π∗(s) =
arg maxa Q∗(s, a). There exist many RL algorithms to compute the optimal policy π∗ Sutton &
Barto (1998) and the associated Q∗(s, a).

3 Inverse reinforcement learning
Given that the MDP framework is adopted, IRL Ng & Russell (2000) aims at learning the

reward or utility function optimized by an expert from a set of observed interactions between this
expert and the MDP. However, this is an ill-posed problem and there exist several possible reward
functions that can match the expert behavior Ng & Russell (2000). Thus the primary focus of
most existing IRL algorithms is to retrieve some reward function (not necessarily the true reward
function) which can exhibit a behavior similar to the expert’s behavior. Let us assume an MDP
defined by the tuple {S, A, P, γ}/R, where /R means that the reward function of the MDP is not
available. Let the feature space of the reward function be defined using a vector φ. Then the reward
function R of the MDP can be expressed as : Rθ(s, a) = θT φ(s, a) =

∑k
i=1 θiφi(s, a) (where θ (resp.

φ) is a vector of which the ith component is θi (resp. φi(s, a)). Using this in Eq (1) :

Qπ(s, a) = E[
∞∑

i=0

γiθT φ(s, a)|s0 = s, a0 = a] = θT µπ(s, a) (2)

where µπ(s, a) is the feature expectation of the policy π. Feature expectation in simple terms can
be defined as the discounted measure of features according to state visitation frequency (based on



Fig. 1 – User simulation using imitation learning
when the state is visited in the trajectory). It provides a compact yet simple mean to summarize
the behavior of the user observed in the form of trajectories. Given a set of m trajectories (where
Hi is the length of the ith trajectory) from the expert (who acts based on some unknown policy
π), the feature expectation µπ(s0, a) can be estimated by :

µπ(s0, a) =
1
m

m∑
i=0

Hi∑
t=0

γtφ(si
t, a

i
t) (3)

The primary focus of IRL is to retrieve some reward function (through its parameters θ) used to
predict a user behavior (πpredict) being similar to the behavior of the expert (πexpert).

R∗θ(s, a) = arg min{J(πexpert, πpredict)}

where J is some dissimilarity measure between the expert behavior and the predicted user behavior.
From Eq (2) it can be observed that comparing two different user behaviors (policies) in terms of
feature expectation is indeed comparing the behaviors based on their value function. Notice that
from Eq (1), a reward function that is non-zero only in some states can lead to a Q-function that
is non-zero in every state. From the Q-function, a greedy policy arg maxa Q(s, a) can be inferred
for every state and therefore, IRL-based user simulation can generalize to unseen situations which
is harder to obtain from traditional statistical simulation. Assuming that ‖θ‖ ≤ 1 (which is not
restrictive : rewards are bounded and scale invariant), one has ‖Qπ‖ ≤ ‖µπ‖. Thus an easy way of
computing the dissimilarity between the expert behavior πexpert and the predicted user behavior
πpredict is to compute a distance between their feature expectations, that is µexpert and µpredict :

J(πexpert, πpredict) = ‖µexpert − µpredict‖2

Apprenticeship learning or imitation learning Abbeel & Ng (2004) focuses on learning to imitate
the behavior observed in the sample trajectories. In this case IRL is used as a first step to retrieve
the underlying reward function of the expert, which in turn is used in policy optimization to imitate
the expert. Imitation learning can be pictorially represented as shown in Figure 1.

4 User simulation using IRL
To begin with, the user modeling task is casted as an MDP : userMDP, where S is the state space

of the user (formally defined in Section 5), A is the set of all possible user acts. Let the state-action
space of the userMDP be defined by a vector of features φ : S × A → [0, 1]k. Also it is assumed
that a set of m dialogue episodes (trajectories) from human users is made available. The goal here
is to build a user simulator which can imitate the behavior observed in the dialogue corpus. Let us
term πhuman the policy of the human users. Feature expectation µhuman can be computed as shown
in Eq (3). In the imitation learning algorithm (Algorithm (1)), step 3 is an IRL step where, based
on the dissimilarity between the human and simulated user behavior, the reward function of the
human user is estimated. It searches for the reward function which maximizes the distance between
the value of the expert and any policy computed in prior iterations. The updated reward function is
used to estimate the optimal behavior (policy for userMDP) of the simulated user in step 6. Steps
3 to 6 are performed iteratively until some convergence criteria is met, i.e. the distance between
the human and simulated user behavior is within an acceptable range ξ. Upon convergence the
algorithm outputs a set of policies Π.
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Algorithm 1 User simulation using imitation learning
1: Compute µexpert from dialogue corpus
2: Initiate Π with random policy πpredict = π0 and compute µpredict

3: Compute t and θ such that

t = max
θ
{ min

πpredict∈Π
θT (µexpert − µpredict)} s.t. ‖θ‖2 ≤ 1

4: if t ≤ ξ then Terminate
5: end if
6: Train a new policy πpredict for userMDP optimizing R = θT φ(s, a) with RL (LSPI).
7: Compute µpredict for πpredict ; Π← πpredict

Goto to step 3.

In order to simulate the user one can choose the best policy from Π based on its distance with
µexpert or choose to use multiple policies with an associated selection probability (explained in
Section 5). The algorithm does not guarantee to retrieve the true reward function of the expert
but to retrieve a reward function which can exhibit a similar behavior. Even though it may seem
that using the state visitation frequency in the form of feature expectation is comparable to existing
approaches for user simulation (such as the n-gram method), it is worth noting that the feature
expectation is not directly used. It is used to predict a reward function which in turn is used to
simulate the expert behavior. Most existing ML based approaches for user simulation focus on
simulating the user at the transition level when the primary focus of this work is to simulate user
trajectories. Also IRL user simulation generalizes through the value function which is non-zero
everywhere.

5 Experiment

In this last section, a simple experiment is presented that shows the feasibility of the method. The
goal of the experiment is to learn a user model which can simulate the behavior of a hand-crafted
user model. To begin with, the state-action space of the SDS and the userMDP are defined. Then
the experimental setup for training and evaluation of the IRL user model is described.

5.1 Town-Information dialogue system

The problem studied in this paper is a task-oriented, form-filling dialogue system in the tourist
information domain, similar to the one studied in Lemon et al. (2006). The aim of the dialogue
system is to give information about restaurants in a city based on specific user preferences. It
may be recalled that the imitation learning algorithm outlined in Section 4 requires the feature
expectation (defined in Eq (3)) for a user behavior π to be computed. One way to estimate this is
to run a set of dialogue episodes between the dialogue manager and the user simulator (using π).
The dialogue context is composed of the knowledge of 3 slots : location, cuisine and price-range of
the restaurant. The list of possible system acts includes 13 actions : Ask-slot (3 actions), Explicit-
confirm (3 actions), Implicit-confirm and Ask-slot value (6 actions) and finally Close-dialogue.
For the sake of simplicity a hand-crafted dialogue policy is used for dialogue management. The
hand-crafted dialogue strategy tries to fill and confirm all the 3 slots one after the other.

The task of user simulation is casted as an MDP. The state of the user simulator is represented
by the Information State paradigm Larsson & Traum (2000). The user state is a summary of
the dialogue course from a user simulation’s perspective. Apart from encoding the exchange of
information between the user model and the dialogue manager, the user state also includes the
most recent action performed by the dialogue manager. For the 3-slot town-information dialogue
problem the user model has the following state representation : {System-Act} {Slot1} {Slot2}
{Slot3}, where the system-act field takes values in 0 :13 representing the corresponding system
acts defined above. Slot1, Slot2, Slot3 fields take values in 0 :2 ; i.e. (0) the slot is empty (never
provided by the user), (1) the slot has been provided by the user, (2) the slot is confirmed. The
action space of userMDP includes the following 10 user acts : remain silent (Silent), provide-all-



Tab. 1 – Hand-crafted user behavior

SystemAct UserActs (probability)
Greet Silent (0.7) AllSlots (0.3)

AskSlot OneSlot (0.95) AllSlots (0.05)
Explicit-Conf Confirm (1.0)
Implicit-Conf OneSlot (0.9) Negate (0.1)
CloseDialogue Silent (1.0)

values (AllSlots), provide-one-value (OneSlot : 3 actions), confirm slot value (Confirm : 3 actions),
negate slot value (Negate : 3 actions) and hangup (CloseDialogue). The discount factor of the
userMDP is set to 0.95.

5.2 Learning to imitate

The main originality of this paper is to cast the user simulation problem as an IRL problem. To
exemplify the method, this section describes how data generated from a hand-crafted (expert) user
simulation can be used to perform imitation learning. The user behavior to be imitated (expert
policy for userMDP) is detailed in Table 1. A set of trajectories is created using the dialogue
manager and the user simulation. Using the generated data the feature expectation of the expert
user behavior πexpert is computed as shown in Eq (3). The computed feature expectation will be
the µexpert since the task here is to imitate the expert behavior. First a set of dialogue episodes
are generated using the userMDP with a fully random action selection πrandom and the dialogue
manager. The feature expectation of the random policy can then be computed from the dialogue
trajectories. Since the necessary expert behavior is available in the form of dialogue trajectories,
µexpert can be computed.

The reward function of the user simulation is estimated based on the distance between the feature
expectations of the expert and simulated user behavior. At each iteration of imitation learning
the intermediate reward function is used to estimate the optimal behavior for userMDP using
LSPI Lagoudakis & Parr (2003). Notice that LSPI is a batch algorithm which allows learning from
fixed sets of data (this is an important feature to extend the proposed method to real applications).
Upon convergence (ξ set to 0.1) the best policy π∗ of the userMDP (chosen from Π based on the
least dissimilarity measure between πpredict and πexpert) will exhibit the expert user behavior.

5.3 Evaluation of user behavior

To facilitate evaluation, 1000 dialogue episodes are generated using the dialogue manager, the
trained IRL user simulation and the expert user simulation (1000 episodes each). Figure 2 presents
the average choice of user actions taken by the two different user simulations. The behavior of
the expert user simulation is stochastic (see Table 1) and the behavior of the IRL user simulation
is deterministic as only one of the policies retrieved during training is used during evaluation.
However it is also possible to obtain a stochastic user behavior by employing a policy mixer to pick
up a different policy before starting each dialogue episode. Let the probability of choosing a policy
πi

predict ∈ Π be λi . The values of λ1...n can be heuristically determined using a Gibbs distribution :
λi = e(−di/τ)/

∑n
j=1 e(−dj/τ), where di is the distance between µexpert and µi

predict estimated
during training. During the evaluation, τ is set to 0.01 (ensures that the policies closest to πexpert

are given more preference). Let the behavior of IRL user simulation which employs policy mixer
be termed as MixIRL-UserSim.

Using IRL to estimate the reward function of the user provides a unique opportunity to evaluate
the simulated behavior using the reward function itself. Since the reward function represents the
intention of the user, the reward estimated using it can be used to quantify the effectiveness of the
user model to simulate the user. Table 2 shows the average discounted reward obtained by the user
simulations based on the estimated reward function. It can be observed that the rewards obtained
by the IRL user simulations and the hand-crafted user simulation, along with the average dialogue
lengths, are almost the same, whereby consolidating the hypothesis of similar behaviors.

A similarity measure suggested by Schatzmann et al. (2005) is used to compare the behaviors.
This metric is used to measure the correlation between the trajectories of the expert user model,
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Fig. 2 – Frequency of user actions per episode

Tab. 2 – Hand-crafted vs IRL user behavior

UserSim AvgLength AvgReward
Hand-crafted 6.03 2.6

IRL 6.0 2.7
Mixed-IRL 5.5 2.9

πhc and the IRL user model, πirl :

Sim(πhc, πirl) =
1
n

n∑
i=1

1
1 + rank(ai)

with n the number of user acts observed in the trajectory generated by the expert user model.
Ranking of user acts (selected by πhc) based on their Q-value (obtained using Q-function of the
IRL used model) gives an indication to what extent the user acts selected by the expert model
correlates with the learned IRL user model. Upon comparing the expert user model with the IRL
user model, the similarity measure is found to be 0.48 for IRL-UserSim and 0.46 for MixIRL-
UserSim which are close to the optimal value 0.5 (both rankings are identical, and then rank() is
1 constantly). This confirms that the behavior of the IRL user model correlates very well with the
expert’s behavior.

6 Conclusion and future work

This paper presents a novel approach for building user simulations for dialogue systems using
IRL. Preliminary experimental results show that using IRL is possible to learn deterministic and
stochastic user simulation strategies. The dialogue iterations generated using trained IRL user
models closely correlates with that of hand-crafted users. IRL based methods provide a unique
opportunity to learn even complex user models since they are based on the computation of a utility
function and generate adaptive behaviors (goal-driven and not frequency-based action selection).
We recognize that the experiments are currently not large enough and the user simulation is
primarily reflecting the data similar to other methods. Even if not demonstrating yet the full
potentiality of the approach, the experimental results provide evidence that the method is worth
being investigated further. Since IRL user simulation can generalize from data it provides an
opportunity for schemes such as co-adaptation of dialogue manager and user simulator.

In future work, we want to measure the generalization capabilities of the method as well as the co-
adaptation phenomenon when the dialogue system changes. We also mean to measure the quality
of RL-based dialogue management policies learned using IRL user simulation. This may reveal
the effectiveness of IRL user simulation when compared to other approaches for user modeling.
And it would be also very interesting to explore the possibility of evaluating if not quantifying
the performance of other user simulations using the reward function of human user retrieved by
IRL Pietquin & Hastie (2011).
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