
HAL Id: hal-00652762
https://centralesupelec.hal.science/hal-00652762

Submitted on 17 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Apprentissage par imitation dans un cadre batch,
off-policy et sans modèle

Edouard Klein, Matthieu Geist, Olivier Pietquin

To cite this version:
Edouard Klein, Matthieu Geist, Olivier Pietquin. Apprentissage par imitation dans un cadre batch,
off-policy et sans modèle. JFPDA 2011, Jun 2011, Rouen, France. pp.1-9. �hal-00652762�

https://centralesupelec.hal.science/hal-00652762
https://hal.archives-ouvertes.fr


Apprentissage par imitation dans un cadre batch,
off-policy et sans modèle
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Résumé : Ce papier traite le problème de l’apprentissage par imitation, c’est à dire la
résolution du problème du contrôle optimal à partir de données tirées de démonstrations
d’un expert. L’apprentissage par renforcement inverse (IRL) propose un cadre efficace pour
résoudre ce problème. En se basant sur l’hypothèse que l’expert maximise une fonction de
valeur, l’IRL essaie d’apprendre la récompense qui définit cette dernière à partir de trajec-
toires d’exemple. Beaucoup d’algorithmes d’IRL font l’hypothèse de l’existence d’unn ap-
proximateur linéaire pour la fonction de récompense et calculent l’attribut moyen (le cumul
moyen pondéré des fonctions de base, relatives à la paramétrisation linéaire supposée de la
récompense, évaluées en les états d’une trajectoire associée à une certaine politique) via une
estimation de Monte-Carlo. Cela implique d’avoir accès à des trajectoires complètes de l’ex-
pert ainsi qu’à au moins un modèle génératif pour tester les politiques intermédiaires. Dans
ce papier nous introduisons une méthode de différences temporelles, LSTD-µ, pour calculer
cet attribut moyen. Cela permet d’étendre l’apprentissage par imitation aux cas batch et
off-policy.

1 Introduction
Optimal control consists in putting a machine in control of a system with the goal of fulfilling

a specific task, optimality being defined as how well the task is performed. Various solutions to
this problem exist from automation to planification. Notably, the reinforcement learning (RL)
paradigm (Sutton & Barto, 1998) is a general machine learning framework in which an agent
learns to control optimally a dynamic system through interactions with it. The task is specified
through a reward function, the agent objective being to take sequential decisions so as to maximize
the expected cumulative reward.

However, defining optimality (through the reward function) can itself be a challenge. If the system
can be empirically controlled by an expert, even though his/her behavior can be difficult to describe
formally, apprenticeship learning is a way to have a machine controlling the system by mimicking
the expert. Rather than directly mimicking the expert with some supervised learning approach,
Inverse Reinforcement Learning (IRL) (Ng & Russell, 2000) consists in learning a reward function
under which the policy demonstrated by the expert is optimal. Mimicking the expert therefore ends
up to learning an optimal policy according to this reward function. A significant advantage of such
an approach is that expert’s actions can be guessed in states which have not been encountered
during demonstration. Firstly introduced in (Russell, 1998), another advantage claimed by the
author would be to find a compact and complete representation of the task in the form of the
reward function.

There roughly exists three families of IRL algorithms : feature-expectation-based (Abbeel &
Ng, 2004; Syed et al., 2008; Syed & Schapire, 2008; Ziebart et al., 2008), marge-maximization-
based (Ratliff et al., 2006, 2007a,b; Kolter et al., 2008) and approaches based on the parameteriza-
tion of the policy by the reward function (Ramachandran & Amir, 2007; Neu & Szepesvári, 2007).
The first family assumes a linearly parameterized reward function. This naturally leads to a linearly
parameterized value function, the associated feature vector being the so-called feature expectation
(defined as the cumulative discounted reward’s feature vector under a given policy, see Section 2 for
a formal definition). These approaches learn a reward function such that the feature expectation of
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the optimal policy (according to the learnt reward function) is close to the feature expectation of
the expert policy. This is a sufficient condition to have close value functions (for any parameterized
reward function, and therefore particularly the optimized one). The second family expresses IRL as
a constrained optimization problem in which expert’s examples have higher expected cumulative
reward than all other policies by a certain margin. Moreover, suboptimality of the expert can be
considered through the introduction of slack variables. The last family parameterizes policies with
a reward function. Assuming that the expert acts according to a Gibbs policy (respectively to the
optimal value function related to the reward function which is optimized), it is possible to estimate
the likelihood of a set of state-action pairs provided by the expert. The algorithms differs in the
way this likelihood is maximized.

This paper focuses on the first family of algorithms, and more precisely on the seminal work
of Abbeel & Ng (2004). All of them rely on the computation of the feature expectation (which
depends on policies but not on rewards) of (i) the expert and (ii) some intermediate policies. The
expert’s feature expectation is computed using a simple Monte Carlo approach (which requires full
trajectories of the expert). Other feature expectations are either computed exactly (which requires
knowing analytically the dynamics of the system) or with a Monte Carlo approach (which requires
simulating the system). The contribution of this paper is LSTD-µ, a new temporal-difference-
based algorithm to estimate these feature expectations. It relaxes the predeceasing assumptions :
transitions of the expert are sufficient (rather than full trajectories) and nor the model neither a
simulator are necessary to compute intermediate feature expectations. This paper focuses on the
algorithm introduced in (Abbeel & Ng, 2004), but we are confident that the proposed approach
can be extended to other algorithms based on feature expectation computation (Syed et al., 2008;
Syed & Schapire, 2008; Ziebart et al., 2008), or even (Ratliff et al., 2006, 2007a,b).

The rest of this paper is organized as follows. Section 2 provides the necessary background,
notably the definition of feature expectation and its use in the seminal IRL algorithm of Abbeel &
Ng (2004). Section 3 presents LSTD-µ, our main contribution. Section 4 provides some preliminary
experiments and Section 5 opens perspectives.

2 Background
A sequential decision problem is often framed as a Markov Decision Process (MDP) (Puterman,

1994). An MDP is a tuple {S,A, P,R, γ} with S being the state space, A the action space, P ∈
P(S)S×A the set of Markovian transition probabilities, R ∈ RS the reward function (assumed to
be absolutely bounded by 1) and γ ∈ [0, 1[ a discounting factor. A policy π ∈ AS maps states to
action. The quality of a policy is quantified by the associated value function V π, which associates
to each state the expected and discounted cumulative reward :

V π(s) = E[
∞∑
t=0

γtR(st)|s0 = s, π] (1)

Dynamic programming aims at finding the optimal policy π∗, that is one of the policies associated
to the optimal value function, V ∗ = argmaxπ V π, which maximizes the value for each state. If the
model (that is transition probabilities and the reward function) is unknown, learning the optimal
control through interactions is addressed by reinforcement learning.

For inverse reinforcement learning, the problem is reversed. It is assumed that an expert acts
according to an optimal policy πE , this policy being optimal according to some unknown reward
function R∗. The goal of inverse reinforcement learning is to learn this reward function from
sampled trajectories of the expert. This is a difficult and ill-posed problem (Ng & Russell, 2000).
Apprenticeship learning through IRL, which is the problem at hand in this paper, has a somehow
weaker objective : it aims at learning a policy π̃ which is (approximately) as good as the expert
policy πE under the unknown reward function R∗, for a known initial state s0 (this condition can
be weakened by assuming a distribution over initial states ; this is not done here for clarity of
exposition). Now, the approach proposed in (Abbeel & Ng, 2004) is presented.

We assume that the true reward funnotiction belongs to some hypothesis spaceHφ = {θTφ(s), θ ∈
Rp}, of which we assume the basis functions to be bounded by 1 : |φi(s)| ≤ 1,∀s ∈ S, 1 ≤ i ≤ p.



Therefore, there exists a parameter vector θ∗ such that :

R∗(s) = (θ∗)Tφ(s) (2)

In order to ensure that rewards are bounded, we impose that ‖θ‖2 ≤ 1. For any reward function
belonging to Hφ and for any policy π, the related value function V π(s) can be expressed as follows :

V π(s) = E[
∞∑
t=0

γtθTφ(st)|s0 = s, π] (3)

= θTE[
∞∑
t=0

γtφ(st)|s0 = s, π] (4)

Therefore, the value function is also linearly parameterized, with the same weights and with basis
functions being grouped into the so-called feature expectation µπ :

µπ(s) = E[
∞∑
t=0

γtφ(st)|s0 = s, π] (5)

Recall that the problem is to find a policy whose performance is close to that of the expert’s for the
starting state s0, on the unknown reward function R∗. In order to achieve this goal, it is proposed
in (Abbeel & Ng, 2004) to find a policy π̃ such that ‖µπE (s0) − µπ̃(s0)‖2 ≤ ε for some (small)
ε > 0. Actually, this ensures that the value of the expert’s policy and the value of the estimated
policy (for the starting state s0) are close for any reward function of Hφ :

|V πE (s0)− V π̃(s0)| = |θT (µπE (s0)− µπ̃(s0))| (6)
≤ ‖µπE (s0)− µπ̃(s0)‖2 (7)

This last equation uses the Cauchy-Schwartz inequality and the assumption that ‖θ‖2 ≤ 1. There-
fore, the approach described here does not ensure to retrieve the true reward function R∗, but
to act as well as the expert under this reward function (and actually under any reward function,
notably the unknown optimal one).

Let us now describe the algorithm proposed in (Abbeel & Ng, 2004) to achieve this goal :
1. Starts with some initial policy π(0) and compute µπ(0)(s0). Set j = 1 ;
2. Compute t(j) = maxθ:‖θ‖2≤1 mink∈{0,j−1} θ

T (µπE (s0) − µπ(k)(s0)) and let θ(j) be the value
attaining this maximum. At this step, one searches for the reward function which maximizes
the distance between the value of the expert at s0 and the value of any policy computed
so far (still at s0). This optimization problem can be solved using a quadratic programming
approach or a projection algorithm (Abbeel & Ng, 2004) ;

3. if t(j) ≤ ε, terminate. The algorithm outputs a set of policies {π(0), . . . , π(j−1)} among which
the user chooses manually or automatically the closest to the expert (see (Abbeel & Ng,
2004) for details on how to choose this policy 1). Notice that the last policy is not necessary
the best (as illustrated in Section 4) ;

4. solve the MDP with the reward function R(j)(s) = (θ(j))Tφ(s) and denote π(j) the associated
optimal policy. Compute µπ(j)(s0) ;

5. set j ← j + 1 and go back to step 2.
There remains three problems : computing the feature expectation of the expert, solving the MDP
and computing feature expectations of intermediate policies.

As suggested in (Abbeel & Ng, 2004), solving the MDP can be done approximately by using any
appropriate reinforcement learning algorithm. In this paper, we use the Least-Squares Policy Itera-
tion (LSPI) algorithm (Lagoudakis & Parr, 2003). There remains to estimate feature expectations.
In (Abbeel & Ng, 2004), µπE (s0) is estimated using a Monte Carlo approach over m trajectories :

µ̂E(s0) = 1
m

m∑
h=1

∞∑
t=0

γtφ(s(h)
t ) (8)

1. A simple solution, not mentioned in (Abbeel & Ng, 2004), is to choose the policy of which the feature expec-
tation is the closest to the one of the expert.
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This approach does not hold if only transitions of the expert are available, or if trajectories are too
long (in this case, it is still possible to truncate them). For intermediate policies, it is also suggested
to estimate associated feature expectations using a Monte Carlo approach (if they cannot be
computed exactly). This is more constraining than for the expert, as this assumes that a simulator
of the system is available. In order to address these problems, we introduce a temporal-difference-
based algorithm to estimate these feature expectations.

3 LSTD-µ
Let us write the definition of the ith component of a feature expectation µπ(s) for some policy

π :

µπi (s) = E[
∞∑
t=0

γtφi(st)|s0 = s, π] (9)

This is exactly the definition of the value function of the policy π for the MDP considered with
the ith basis function φi(s) as the reward function. There exists many algorithms to estimate a
value function, any of them can be used to estimate µπi . Based on this remark, we propose to use
specifically the least-squares temporal difference (LSTD) algorithm (Bradtke & Barto, 1996) to
estimate each component of the feature expectation (as each of these components can be understood
as a value function related to a specific and known reward function).

Assume that a set of transitions {(st, rt, st+1)1≤t≤n} sampled according to the policy π is avail-
able. We assume that value functions are searched for in some hypothesis space Hψ = {V̂ξ(s) =∑q
i=1 ξiψi(s) = ξTψ(s), ξ ∈ Rq}. As reward and value functions are possibly quite different, an-

other hypothesis space is considered for value function estimation. But if Hφ is rich enough, one
can still consider Hψ = Hφ. Therefore, we are looking for an approximation of the following form :

µ̂πi (s) = (ξ∗i )Tψ(s) (10)

The parameter vector ξ∗i is here the LSTD estimate :

ξ∗i =
(

n∑
t=1

ψ(st)(ψ(st)− γψ(s′t))T
)−1 n∑

t=1
ψ(st)φi(st) (11)

For apprenticeship learning, we are interested more particularly in µ̂π(s0). Let Ψ = (ψi(st))t,i be
the n× q matrix of values predictors, ∆Ψ = (ψi(st)− γψi(s′t))t,i be the related n× q matrix and
Φ = (φi(st))t,i the n×p matrix of reward predictors. It can be easily checked that µ̂π(s0) satisfies :

(µ̂π(s0))T = ψ(s0)T (ΨT∆Ψ)−1ΨTΦ (12)

This provides an efficient way to estimate the feature expectation of the expert in s0.
There remains to compute the feature expectations of intermediate policies, which should be

done in an off-policy manner (that is without explicitly sampling trajectories according to the
policy of interest). To do so, still interpreting each component of the feature expectation as a value
function, we introduce a state-action feature expectation defined as follows (much as the classic
Q-function extends the value function) :

µπ(s, a) = E[
∞∑
t=0

γtφ(st)|s0 = s, a0 = a, π] (13)

Compared to the classic feature expectation, this definition adds a degree of freedom on the first
action to be chosen before following the policy π. With a slightly different definition of the related
hypothesis space, each component of this feature expectation can still be estimated using the LSTD
algorithm (namely using the LSTD-Q algorithm (Lagoudakis & Parr, 2003)). The clear advantage of
introducing the state-action feature expectation is that this additional degree of freedom allows off-
policy learning. Assuming that Hψ defines state-action feature vectors and that a set of transitions
{(st, at, rt, st+1)1≤t≤n} sampled according to some behaviorial policy π0 is available, the parameter



vector ξ∗i related to the ith component of the state-action feature expectation µπ(s) (policy π being
different from policy π0) is given by :

ξ∗i =
(

n∑
t=1

ψ(st, at)(ψ(st, at)− γψ(s′t, π(s′t)))T
)−1 n∑

t=1
ψ(st, at)φi(st) (14)

Extending LSTD-µ to state-action LSTD-µ is done in the same manner as LSTD is extended
to LSTD-Q (Lagoudakis & Parr, 2003), technical details are not provided here for the clarity of
exposition.

Given the (state-action) LSTD-µ algorithm, the apprenticeship learning algorithm of (Abbeel
& Ng, 2004) (see Section 2) can be easily extended to a batch and off-policy setting. The solely
available data is a set of transitions sampled according to the expert policy (and possibly a set of
sub-optimal but good trajectories). The corresponding feature expectation for the starting state s0
is estimated with the LSTD-µ algorithm. At step 4 of this algorithm, the MDP is (approximately)
solved using LSPI (Lagoudakis & Parr, 2003) (an approximate policy iteration algorithm using
LSTD-Q as the off-policy Q-function estimator). The corresponding feature expectation at state
s0 is estimated using the proposed state-action LSTD-µ.

Before presenting some experimental results, let us stress that LSTD-µ is simply the LSTD
algorithm applied to a specific reward function. Although quite clear, the idea of using a temporal
difference algorithm to estimate the feature expectation is new, as far as we know. A clear advantage
of the proposed approach is that any theoretical result holding for LSTD also holds for LSTD-µ,
such as convergence (Nedić & Bertsekas, 2003) or finite-sample (Lazaric et al., 2010) analysis for
example, also, the algorithm learns from transitions and not trajectories.

4 Experimental benchmark
This section provides some preliminary experimental results on a simple maze benchmark. Sub-

section 4.1 details the protocol and the results while subsection 4.2 inspects the meaning of the
different quality criteria.

4.1 Experiment description and results
The experimental benchmark chosen here is one of those proposed in (Ng & Russell, 2000), a

5x5 grid world. The agent is in one of the cell of the grid (whose coordinates is the state) and
can choose at each step one of the four compass directions (the action). With probability 0.9, the
agent moves in the intended direction. With probability 0.1, the direction is randomly drawn (and
thus have probability 0.25 to match the original direction). The reward optimized by the expert is
0 everywhere except in the upper-right cell, where it is 1. For every policy, an episode ends when
the upper right cell is attained, or after 20 steps. At the start of each episode, the agent is in the
lower-left corner of the grid (the opposite of where the reward is).

Both the state and action spaces are finite and of small cardinality. Hence, the chosen feature
functions φ and ψ (see equations (9) and (10) for a remainder of their meaning) are the typical
features of a tabular representation :0 everywhere except the component corresponding to the cur-
rent state (-action pair).

Both Abbeel & Ng (2004)’s algorithm (from now on referred to as the MC variant) and our
adaptation (referred to as the LSTD variant) are tested side by side. The MDP solver of the mc
variant is LSPI with a sample source that covers the whole grid (each state has a mean visitation
count of more than 150) and draws its action randomly. Both µπ(j)(s0) and µπE (s0) are computed
thanks to a Monte-Carlo estimation with enough samples to make the variance negligible. We
consider both these computations as perfect theoretical solvers for all intended purpose on this toy
problem. We thus are in the case intended by Abbeel & Ng (2004).
On the other hand the LSTD variant is used without accessing a simulator. It uses LSPI and
LSTDµ, fed only with the expert’s transitions (although we could also use non expert transitions
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if available). This corresponds to a real-life setting where data generation is expensive and the
system can not be controlled by an untrained machine.

We want to compare the efficiency of both versions of the algorithm with repect to the number
of samples available from the expert, as these samples usually are the bottleneck. Indeed as they
are quite costly (in both means and human time) to generate they are often not in abundance
hence the critical need for an algorithm to be expert-sample efficient. Having a simulator at sake
can also be difficult. For the simple problem we use this is however not an issue. The discussion
about the choice of the performance metric has its own dedicated subsection (subsection 4.2). We
use here the ||µπ(j)(s0)− µπE (s0)||2 error term.

Figure 1 shows, for some numbers of samples from the expert, the value of ||µπ(j)(s0)−µπE (s0)||2
after the algorithm converged or attained the maximum number of iterations (we used 40). The
best policy is found by LSTD variant after one iteration only 2 whereas in the MC variant, conver-
gence happens after at least ten iterations. The best policy is not always the last, and although it
experimentally always have been with the LSTD variant, there is absolutely no way to tell whether
this is a feature. The score of the best policy (not the last) according to the ||µπ(j)(s0)−µπE (s0)||2
error term is plotted here.

We can see that although the LSTD variant is not as good as the MC variant when very few
samples are available, both algorithm quickly converge to almost the same value ; our version
converges to a slightly lower error value. The error bars shown correspond to the standard deviation
over 100 runs. The fact that our variant can work in a batch, off-policy and model-free setting should
make it suitable to a range of task inaccessible to the MC variant.

4.2 Discussion about the quality criterion
Figure 2 and 3 illustrate the difficulty of choosing the quality criterion ; Figure 2 shows four dif-

ferent quality ciretria during a run of the MC variant. Figure 3 shows the same criteria for several
runs of the LSTD variant, as the abscissa can not be the number of iterations (as in Figure 2)
because it always converges in one iteration. The ||µπ(j)(s0)− µπE (s0)||2 term is widely discussed
in (Abbeel & Ng, 2004)’s additional material. It bears an interesting relation with the difference
between the expert’s value function and the current value function in the initial state with respect
to the current reward (equation 6).

The fact that the curves of the true error term ||µπ(j)(s0)−µπE (s0)||2 and its estimate ||µ̂π(j)(s0)−
µ̂πE (s0)||2 are indistinguishable in Figure 2 means that, for it has access to a cheap simulator, the
MC variant works as if it had access to the exact values. This however can not be said of the LSTD
variant, for which the two curves are indeed different (Figure 3). Not knowing the true value of
µπE (s0) may be a problem for our variant, as it can introduce an error in the stopping criterion of
the algorithm 3, t = ||µ̄(j) − µ̂πE (s0)|| where µ̄(j) is the projection of µπE on (µπ(j−1)

, µπ
(j)). After

the algorithm has converged there is no way to know whether the policy is actually good or not
other than actually testing it.

It shall be noted that although it plays its role, the halt criterion is not a good measure of the
quality of the current policy in the MC variant either, as it can be low (and thus halt the algorithm)
when the policy is bad. The best policy, however, can be easily chosen among all those created
during the execution of the algorithm thanks to the ||µπ(j)(s0) − µπE (s0)||2 term, which the MC
variant can compute. When this term is low, the objective performance (that is, V πE (s0)−V π(j)(s0)
with respect to the unknow true reward function) is low too.

2. Precise reasons for what it happens are not clear now, but certainly have something to do with the fact that
all the estimations are made along the same distribution of samples.

3. This equation differs from what has been given as the second step of the algorithm in section 2. This is because
we implemented the version of the algorithm that uses a projection (see Abbeel & Ng (2004)’s supplementary material
for an in-depth discussion of both versions). Although the mathematical expressions are different, both convey the
same meaning and are exchangeable.
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Figure 1 – ||µπ(s0) − µπE (s0)||2 where π is the policy for which this term is the lowest for the
whole run, with respect to the number of samples available from the expert. Our algorithm is not
as good as Abbeel & Ng (2004) with very few samples, but make up for it very soon and converges
to a lower value. The error bars represent the standard deviation over 100 runs.

5 Conclusion
Given some transitions generated by an expert controlling a system and maximizing in the long

run an unknown reward, we ported Abbeel & Ng (2004)’s approach to apprenticeship learning vie
inverse reinforcement learning to a batch, model-free, off-policy setting. Experimentally, there is
a need for a bigger number of samples from the expert. We believe this cost is not prohibitive
as our approach only requires isolated samples which are often less difficult to get than whole
trajectories as needed by the original approach. The simple idea of using LSTD to estimate the
feature expectation could be applied to other algorithms as well, for example (Abbeel & Ng, 2004;
Syed et al., 2008; Syed & Schapire, 2008; Ziebart et al., 2008).
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Nedić A. & Bertsekas D. (2003). Least squares policy evaluation algorithms with linear function

approximation. Discrete Event Dynamic Systems, 13(1), 79–110.
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