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Source Correlation in Randomly Excited
Complex Media

Andrea Cozza,Member, IEEE

Abstract—When dealing with modal representations of the
Green’s function of a complex medium, the modal coefficients
are often assimilated to random variables, where statistical
independence is justified on heuristic arguments supportedby the
complexity of the propagation in multiple-scattering scenarios.
This letter addresses this assumption when the randomness
originates from an uncertain positioning of the sources, proving
under what conditions the modal coefficients can be regardedas
uncorrelated, showing that this special condition should not be
taken for granted, even in complex media.

Index Terms—Random media, correlation, Green’s function,
stochastic fields, uncertain systems.

I. I NTRODUCTION

Complex propagation media are of fundamental importance
in a number of practical configurations, e.g., wave propagation
through indoor environments, the generation of random field
distributions in multi-modal waveguides and cavities, etc.
In the framework of the present paper, we shall regard a
medium as complex as soon as a wave propagating through
it is systematically subjected to a large number of scattering
interactions, leading to loss of coherence and typically depo-
larization phenomena [1], [2].

Statistical models are typically proposed to reproduce the
behavior of the electromagnetic fields thus generated, e.g., by
representing the fields as continuous stochastic processes[2],
[3], [4], [5] or by representing the propagation through a
superposition of contributions modulated by random coeffi-
cients [6], [7], [8], [9]. The rationale for approximating the
fields as random variables is not only based on the complexity
of the wave propagation, but also on the existence of further
randomizing processes, such as the presence of moving scatter-
ers or even in the case of a static medium where the sources are
randomly positioned, e.g., in the case of channel fading [10].

In the case of subspace (or spectral) representations, a
generic fieldF (r) can be expanded over a basis formed by
the orthogonal functionsgn(r)

F (r) =

N
∑

n=1

αngn(r), (1)

where theαn are treated as random variables. Choosing the
type of probability description for theαn is far from trivial,
but it is a common practice to regard them as Gaussian in-
dependent and identically distributed, for obvious simplifying
reasons [11], [8], [7], [12], [13], [14]. As a result, (1) gives the

A. Cozza is with the Département de Recherche en Électromagnétisme,
Laboratoire des Signaux et Systèmes (L2S), UMR 8506 SUPELEC- Univ
Paris-Sud - CNRS, 3 rue Joliot-Curie, 91192 Gif-sur-Yvette, France. Contact
e-mail: andrea.cozza@supelec.fr.

sources
volume

passive
scatterers

W
s

partially reflective
boundaries

W

Fig. 1: Schematic representation of a medium occupying a
region Ω, supporting a complex propagation of electromag-
netic waves, due to multiple passive scatterers and reflective
boundaries. The sources modeling the transmitter (or receiver)
are bound to the volumeΩs.

impression thatN degrees of freedom are equally accessible
in the medium.

In this letter we provide a formal proof that whenever the
randomness is due to a non-deterministic position/orientation
of the sources, the coefficients should not be regarded as
independent, even in the case of strongly scattering media.

II. GREEN’ S FUNCTIONS AND MODAL COVARIANCES

The electric field excited by an electric current distribution
J(r) under a harmonic steady-state at the frequencyω can
be expressed as a convolution integral involving the electric-
electric dyadic Green’s function of the medium

E(r) =

∫

Ω

Gee(r, r
′) · J(r′)d3r′, (2)

whereΩ is the region of space occupied by the medium under
consideration (Fig. 1). Clearly, other types of Green’s function
can be considered when dealing with magnetic fields and/or
magnetic sources. In a general way, these dyadic functions
can always be expanded into a spectral representation of the
type [15]

Gee(r, r
′) =

∞
∑

n=1

en(r)en(r
′)

k2 − k2n
, (3)

with r, r′ ∈ Ω, k = k(ω) the propagation constant related to
the frequency by a generic dispersion law, and whereen(r)
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andkn are respectively the eigenfunctions and eigenvalues of
Helmholtz equation

∇2en(r) + k2nen(r) = 0 (4)

solved with boundary conditions specific to the medium, ap-
plied overr ∈ ∂Ω. These eigensolutions will be assumed to be
normalized in such a way that an orthonormality relationship
holds

∫

Ω

e
†
i (r) · ej(r)d

3r = δij , (5)

whereδij is Kronecker’s delta and† stands for the Hermitian
transpose. This kind of discrete expansion pertains to bounded
media (e.g., cavities, waveguides), large collections of scatter-
ers (e.g. fog and colloidal suspensions at optical frequencies)
or quasi-periodic structures. Although free-space-like media
can be considered by taking the limit of the summation in (3)
to an integral, the case of a discrete set of normal modes shall
be considered, with no loss of generality.

Inserting (3) into (2) yields

E(r) =
∞
∑

n=1

γnen(r)

k2 − k2n
, (6)

with γn the modal coefficients obtained by projecting the
current distribution of the sources over the eigensolutions
en(r) by means of the Hilbert inner product

γn =

∫

Ω

en(r) · J(r)d
3r. (7)

In spite of the difficulties in predicting the normal modes
en(r), the most important information is arguably conveyed
by the modal coefficientsγn. As a matter of fact, the subspace
representation (3) implies the possibility of independently
exciting each of the degrees of freedom represented by each
normal mode, an interesting feature in any domain concerned
with the existence of rich multiple-scattering environments,
from diversity communications to the statistics of the field
generated within a random medium. The modal coefficients
γn thus provide a direct measure of the degree of excitation
of each of these potential degrees of freedom by means of the
applied sources.

Due to the intrinsical difficulty of knowing beforehand the
eigenfunctionsen(r), a statistical approach is often adopted,
by approximating the modal coefficientsγn to behave as ran-
dom variables, described by a specific probability distribution
law. Among the various hypothesis required in this respect,it is
often assumed that the modal coefficients be independent and
identically distributed, i.e., a covariance matrix with elements

σ2
ij = 〈γiγ̄j〉 = σ2

γδij , (8)

where〈·〉 is the ensemble average operator, the overbar rep-
resenting the complex conjugate andσ2

γ the variance of the
modal coefficients, i.e., their average power.

This paper addresses this common assumption in the case
where the randomness is justified by a random positioning for
the source’s volumeΩs. In general, for a given medium, with
a set of normal modesen(r), the modal coefficients would
behave as random variables as soon as the position and the

orientation of the sources can be modeled as random variables.
Under these circumstances, the covariances (8) can be written
as

σ2
ij =

∫

Ω

d3r e
†
i (r) ·

∫

Ω

d3r′ C (r, r′) · ej(r), (9)

where C (r, r′) will be referred to as the coupling dyad,
defined as

C(r, r′) =
〈

J(r)J†(r′)
〉

. (10)

Therefore, the coupling dyad operates as a kernel weighting
in (5).

III. N ECESSARY CONDITIONS FOR UNCORRELATED MODES

A necessary condition for (8) to hold can be readily derived
by looking at the inner integral in (9) as a spatial filtering [16]:
if the dyadic coupling functionC (r, r′) did not modify the
spatial distributionsej(r), then (9) would coincide with the
orthogonality relationship (5) existing between normal modes,
directly implying uncorrelated modal coefficients. The general
representation in (9) does not allow to push this idea further,
as the double dependence of the coupling dyad onr and r′

corresponds to a spatial-variant filtering; in other words,(9)
is not equivalent to a convolution integral. This would be the
case only if

C (r, r′) = C (r − r′). (11)

It will be shown in the next Section that this property is
automatically satisfied as soon as the source position and
orientation are totally random with no a priori information.
At the same time, it will be shown that these same conditions
are needed if the coupling dyad is to be isotropic and non-
polarized, a necessary condition proved at the end of this
Section.

Condition (11) allows applying the convolution theorem in
the reciprocal spacek. To this effect, we need to introduce the
Fourier transform̃ej(k) of a modal distributionej(r) applied
to the variabler

ẽj(k) =

∫

Ω

ej(r)e
jk·rd3r. (12)

Hence,σ2
ij ∝ δij as soon as the Fourier transform̃C (k) of

the coupling dyad is such that

C̃ (k) · ẽj(k) ∝ ẽj(k). (13)

Recalling that the normal modes are but steady-state solu-
tions to the source-less Helmholtz equation (4), their spatial
spectrum can be assumed to be essentially made up of prop-
agative plane waves, i.e.,

ẽi(k) = δ(k − k0)
◦

ei(k̂), (14)

where ◦

ei(k̂) is the angular spectrum [17] andk0 is the wave-
number associated with the background material inΩ. This
assumption holds as long as the mean free-path between two
scattering events is larger than one wavelength, in order to
avoid evanescent-wave couplings [2]. Therefore

∫

Ω

C (r − r′) · ei(r)d
3r′ =

∫

C̃ (k) · ẽi(k)e
−jk·rd3k =

=

∫

4π

k20C̃ (k0k̂) ·
◦

ei(k̂)e
−jk0k̂·rd2k̂, (15)
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Fig. 2: Sources volume at a random positionr0 bound to
the regionΩ0. The reference system denoted by primed axis
indicates the rotation operationRq̂ applied to the original
orientation of the sources volumeΩs.

whence the condition (13) is satisfied only if

C̃ (k0k̂) = C0I , (16)

with I the identity dyad. Hence, the spatial spectrum of
the coupling dyad needs to be: 1) constant over the surface
k = k0, i.e., isotropic along any direction and 2) non-
polarizing, i.e., proportional to the identity dyad. Thesetwo
conditions correspond to a spherically symmetric coupling
dyad in the spatial domain. Under this double condition,
(8) is immediately satisfied. These two conditions cannot be
parted from (11), which is a fundamental requirement to these
results. In other words, the coupling dyad needs to be position-
invariant, isotropic in direction and non polarized.

IV. I SOTROPIC, POSITION-INVARIANT , NON-POLARIZED

COUPLING DYADS

These requirements are shown in this Section to imply
a specific random orientation and positioning of the source
volumeΩs. We first consider the case of an elementary electric
current

J(r) = Rq̂ · p̂δ(r − r0) (17)

with p̂ the polarization of the elementary source,r0 its
position and its orientation modified by the rotation operator
Rq̂, with q̂ the unit vector pointing to the direction of the
source. We will assume the position and orientation of this
source to be random and independent, assuming them as not
causally related by any underlying deterministic process.It is
therefore possible to split the ensemble average in (10) into
two averages,

C(r, r′) = 〈Rq̂ · p̂ p̂
† ·R†

q̂
〉q̂〈δ(r − r0)δ(r

′ − r0)〉r0
. (18)

For a completely random orientation, with no preferential di-
rection,q̂ ∈ U(4π), i.e., q̂ can cover with uniform probability
4π steradian, hence a probability density functionf(q̂) =
1/4π. The first average can be computed by observing that
the vectorRq̂ · p̂ resulting from the random rotation inherits
the probability distribution of the rotation dyad. Hence, the
first average, hereafter referred to asC q̂, is just the covariance

matrix of the three orthogonal components ofq̂. Due to the
initial assumption of a source oriented with equal probability
along4π steradian, the diagonal elements ofCq̂ are bound to
be identical. It is therefore sufficient to consider the caseof
the component of̂q along theẑ direction,

(C q̂)ii = 〈(p̂ · ẑ)2〉q̂ =
1

3
, (19)

whereas the off-diagonal elements ofC q̂ are equal to zero,
yielding C q̂ = I/3. At the same time, the average onr0 ∈
Ω0, referred to asCr0

, yields Cr0
= δ(r − r′)/VΩ0

, with
VΩ0

the volume covered by the random vectorr0, i.e.,

C (r, r′) =
I

3VΩ0

δ(r − r′). (20)

Whence, an elementary source arbitrarily polarized and
randomly oriented and positioned satisfies the conditions put
forward in the previous Section, thus ensuring uncorrelated
coefficients for the modal expansion (3). In any other case,
a probability density functionf(q̂;Θ) depending on a set
of parametersΘ would be required, thus leading to results
also dependent onΘ. An example is provided by Von Mises
distributions, where a preferential direction is associated to a
higher probability; as a result, the coupling dyad would present
an anisotropic behavior (e.g., a fullCq̂), with (9) becoming

σ2
ij =

1

VΩ0

∫

Ω

d3r e
†
i (r) ·C q̂ · ej(r), (21)

thus altering the orthonormality condition (5) .
In the more general case of an extended source, it is no more

possible to operate a factorization as done in (18), because
of the distributed nature ofJ(r). We shall first consider the
averaging obtained by a random rotation around the origin,
which is equivalent to rotating the doublet of vectorsr and
r′ while keeping the source regionΩs centered at the origin.
This operation can be resumed by a random rotation ofr,
where it is regarded as a random vectorr  Rq̂ · r, which is
equivalent to the substitution̂r  q̂. We definer′ as

r′ = r +∆rR∆r · r̂, (22)

whereR∆r represents the rotation operation linking the di-
rection ofr to ∆r = r′ − r. Hence

〈

J(r)J†(r′)
〉

q̂
=

〈

p̂(rq̂)p̂†(rq̂ +∆rR∆r · q̂)

J(rq̂)J̄(rq̂ +∆rR∆r · q̂)
〉

q̂
.

(23)

Introducing the rotation operatorRp̂ linking the polariza-
tions atr andr′, the right-hand side of the above expression
becomes
〈

p̂(rq̂)p̂†(rq̂)
〉

q̂
·R†

p̂
(r, r′)

〈

J(rq̂)J̄(rq̂ +∆rR∆r · q̂)
〉

q̂
.

(24)
In most practical configurations, sources are polarized in such
a way that p̂(r) is independent ofr, implying Rp̂ ≡ I .
Recalling (20)

〈

J(r)J†(r′)
〉

q̂
= C q̂(r,∆r)

= I
〈

J(rq̂)J̄(rq̂ +∆rR∆r · q̂)
〉

q̂
,

(25)
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as long aŝq ∈ U(4π). In any other case, the resulting correla-
tion would be at least partially polarized, and thus dependent
on the orientation of the source, i.e., non isotropic. This point
was shown to be a necessary condition for uncorrelated modal
coefficients in Section III.

If the source position were deterministic, then the resulting
coupling dyad could not possibly be position-invariant, asclear
from (25), still dependent onr. Conversely, we shall consider
a random positionr0 spanning a regionΩ0, as depicted in
Fig. 2, around the nominal position̄r0, a sort of barycenter of
the regionΩ0. Once the positionsr, r′ at which the coupling
dyad is evaluated are chosen, a random displacement of the
sources by an offsetr0 is equivalent to applying a random
offset r0 − r̄0 to the vectorr appearing in (25), resulting in
a spatial averaging of the coupling dyad overΩ0.

In the caseΩ0 ⊇ Ωs, due to the rotational invariance of
C q̂(r,∆r), the overall coupling dyad can be computed as

C(∆r) =
〈

C q̂(r,∆r)
〉

r0

=
I

3

1

VΩ0

∫

Ω0

d3r

∫

4π

d2q̂J(rq̂)J̄(rq̂ +∆rR∆r · q̂),
(26)

whereVΩ0
is the volume ofΩ0.

The choice ofΩ0 only affects the absolute value of (26), if
Ω0 ⊇ Ωs, sinceC q̂ is identically equal to zero outsideΩs. It
is therefore convenient to chose a spherical volumeΩ0 with a
radiusR0, yielding

C(∆r) =
4πI

3VΩ0

∫ R0

0

dr

∫

4π

d2q̂J(rq̂)J̄(rq̂ +∆rR∆r · q̂)

=
4πI

3VΩ0

∫

Ωs

d3rJ(r)J̄(r +∆rR∆r · r̂) (27)

having exploited the spherical symmetry ofC q̂. One could
wonder about the eventual relationship between (27) and the
spatial auto-correlation function ofJ(r)

ΦJ (∆r) =

∫

Ωs

d3rJ(r)J̄(r +∆r). (28)

Although this parallel could seem straightforward, (27)
clearly shows that this is not the case, since the auto-
correlation function only involves an integration carriedout
over r, while keeping∆r = r − r′ fixed. In fact, the
averaging due to the random orientation ofΩs submits∆r to
the same operation, which cannot be expressed through any
composite function of the auto-correlation function. It appears
from (27) that the coupling dyad is rather a homogenization of
the current distribution, resulting in a direct dependenceonly
on ∆r. This is indeed the condition required in Section III,
while the non-polarization provided by the identity dyad and
the isotropy of (27) complete the set of conditions leading to
uncorrelated modal coefficients.

In any other case, either with a non-uniform probability of
orientation, i.e., involving a preferential direction, orwith a
probability of positioning covering only part of the sources
regionΩs, the resulting coupling dyad would break at least
one of the three conditions set out in the previous Section. As
a result, the modal coefficients will be statistically correlated,
thus reducing the actual number of degrees of freedom po-
tentially provided by the medium, on average. A quantitative

evaluation of (9) in this case will generally require a numerical
approach, so that it is hardly possible to make any broad
prediction, particularly because of the strong sensitivity that
can be expected on the details of the configuration of interest.

V. CONCLUSIONS

This letter has introduced the concept of a coupling dyad
linking the covariances of the modal coefficients in the spectral
expansion of a generic Green’s dyadic function to the orthogo-
nality relationship existing between normal modes. Necessary
conditions for perfectly uncorrelated modal coefficients were
demonstrated, leading to the conclusion that in more general
configurations the effective number of degrees of freedom
available may be smaller than assumed. In other words, no
equivalence between the number of available normal modes
and the number of degrees of freedom should be taken for
granted.
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