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Abstract—In the Software Radio context, the parametrization is 

becoming an important topic especially when it comes to multi-

standard designs. This paper capitalizes on the Common 

Operator technique to present new common structures for the 

FFT and FEC decoding algorithms. A key benefit of exhibiting 

common operators is the regular architecture it brings when 

implemented in a Common Operator Bank (COB). This 

regularity makes the architecture open to future function 

mapping and adapted to accommodated silicon technology 

variability through dependable design. 

Keywords-Parametrization; Common Operator; FFT; Viterbi; 

RS decoding; Software Radio; Flexible Radio 

I.  INTRODUCTION 

Over the past few years, a proliferation of communication 
standards has substantially increased the complexity of radio 
design. In typical designs, the communication standards are 
implemented separately using dedicated instantiations which 
are difficult to upgrade for the support of new features. In the 
present days, the concept of Software Radio (SWR), introduced 
by J. Mitola in [1], emerged from military research to become a 
cornerstone of modern communication system design. The 
SWR technique becomes the way to design flexible and 
reconfigurable architectures capable of supporting different 
transmission standards in a single platform. Although there is a 
common agreement on the SWR aim and benefit, the way of 
implementing SWR, also known as Software Defined Radio 
(SDR) varies, considering various tradeoffs requested by actual 
design (cost, flexibility, complexity, power consumption, 
speed, etc.), and current silicon technology. 

A digital communication baseband chain, when supporting 
different standards, uses typical signal processing operations 
such as modulation, channel coding, equalization, etc. These 
functions can be identified and then explored to take advantage 
from the similarities among common tasks in order to enhance 
power efficiency and area occupation [4]. In this context, 
parameterization technique has been introduced in [2] and [3]. 
It consists in identifying the common aspects among the 
targeted modes and standards in order to define a generic 
operation capable of handling the required tasks. This generic 
operation can switch from a configuration to another by a 
simple change of its parameters. 

In this paper, we exploit a parameterization approach 
proposed in [4], called the common operator technique that can 
be considered to build a generic terminal capable of supporting 
a large range of communication standards. The main principle 
of the common operator technique was to identify common 
elements based on smaller structures that could be heavily 

reused across functions. This technique aims at designing a 
scalable transceiver based on medium granularity operators, 
larger than basic logic cells and smaller than Velcro Method or 
common function [4]. Similarly to flip flop or logic gate, a 
common operator is used regardless of the function executed 
by. From this point, the common operator technique claims to 
be less standard dependent than classical approach [5] where 
the entire specific building block required by a standard are 
implemented and executed when needed. It is expected that the 
reduction of the exploration space to telecommunication 
baseband functions will help exposing medium-grain common 
operators. The resulted implementation is expected to be more 
flexible and scalable to a wide range of standards. Such a 
regular structure is also well adapted to cope with silicon 
technology process variability. Indeed, as CMOS technology 
shrinks, the performance of the operator instances may vary 
across space (on the silicon wafer) and time [6]. Dealing with 
regular building blocks helps map the most demanding 
algorithms onto the best performing cells, enabling the design 
to be dependable or even self-healing. Many previous works 
focused on defining [7,12,14,15] implementing and managing 
[8] the Common Operators (CO). In this paper we investigate 
the commonalities of the FFT and FEC decoding operator. The 
core of the paper focuses on a new operator that exploits 
similarities between FFT butterflies and trellis decoding 
structures used in the Viterbi algorithm. These similarities are 
exploited to suggest a CO for the FFT and the Viterbi decoder. 
CO for FFT and FEC was already studied in [13,16] with a 
focus on Reed-Solomon (RS) decoder based on a FFT operator 
over GF(2

m
). This work is recapped herein to highlight how it 

can be considered along with the FFT/Viterbi CO to build a 
more general library framework for FFT/FEC functions. 

Then, the paper is organized as follows. The second section 
presents the Common Operator technique. In the third section 
we briefly recap the work of [13,16]. Then, in section four we 
focus on the new FFT/Viterbi CO, exposing the similarities and 
their exploitation to build a new CO. The fifth section proposes 
a set of two common structures for FFT and FEC decoding 
algorithms; finally the results and the performances of these 
common operators are discussed in the last section. 

II. THE COMMON OPERATOR TECHNIQUE 

The conventional approach to implement a multi-standard 

radio device is to instantiate multiple transceiver chains each 

dedicated to an individual mode or standard (Fig.1). With this 

approach most of the hardware needs to be redesigned 

whenever an additional standard is to be considered. This 

conventional approach called "Velcro" does not exploit any 
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common aspects between the different standards [4]. In order 

to capitalize on the commonalities among the various signal 

processing operations for different standards, we need to 

identify firstly these commonalities and secondly find the 

optimal way to implement a generic hardware with 

reconfigurable modules. This idea led to the definition of the 

Common Function approach (CF) [2] which consists in 

function sharing between different standards. For each 

standard all the components dedicated to the same 

“Functionality” were merged into the same common function. 

The Common part includes the components required by at 

least two functions (ore function modes) and each dedicated 

part is related to the standard specific components of each 

individual function. The resource sharing brought by the CF 

approach allows the non-duplication of redundant components 

and a possible complexity reduction. 
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Figure 1.  Velcro Technique 

The Common Operator (CO) approach follows the 

principles that of Common Function and consists in 

identifying lower granularity common elements based on 

structural aspects. The intrinsic design of the CO is performed 

independently of standards. Thus, a CO is defined to perform 

signal processing operations regardless of the function 

executed. This approach aims at designing a scalable 

transceiver based on medium granularity operators, larger than 

basic logic cells and smaller than functions. In contrast with 

the CF, a CO is not specific to a single function set; it permits 

a more flexible design and scalable to a wide range of 

standards. 

 

Figure 2.  An example of a breakown of several standards 

Fig.2 presents a graphical breakdown of a multi-standard 

terminal proposed in [14]. From top to bottom, the granularity 

of the considered components is decreased down to basic LUT 

or MAC. The CO consists in identifying medium granularity 

building blocks in such a graph to eventually address the top 

level functionality. The more similar the function to 

implement will be, the easier the identification of such blocks 

and the larger their granularity. For this reason, the restriction 

of the functional space to PHY building blocks is expected to 

help a lot in finding medium granularity, highly reusable 

operators. With a similar aim, this is one step further to 

identifying the Multiply ACcumulate (MAC) as a basic 

building block for signal processing functions.  

It was shown beneficial to implement the common operators 

in a bank to form a regular architecture previously referred to 

as Common Operator Bank (COB) [8], where the COs can be 

mapped and used by the considered standards (Fig.3). 
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Figure 3.  Common Operator Bank for multistandard design 

In the present work we define common operators for FFT 

and FEC decoding algorithms. These algorithms are 

completely different in nature, if we compare their processed 

data and their functionality. However, when explored in the 

paramerization context, functional and structural similarities 

can be identified. In the following sections we highlight 

similarities between FFT and FEC decoding algorithms 

(Convolutional and Block channel decoding) to define a 

FFT/FEC CO toolbox. One can represent this way of doing by 

a graph sketched in Fig. 4. The interpretation of Fig. 4 is the 

following: performing some steps of block channel decoding 

(Reed Solomon) and complex FFT can be done with DMFFT 

operator [13]. Similarly, the proposed work intends to perform 

complex FFT and convolutional channel decoding thanks to a 

common operator termed as FFT/Viterbi. 

Block channel
decoding

Complex
FFT

Convolutional
Channel decoding

DM FFT [13] Proposed FFT/Viterbi
 

Figure 4.  Common Operators graph for FFT and FEC decoding algorithms 

The idea is to propose implementations of common 

operators that permits the use of the computational operations 

required for the FFT butterfly to perform Viterbi and Reed 

Solomon (RS) decoding.  



III. FFT AND RS DECODING 

In this section, the work of [16] is reminded as a first 

attempt to factorize FFT and FEC algorithm. More 

specifically, [16] focuses on the Reed-Solomon algorithm. 

A. FFT over finite field 

With the Fourier Transform, the concept of coding theory 

can be described in a setting that is much closer to the 

methods of signal processing. In complex field, the Fourier 

kernel exp(-2jπ/N) is an N
th

 root of unity in the field of 

complex numbers. In the finite field GF(q) an element  of 

order N is an N
th

 root of unity. Drawing on the analogy 

between exp(-2jπ/N) and , Fourier transform over finite field 

can be defined as follows [24]: let f=(f0, f1, ..., fN-1) be a vector 

over GF(q), and let  be an element of GF(q) of order N. The 

Fourier transform of vector f is the vector F=(F0, F1, ..., FN-1) 

whose components are given by 
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Vector f  is related to its spectrum F by 
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It is natural to call the discrete index i „time’, taking values 

on the time axis 0, 1, ..., N-1, and to call f the „time-domain 

function’ or the ‘signal’. Also, one might call the discrete 

index „frequency’, taking values on the frequency axis 0, 1, ..., 

N-1, and to call F the „frequency-domain’ or the „spectrum’. 

Fourier transform in Galois field [27] closely mimics the 

Fourier transform in the complex field with one important 

difference: in the complex field an element W of order N (e.g. 

exp(-2jπ/N)), exists for every value of N but in GF(q), such an 

element W exists only if N divides q-1. Moreover, if for some 

values of m, N divides q
m
-1 then there will be a Fourier 

transform of length N in the extension field GF(q
m
). For this 

reason, a vector f of length N over GF(q) will also be regarded 

as a vector over GF(q
m
) and has a Fourier transform of length 

N over GF(q
m
). This is completely analogous to the Fourier 

transform of a real-valued vector: even though the time-

domain vector f has components only in the real field, the 

transform F has components in the complex field. Similarly, 

for the finite Fourier transform, even though the time-domain 

vector f is over the field GF(q), the spectrum F may be over 

the extension field GF(q
m
). Any factor of q

m
-1 can be used as 

the length of a Fourier transform over GF(q), but the most 

important values for N are the primitive length N=q
m
-1. In that 

case W is a primitive element of GF(q
m
). 

B. FFT and RS Common Operator 

The most popular class of RS cyclic codes are defined over 

GF(q=2
m
). However the transform length of the finite field 

transform over GF(2
m
) equal to 2

m
-1 does not match the one of 

the complex FFT defined over the complex field, which is 2
m
. 

This characteristic is a strong constraint that challenges the 

adaptation or the combination of the GF(2
m
) FFT structure 

with the complex FFT one, since most efficient algorithms 

regarding FFT computations are applied to transforms of 

length 2
m
. Under this strong constraint, one thought to seek out 

a transform matching these complex FFT criteria. State of the 

art on finite field transforms and RS codes leads to spot 

specific class of transforms and get out the corresponding 

class of RS codes [16]. These specific finite field transforms 

as well as the corresponding RS codes are defined over GF(Ft) 

where Ft is a Fermat prime number defined as 
122 

t

tF
. 

Fourier transform defined over this specific Galois field 

GF(Ft) known as Fermat Number Transform (FNT) can play a 

leading role in the frequency processing of RS codes: the 

encoding and the most important tasks of RS decoding (i.e. 

syndrome computation and Chien search) and can be 

performed with FNT. 

Hardware realization of the common operator can be now 

presented to perform with the same architecture Fourier 

transforms over GF(Ft) and over C. 

The classical complex FFT architecture is re-design in a 

way to enable to perform the FNT. A radix-2 FFT 

implementation is considered because it has advantages in 

terms of regularity of hardware, ease of computation and 

number of processing elements. Obviously, for a given 

transform length N power of 2 (or power of 4), the algorithm 

chosen to be applied to perform FFT should be valid to 

perform the FNT. Indeed, since the symmetry and periodicity 

properties 
kNK  

 and 
kNK   2/

 are verified, every 

radix-2 algorithm applied to FFT can be applied to the FNT. 

The heart of this algorithm known as the "butterfly" was re-

designed. Here re-designing means taking into account the re-

configuration of the operators constituting the butterfly as well 

as the connection between those operators. The switching 

from FFT mode to FNT mode should be accompanied by the 

replacement of the twiddle factor W by the primitive element 
  of the given Galois field. 

In the FFT mode these operators process complex data by 

performing complex multiplications and additions. In the FNT 

mode data are defined over finite field and the operations 

performing FNT are done modulo Ft. So, these arithmetic 

operators should be re-redefined to support complex and 

modular operations. Fig. 5 illustrates the associated butterfly 

operator architecture. 

 
Figure 5.  FFT/RS butterfly Common Operator 



IV. FFT AND VITERBI DECODING 

With a similar aim, the new CO presented herein intends to 

address the infinite field FFT and the Viterbi decoding 

algorithms. First, the algorithms are analyzed to highlight the 

similarities between the Treillis and the Butterfly structures 

which are further exploited to build the new CO. 

A. The FFT butterfly 

The FFT over infinite field is an efficient algorithm to 
compute the discrete Fourier transform (DFT). The DFT is 
defined by the equation (3) where x0, ...., xn-1 are complex 
numbers. 

1,...,0,.
1

0

.
..2








njexX
n

k

k
n

i

kj



 (3) 

The term "butterfly" is commonly quoted in the Cooley–
Tukey FFT algorithm context [9], which recursively 
decomposes the DFT of size n = r×m into r (radix) smaller 
transforms of size m. These smaller DFTs are then combined 
with butterflies of size r, which themselves are DFTs of size r 
pre-multiplied by twiddle factors. The term “butterfly” comes 
from the shape of data-flow diagram in the radix-2 algorithm. 
In this paper we consider the most popular Cooley-Tukey FFT 
which is the radix-2 case. 

The radix-2 FFT algorithm is usually applied when the FFT 
size is a power of 2. Equation (4) shows that at the k

th
 step the 

results of two smaller Fourier transform are needed. Then, 
using the divide and conquer strategy, a k-point transform can 
be reduced to two k/2-point transforms: one for even samples, 
one for odd samples (Fig.6). 
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Starting with N that is a power of 2, it is possible to apply 

this subdivision recursively until getting down to 2-sample 

transforms that can be represented graphically using the, so 

called, butterfly in Fig.7. Step 1 Step 2 Step 3
Step 1 Step 2 Step 3

 

Figure 6.  Treillis based FFT algorithm 

 

Figure 7.  Radix-2 FFT butterfly structure 

B. The Viterbi Butterfly 

The same structure can also be identified in the Viterbi 
algorithm, used for finding the most likely sequence of states in 
a trellis, which is the most usual representation of 
convolutional code state diagram. Although it is not the most 
compact form, the trellis structure is commonly used because it 
easily illustrates the sequencing of decoding algorithms (Fig.8). 

The classical architecture of the Viterbi algorithm can be 
divided into three units, as shown in Fig.9. The Branch Metric 
Calculation (BMC) unit computes the distances (branch 
metrics) associated to each transition of the trellis in order to 
evaluate the correctness of the received data for a given 
transition. Secondly, the Add Compare Select unit (ACS) 
computes the accumulated metrics (called path metrics) and 
selects the incoming survivor path for each state of the trellis. 
Finally, the Survivor Memory Management unit (SMM) stores 
the decision taken by the ACS unit in order to provide the most 
likely decoded path at the output of the decoder. 

By focusing on the butterfly structure of the Viterbi 
algorithm, it is possible to analyze how it operates and then 
highlight the similarities with the FFT butterfly. Indeed, the 
Viterbi butterfly involves not only the computation of the path 
metrics, but also a comparison module. The comparison 
module can easily be realized using a subtractor associated to a 
multiplexor. Thus, for the implementation of the path metrics 
computation, two adders and one subtractor are required. 
Equation (5) describes the computation performed by the 
butterfly and Fig.10 illustrates its structure. The defined Viterbi 
butterfly corresponds to the ACS module in Fig. 9. 

 

Figure 8.  Four-state Trellis diagram for Viterbi decoding 



 

Figure 9.  Viterbi decoder structure 

 

Figure 10.  Viterbi decoder butterfly structure 
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(5) 

As shown in this section, the FFT and Viterbi algorithms 

have strong similarities if we compare their butterfly 

structures. These similarities can be explored to build a 

common structure for the two algorithms. 

C. Proposed FFT/Viterbi Common Operator 

In this section, we a build a common structure for the FFT 

and Viterbi decoding algorithms starting from the 

architectures of the previously presented FFT and Viterbi 

decoder. 

1) FFT butterfly structure 
From the FFT butterfly (Fig.7), we define the computation 

method using bit-parallel multipliers for complex-valued 
operations [11]. In Equation (6) we define real and complex 
parameters for the FFT butterfly. 
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After developing the complex operations required for the 
butterfly computation, Equation (7) is obtained. 
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This “direct” form of the FFT butterfly computation 
requires four multipliers and six adders. The number of 
multipliers can be reduced by rewriting Equation (7) into a 
different form as shown in Equation (8). 
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Based on the previous equations, we propose a structure for 

the FFT butterfly using three multipliers (Fig.11). 

2) Viterbi butterfly structure 
Starting from (5), we can deduce the operations required by 

the Viterbi butterfly implementation. The computation of every 

path metric requires tow adders and one subtractor as 
illustrated in Fig.12. 

Branch metrics are evaluated in the BMC block. At the 
output of this block, the difference between the received value 
and the different transitions related to it are evaluated. The 
computed metrics are then distributed to all the butterflies of 
ACS module. Thus the recalculation of the butterfly parameters 
requiring the same metrics is avoided. The branch metric 
computation can be designed with simple addition and 
subtraction operations between the decoder inputs. Thus, for R 
soft received inputs, all possible metric consists in 2

R
 possible 

operation (addition or subtraction) which can be reduced by 
half, since half of the metric can be deduced from the other half 
by a simple change of sign. Indeed, the 2

R-1
 first metrics are 

computed from R soft inputs, and the last 2
R-1

 metrics are 
evaluated from the first ones by a simple change of sign. 

Then, the execution of every butterfly requires the branch 

metrics Bm00, Bm01, Bm10 and Bm11, and the whole Viterbi 

Butterfly computation (ACS+BMC) can be realized as shown 

in Fig.13. 
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Figure 11.  Three-multipliers based FFT butterfly implementation 
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Figure 12.  Viterbi butterfly implementation for path metrics evaluation 
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Figure 13.  Full Viterbi butterfly (BMC + ACS) implementation 

3) FFT and Viterbi common structure 
Starting from the previously presented structures of the FFT 

and Viterbi butterflies, we propose in this paragraph a 
Common Operator that addresses the requirements of the two 
algorithms. This architecture can perform the calculation of the 
FFT butterfly and the (BMC + ACS) operations of the Viterbi 
decoding algorithm. 

As presented in Fig.11, the FFT butterfly requires nine 
add/subtract (A/S) operations and three multiplications. We can 
split them it into three stages: the first stage is composed by 
three A/S, three multipliers for the second stage and the last 
stage is composed by 2×3 A/S operators as shown in Fig. 14. 
On the other hand, he Viterbi module (BMC+ACS) can be 
divided into two stages as illustrated in Fig.13. The first stage 
is composed of four A/S (BMC stage) and 2×3 A/S for the 
second stage (ACS stage). 

This decomposition allows the pooling of the FFT and 
Viterbi operators by suggesting a common structure for each 
stage. The first stage for each operator requires independent 
add/subtraction operations, four for the Viterbi BMC (or two 
for a more optimized form) and three for the FFT. Then the 
first stage of the common operator consists of three A/S blocks. 
The second stage is dedicated to the FFT butterfly, it consists 
in three multipliers. 

Unlike the two previous stages, the adders and subtructors 
in the third stage are interconnected and are dependent on each 
others. In this stage, six A/S are required but interconnected by 
three for real and imaginary parts of the FFT butterfly. As 
illustrated in the Fig.11 and Fig.13, the A/S blocks are not 
interconnected in the same way for the two algorithms. Thus, 
in order to build a common structure for this stage we develop 
the equations below to show a common mathematical 
expression for the third stage of the Viterbi and FFT butterflies. 

Fig. 11 and Fig.13, actually perform Equations (7) and (8) 
linking the inputs and outputs of the third stage. 

For the imaginary part of the FFT butterfly and the first 
Viterbi butterfly: 
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(7) 

For the real part of the FFT butterfly and the second Viterbi 
butterfly: 
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(8) 

β is a boolean parameter (implemented through a single bit 
selector) that permits the configuration of the common 
structure to switch between the FFT and Viterbi computation. 
In Fig.15 we present the graphic representation of the 
previously developed equations. 

Starting from the previous discussion and by gathering the 
developed stages, the entire FFT and Viterbi Common 
Operator is presented in Fig.16. This common operator 
architecture allows switching between two different functional 
implementations of the Viterbi and FFT algorithms. The 
reconfiguration can be easily performed using a single 
parameter. The reconfigurable operators are composed by real 
adders and multiplexers. 

-

+

+

 

Figure 14.  Third stage of the FFT butterfly decomposition 
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Figure 15.  Third stage for the FFT/Viterbi Common structure 
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Figure 16.  FFT/Viterbi Common Operator 

V. COMPLEXITY EVALUATION 

In order to evaluate the performance and complexity of the 

finite/infinite field Dual Mode FFT (DMFFT) architecture, it 

was implemented on FPGA and compared to a Velcro 

FFT/FNT operator implemented on the same target device. 

Complexity evaluations in [13] showed that depending on the 

word-length nc, DMFFT exhibits a memory saving between 20 

and 30 %, a gain in ALUTs and performance-to-cost ratio gain 

from 9.2 % up to 26 % and from 9.7 % up to 37.4 % 

respectively [13].  

With the aim of analyzing the impact of the FFT/Viterbi 

CO on the global implementation complexity, we explored the 

possible design scenarios considering the number of the 

physically instantiated butterflies in a multistandard design 

[28]. Then, the global complexity reduction is evaluated by 

comparing the number of implemented logic gates for the CO 

and Velcro based designs. 

To explain this comparison, we illustrate in Fig. 17 a 

simplified example of a two-standard terminal. For a classical 

implementation (Velcro), we need to implement the maximum 

number of required FFT butterflies and the maximal number 

of Viterbi butterflies. On the other hand, the use of the CO 

enables to reduce the number implemented butterflies because 

of the „reuse‟ across the algorithms, rather than just across 

standards. 

  

STD 1

STD 2

Velcro

VITFFT

VITFFT

VITFFT

FFT/VITCO
 

Figure 17.  An example showing resource allocation reduction for a CO based 

two-standard implementation 

In this case, the use of the FFT/Viterbi common operator 

can reduce the complexity of the FFT and Viterbi by up to 5%, 

when the number of the implemented Viterbi butterflies is 

equal to the number of implemented FFT butterflies [28]. On 

the other hand, the use of the DMFFT operator can reduce the 

design complexity by up to 26% compared to classical 

implementations [13]. This complexity gain can be interpreted 

as little, but it should be kept in mind that the main motivation 

of this work is to build operators of higher flexibility and that 

can be used in a regular architecture. For that reason, showing 

that this additional flexibility is not traded against additional 

complexity is a very promising result. 

In Table I we compare the proposed FFT/Viterbi common 

operator with other reconfigurable PEs [25,26]. As shown in 

this Table, the proposed cell provides an important gain in 

complexity compared to [26] with a good performance in 

terms of number of operations per cycle compared to [25]. 

Also throughput reduction can be compensated by the reuse of 

physical entities through operator time multiplexing. Indeed, 

[10] has shown that limiting the number of physical 

butterflies‟ instances can be achieved without significant 

overhead from the time multiplexing management. 

 

TABLE I 

Performance Comparisons for the Considered Operations 

 

Proposed 

FFT/Viterbi 

CO 

RMAC-PE 

[25] 

RCC [26] 

Complexity 

(Gate Count) 
Reference -26% +103% 

O
p

er
a

ti
o

n
s/

C
y

cl
e 

FFT 

Radix-2 

Butterfly 

1 0,33 1,5 

Path 

Metrics 

Calc. 

(ACS) 

2 0,5 2 

Branch 

Metrics 

Calc. 

(BMC) 

1 0,33 4 

 

VI. CONCLUSION 

In this paper, the similarities between the FFT and two FEC 
decoding algorithms were studied. Based on the 
parametrization technique, a pooling method focusing on 
FFT/Viterbi and FFT/RS butterflies‟ structure were presented. 



Common Operator architectures that can be used in the FFT, 
Viterbi and RS decoding were proposed. It was shown that 
with this CO it is possible to build a more general library 
framework for FFT/FEC functions that permits. The proposed 
regular structures can bring considerable advantages when 
implemented in a Common Operator Bank (COB) [8]. In 
addition, this gain in flexibility is done at no overhead cost 
since the complexity is even decreased in some configurations. 
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