
HAL Id: hal-00657414
https://centralesupelec.hal.science/hal-00657414

Submitted on 9 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A common operator for FFT and FEC decoding
Malek Naoues, Dominique Noguet, Laurent Alaus, Yves Louët

To cite this version:
Malek Naoues, Dominique Noguet, Laurent Alaus, Yves Louët. A common operator for FFT and FEC
decoding. Microprocessors and Microsystems: Embedded Hardware Design , 2011, 35 (8), pp.708-715.
�10.1016/j.micpro.2011.08.007�. �hal-00657414�

https://centralesupelec.hal.science/hal-00657414
https://hal.archives-ouvertes.fr

A Common Operator for FFT and FEC Decoding

Malek Naoues, Dominique Noguet, Laurent Alaus

CEA-LETI, Minatec

38054 Grenoble Cedex 9, France

{malek.naoues;dominique.noguet;laurent.alaus}@cea.fr

Yves Louët

SUPELEC Campus de Rennes

35511 Cesson-Sevigné, France

yves.louet@supelec.fr

Abstract—In the Software Radio context, the parametrization is

becoming an important topic especially when it comes to multi-

standard designs. This paper capitalizes on the Common

Operator technique to present new common structures for the

FFT and FEC decoding algorithms. A key benefit of exhibiting

common operators is the regular architecture it brings when

implemented in a Common Operator Bank (COB). This

regularity makes the architecture open to future function

mapping and adapted to accommodated silicon technology

variability through dependable design.

Keywords-Parametrization; Common Operator; FFT; Viterbi;

RS decoding; Software Radio; Flexible Radio

I. INTRODUCTION

Over the past few years, a proliferation of communication
standards has substantially increased the complexity of radio
design. In typical designs, the communication standards are
implemented separately using dedicated instantiations which
are difficult to upgrade for the support of new features. In the
present days, the concept of Software Radio (SWR), introduced
by J. Mitola in [1], emerged from military research to become a
cornerstone of modern communication system design. The
SWR technique becomes the way to design flexible and
reconfigurable architectures capable of supporting different
transmission standards in a single platform. Although there is a
common agreement on the SWR aim and benefit, the way of
implementing SWR, also known as Software Defined Radio
(SDR) varies, considering various tradeoffs requested by actual
design (cost, flexibility, complexity, power consumption,
speed, etc.), and current silicon technology.

A digital communication baseband chain, when supporting
different standards, uses typical signal processing operations
such as modulation, channel coding, equalization, etc. These
functions can be identified and then explored to take advantage
from the similarities among common tasks in order to enhance
power efficiency and area occupation [4]. In this context,
parameterization technique has been introduced in [2] and [3].
It consists in identifying the common aspects among the
targeted modes and standards in order to define a generic
operation capable of handling the required tasks. This generic
operation can switch from a configuration to another by a
simple change of its parameters.

In this paper, we exploit a parameterization approach
proposed in [4], called the common operator technique that can
be considered to build a generic terminal capable of supporting
a large range of communication standards. The main principle
of the common operator technique was to identify common
elements based on smaller structures that could be heavily

reused across functions. This technique aims at designing a
scalable transceiver based on medium granularity operators,
larger than basic logic cells and smaller than Velcro Method or
common function [4]. Similarly to flip flop or logic gate, a
common operator is used regardless of the function executed
by. From this point, the common operator technique claims to
be less standard dependent than classical approach [5] where
the entire specific building block required by a standard are
implemented and executed when needed. It is expected that the
reduction of the exploration space to telecommunication
baseband functions will help exposing medium-grain common
operators. The resulted implementation is expected to be more
flexible and scalable to a wide range of standards. Such a
regular structure is also well adapted to cope with silicon
technology process variability. Indeed, as CMOS technology
shrinks, the performance of the operator instances may vary
across space (on the silicon wafer) and time [6]. Dealing with
regular building blocks helps map the most demanding
algorithms onto the best performing cells, enabling the design
to be dependable or even self-healing. Many previous works
focused on defining [7,12,14,15] implementing and managing
[8] the Common Operators (CO). In this paper we investigate
the commonalities of the FFT and FEC decoding operator. The
core of the paper focuses on a new operator that exploits
similarities between FFT butterflies and trellis decoding
structures used in the Viterbi algorithm. These similarities are
exploited to suggest a CO for the FFT and the Viterbi decoder.
CO for FFT and FEC was already studied in [13,16] with a
focus on Reed-Solomon (RS) decoder based on a FFT operator
over GF(2

m
). This work is recapped herein to highlight how it

can be considered along with the FFT/Viterbi CO to build a
more general library framework for FFT/FEC functions.

Then, the paper is organized as follows. The second section
presents the Common Operator technique. In the third section
we briefly recap the work of [13,16]. Then, in section four we
focus on the new FFT/Viterbi CO, exposing the similarities and
their exploitation to build a new CO. The fifth section proposes
a set of two common structures for FFT and FEC decoding
algorithms; finally the results and the performances of these
common operators are discussed in the last section.

II. THE COMMON OPERATOR TECHNIQUE

The conventional approach to implement a multi-standard

radio device is to instantiate multiple transceiver chains each

dedicated to an individual mode or standard (Fig.1). With this

approach most of the hardware needs to be redesigned

whenever an additional standard is to be considered. This

conventional approach called "Velcro" does not exploit any

*Manuscript
Click here to view linked References

http://ees.elsevier.com/micpro/viewRCResults.aspx?pdf=1&docID=946&rev=1&fileID=33793&msid={FB950B49-939E-4BD1-83BC-3CBD8E90508B}

common aspects between the different standards [4]. In order

to capitalize on the commonalities among the various signal

processing operations for different standards, we need to

identify firstly these commonalities and secondly find the

optimal way to implement a generic hardware with

reconfigurable modules. This idea led to the definition of the

Common Function approach (CF) [2] which consists in

function sharing between different standards. For each

standard all the components dedicated to the same

“Functionality” were merged into the same common function.

The Common part includes the components required by at

least two functions (ore function modes) and each dedicated

part is related to the standard specific components of each

individual function. The resource sharing brought by the CF

approach allows the non-duplication of redundant components

and a possible complexity reduction.

Hardware

IF

/RFRF

UMTS GSM WLAN

RF
ADC/

DAC
Fn1 Fn2 FnN…

RF
ADC/

DAC
Fn1 Fn2 FnN…

RF
ADC/

DAC
Fn1 Fn2 FnN…

“Velcro” Technique

Low Flexibility!

Standards are implemented

separately using dedicated

instantiations,

Difficult to upgrade for their

support of new features!

Standard 1

Standard 2

Standard 3

Figure 1. Velcro Technique

The Common Operator (CO) approach follows the

principles that of Common Function and consists in

identifying lower granularity common elements based on

structural aspects. The intrinsic design of the CO is performed

independently of standards. Thus, a CO is defined to perform

signal processing operations regardless of the function

executed. This approach aims at designing a scalable

transceiver based on medium granularity operators, larger than

basic logic cells and smaller than functions. In contrast with

the CF, a CO is not specific to a single function set; it permits

a more flexible design and scalable to a wide range of

standards.

Figure 2. An example of a breakown of several standards

Fig.2 presents a graphical breakdown of a multi-standard

terminal proposed in [14]. From top to bottom, the granularity

of the considered components is decreased down to basic LUT

or MAC. The CO consists in identifying medium granularity

building blocks in such a graph to eventually address the top

level functionality. The more similar the function to

implement will be, the easier the identification of such blocks

and the larger their granularity. For this reason, the restriction

of the functional space to PHY building blocks is expected to

help a lot in finding medium granularity, highly reusable

operators. With a similar aim, this is one step further to

identifying the Multiply ACcumulate (MAC) as a basic

building block for signal processing functions.

It was shown beneficial to implement the common operators

in a bank to form a regular architecture previously referred to

as Common Operator Bank (COB) [8], where the COs can be

mapped and used by the considered standards (Fig.3).

Standard 1

Standard 2

CO1 CO1 CO2 CO2

CO3 CO4 CO4 CO4

Multi-standard design based on

Common Operators Technique

C
o

m
m

o
n

 O
p

e
ra

to
r

B
a
n

k

F
u

n
c
ti

o
n

 M
a
p

p
in

g

Figure 3. Common Operator Bank for multistandard design

In the present work we define common operators for FFT

and FEC decoding algorithms. These algorithms are

completely different in nature, if we compare their processed

data and their functionality. However, when explored in the

paramerization context, functional and structural similarities

can be identified. In the following sections we highlight

similarities between FFT and FEC decoding algorithms

(Convolutional and Block channel decoding) to define a

FFT/FEC CO toolbox. One can represent this way of doing by

a graph sketched in Fig. 4. The interpretation of Fig. 4 is the

following: performing some steps of block channel decoding

(Reed Solomon) and complex FFT can be done with DMFFT

operator [13]. Similarly, the proposed work intends to perform

complex FFT and convolutional channel decoding thanks to a

common operator termed as FFT/Viterbi.

Block channel
decoding

Complex
FFT

Convolutional
Channel decoding

DM FFT [13] Proposed FFT/Viterbi

Figure 4. Common Operators graph for FFT and FEC decoding algorithms

The idea is to propose implementations of common

operators that permits the use of the computational operations

required for the FFT butterfly to perform Viterbi and Reed

Solomon (RS) decoding.

III. FFT AND RS DECODING

In this section, the work of [16] is reminded as a first

attempt to factorize FFT and FEC algorithm. More

specifically, [16] focuses on the Reed-Solomon algorithm.

A. FFT over finite field

With the Fourier Transform, the concept of coding theory

can be described in a setting that is much closer to the

methods of signal processing. In complex field, the Fourier

kernel exp(-2jπ/N) is an N
th

 root of unity in the field of

complex numbers. In the finite field GF(q) an element  of

order N is an N
th

 root of unity. Drawing on the analogy

between exp(-2jπ/N) and , Fourier transform over finite field

can be defined as follows [24]: let f=(f0, f1, ..., fN-1) be a vector

over GF(q), and let  be an element of GF(q) of order N. The

Fourier transform of vector f is the vector F=(F0, F1, ..., FN-1)

whose components are given by

.1...,,0,
1

0






NjfF
N

i

ij

ij 

(1)

Vector f is related to its spectrum F by

.1...,,0,
1 1

0

 




 NiF
N

f
N

j

ij

ji 

(2)

It is natural to call the discrete index i „time’, taking values

on the time axis 0, 1, ..., N-1, and to call f the „time-domain

function’ or the ‘signal’. Also, one might call the discrete

index „frequency’, taking values on the frequency axis 0, 1, ...,

N-1, and to call F the „frequency-domain’ or the „spectrum’.

Fourier transform in Galois field [27] closely mimics the

Fourier transform in the complex field with one important

difference: in the complex field an element W of order N (e.g.

exp(-2jπ/N)), exists for every value of N but in GF(q), such an

element W exists only if N divides q-1. Moreover, if for some

values of m, N divides q
m
-1 then there will be a Fourier

transform of length N in the extension field GF(q
m
). For this

reason, a vector f of length N over GF(q) will also be regarded

as a vector over GF(q
m
) and has a Fourier transform of length

N over GF(q
m
). This is completely analogous to the Fourier

transform of a real-valued vector: even though the time-

domain vector f has components only in the real field, the

transform F has components in the complex field. Similarly,

for the finite Fourier transform, even though the time-domain

vector f is over the field GF(q), the spectrum F may be over

the extension field GF(q
m
). Any factor of q

m
-1 can be used as

the length of a Fourier transform over GF(q), but the most

important values for N are the primitive length N=q
m
-1. In that

case W is a primitive element of GF(q
m
).

B. FFT and RS Common Operator

The most popular class of RS cyclic codes are defined over

GF(q=2
m
). However the transform length of the finite field

transform over GF(2
m
) equal to 2

m
-1 does not match the one of

the complex FFT defined over the complex field, which is 2
m
.

This characteristic is a strong constraint that challenges the

adaptation or the combination of the GF(2
m
) FFT structure

with the complex FFT one, since most efficient algorithms

regarding FFT computations are applied to transforms of

length 2
m
. Under this strong constraint, one thought to seek out

a transform matching these complex FFT criteria. State of the

art on finite field transforms and RS codes leads to spot

specific class of transforms and get out the corresponding

class of RS codes [16]. These specific finite field transforms

as well as the corresponding RS codes are defined over GF(Ft)

where Ft is a Fermat prime number defined as
122 

t

tF
.

Fourier transform defined over this specific Galois field

GF(Ft) known as Fermat Number Transform (FNT) can play a

leading role in the frequency processing of RS codes: the

encoding and the most important tasks of RS decoding (i.e.

syndrome computation and Chien search) and can be

performed with FNT.

Hardware realization of the common operator can be now

presented to perform with the same architecture Fourier

transforms over GF(Ft) and over C.

The classical complex FFT architecture is re-design in a

way to enable to perform the FNT. A radix-2 FFT

implementation is considered because it has advantages in

terms of regularity of hardware, ease of computation and

number of processing elements. Obviously, for a given

transform length N power of 2 (or power of 4), the algorithm

chosen to be applied to perform FFT should be valid to

perform the FNT. Indeed, since the symmetry and periodicity

properties
kNK  

 and
kNK   2/

 are verified, every

radix-2 algorithm applied to FFT can be applied to the FNT.

The heart of this algorithm known as the "butterfly" was re-

designed. Here re-designing means taking into account the re-

configuration of the operators constituting the butterfly as well

as the connection between those operators. The switching

from FFT mode to FNT mode should be accompanied by the

replacement of the twiddle factor W by the primitive element
 of the given Galois field.

In the FFT mode these operators process complex data by

performing complex multiplications and additions. In the FNT

mode data are defined over finite field and the operations

performing FNT are done modulo Ft. So, these arithmetic

operators should be re-redefined to support complex and

modular operations. Fig. 5 illustrates the associated butterfly

operator architecture.

Figure 5. FFT/RS butterfly Common Operator

IV. FFT AND VITERBI DECODING

With a similar aim, the new CO presented herein intends to

address the infinite field FFT and the Viterbi decoding

algorithms. First, the algorithms are analyzed to highlight the

similarities between the Treillis and the Butterfly structures

which are further exploited to build the new CO.

A. The FFT butterfly

The FFT over infinite field is an efficient algorithm to
compute the discrete Fourier transform (DFT). The DFT is
defined by the equation (3) where x0,, xn-1 are complex
numbers.

1,...,0,.
1

0

.
..2








njexX
n

k

k
n

i

kj



 (3)

The term "butterfly" is commonly quoted in the Cooley–
Tukey FFT algorithm context [9], which recursively
decomposes the DFT of size n = r×m into r (radix) smaller
transforms of size m. These smaller DFTs are then combined
with butterflies of size r, which themselves are DFTs of size r
pre-multiplied by twiddle factors. The term “butterfly” comes
from the shape of data-flow diagram in the radix-2 algorithm.
In this paper we consider the most popular Cooley-Tukey FFT
which is the radix-2 case.

The radix-2 FFT algorithm is usually applied when the FFT
size is a power of 2. Equation (4) shows that at the k

th
 step the

results of two smaller Fourier transform are needed. Then,
using the divide and conquer strategy, a k-point transform can
be reduced to two k/2-point transforms: one for even samples,
one for odd samples (Fig.6).




























12/

0

).1..2.(
..2

12

12/

0

..2.
..2

2

1

0

..
..2

..

.

N

m

km
M

i

m

N

m

km
N

i

m

N

n

kn
N

i

nk

exex

exX





 (4)

Starting with N that is a power of 2, it is possible to apply

this subdivision recursively until getting down to 2-sample

transforms that can be represented graphically using the, so

called, butterfly in Fig.7. Step 1 Step 2 Step 3
Step 1 Step 2 Step 3

Figure 6. Treillis based FFT algorithm

Figure 7. Radix-2 FFT butterfly structure

B. The Viterbi Butterfly

The same structure can also be identified in the Viterbi
algorithm, used for finding the most likely sequence of states in
a trellis, which is the most usual representation of
convolutional code state diagram. Although it is not the most
compact form, the trellis structure is commonly used because it
easily illustrates the sequencing of decoding algorithms (Fig.8).

The classical architecture of the Viterbi algorithm can be
divided into three units, as shown in Fig.9. The Branch Metric
Calculation (BMC) unit computes the distances (branch
metrics) associated to each transition of the trellis in order to
evaluate the correctness of the received data for a given
transition. Secondly, the Add Compare Select unit (ACS)
computes the accumulated metrics (called path metrics) and
selects the incoming survivor path for each state of the trellis.
Finally, the Survivor Memory Management unit (SMM) stores
the decision taken by the ACS unit in order to provide the most
likely decoded path at the output of the decoder.

By focusing on the butterfly structure of the Viterbi
algorithm, it is possible to analyze how it operates and then
highlight the similarities with the FFT butterfly. Indeed, the
Viterbi butterfly involves not only the computation of the path
metrics, but also a comparison module. The comparison
module can easily be realized using a subtractor associated to a
multiplexor. Thus, for the implementation of the path metrics
computation, two adders and one subtractor are required.
Equation (5) describes the computation performed by the
butterfly and Fig.10 illustrates its structure. The defined Viterbi
butterfly corresponds to the ACS module in Fig. 9.

Figure 8. Four-state Trellis diagram for Viterbi decoding

Figure 9. Viterbi decoder structure

Figure 10. Viterbi decoder butterfly structure
















010)1,(,00),(,10)1,(

010)1,(00),(,00),(

)10)1,(,00),((

]1[

]1[

BmktPmBmktPmifBmktPm

BmktPmBmktPmifBmktPm
Pm

BmktPmBmktPmMaxPm

t

k

t

k





(5)

As shown in this section, the FFT and Viterbi algorithms

have strong similarities if we compare their butterfly

structures. These similarities can be explored to build a

common structure for the two algorithms.

C. Proposed FFT/Viterbi Common Operator

In this section, we a build a common structure for the FFT

and Viterbi decoding algorithms starting from the

architectures of the previously presented FFT and Viterbi

decoder.

1) FFT butterfly structure
From the FFT butterfly (Fig.7), we define the computation

method using bit-parallel multipliers for complex-valued
operations [11]. In Equation (6) we define real and complex
parameters for the FFT butterfly.

jfey

jdcw

jbay

k

n
k

k







]0[

]1[

(6)

After developing the complex operations required for the
butterfly computation, Equation (7) is obtained.









)](.[)(*

)],(.[)(*
]1[]0[

]1[]0[

bcadfjbdacewyy

bcadfjbdacewyy

n
k

kk

n
k

kk
(7)

This “direct” form of the FFT butterfly computation
requires four multipliers and six adders. The number of
multipliers can be reduced by rewriting Equation (7) into a
different form as shown in Equation (8).









))].().(((.[))].().(([*

))],.().((.[))].().(([*
]1[]0[

]1[]0[

cdabacfjdcbbacewyy

cdabacfjdcbbacewyy

n
k

kk

n
k

kk
(8)

Based on the previous equations, we propose a structure for

the FFT butterfly using three multipliers (Fig.11).

2) Viterbi butterfly structure
Starting from (5), we can deduce the operations required by

the Viterbi butterfly implementation. The computation of every

path metric requires tow adders and one subtractor as
illustrated in Fig.12.

Branch metrics are evaluated in the BMC block. At the
output of this block, the difference between the received value
and the different transitions related to it are evaluated. The
computed metrics are then distributed to all the butterflies of
ACS module. Thus the recalculation of the butterfly parameters
requiring the same metrics is avoided. The branch metric
computation can be designed with simple addition and
subtraction operations between the decoder inputs. Thus, for R
soft received inputs, all possible metric consists in 2

R
 possible

operation (addition or subtraction) which can be reduced by
half, since half of the metric can be deduced from the other half
by a simple change of sign. Indeed, the 2

R-1
 first metrics are

computed from R soft inputs, and the last 2
R-1

 metrics are
evaluated from the first ones by a simple change of sign.

Then, the execution of every butterfly requires the branch

metrics Bm00, Bm01, Bm10 and Bm11, and the whole Viterbi

Butterfly computation (ACS+BMC) can be realized as shown

in Fig.13.

+

+

+

+

+

-

-

-

-

Stage 1 Stage 2 Stage 3

Figure 11. Three-multipliers based FFT butterfly implementation

+

+
-

Figure 12. Viterbi butterfly implementation for path metrics evaluation

-

-

-

-

-

-

+

+

+

+

Stage 2Stage 1

Figure 13. Full Viterbi butterfly (BMC + ACS) implementation

3) FFT and Viterbi common structure
Starting from the previously presented structures of the FFT

and Viterbi butterflies, we propose in this paragraph a
Common Operator that addresses the requirements of the two
algorithms. This architecture can perform the calculation of the
FFT butterfly and the (BMC + ACS) operations of the Viterbi
decoding algorithm.

As presented in Fig.11, the FFT butterfly requires nine
add/subtract (A/S) operations and three multiplications. We can
split them it into three stages: the first stage is composed by
three A/S, three multipliers for the second stage and the last
stage is composed by 2×3 A/S operators as shown in Fig. 14.
On the other hand, he Viterbi module (BMC+ACS) can be
divided into two stages as illustrated in Fig.13. The first stage
is composed of four A/S (BMC stage) and 2×3 A/S for the
second stage (ACS stage).

This decomposition allows the pooling of the FFT and
Viterbi operators by suggesting a common structure for each
stage. The first stage for each operator requires independent
add/subtraction operations, four for the Viterbi BMC (or two
for a more optimized form) and three for the FFT. Then the
first stage of the common operator consists of three A/S blocks.
The second stage is dedicated to the FFT butterfly, it consists
in three multipliers.

Unlike the two previous stages, the adders and subtructors
in the third stage are interconnected and are dependent on each
others. In this stage, six A/S are required but interconnected by
three for real and imaginary parts of the FFT butterfly. As
illustrated in the Fig.11 and Fig.13, the A/S blocks are not
interconnected in the same way for the two algorithms. Thus,
in order to build a common structure for this stage we develop
the equations below to show a common mathematical
expression for the third stage of the Viterbi and FFT butterflies.

Fig. 11 and Fig.13, actually perform Equations (7) and (8)
linking the inputs and outputs of the third stage.

For the imaginary part of the FFT butterfly and the first
Viterbi butterfly:














213

)21()43).(1(4.3]1).1(4.[2

43).1()21.(43.3).1(1

EES

EEEEESSES

EEEEESES




(7)

For the real part of the FFT butterfly and the second Viterbi
butterfly:















2.)1(13

]2.)1(1[)]43).(1(4.[3]1).1(4.[2

43).1()2.)1(1.(43.3).1(1

EES

EEEEESSES

EEEEESES










(8)

β is a boolean parameter (implemented through a single bit
selector) that permits the configuration of the common
structure to switch between the FFT and Viterbi computation.
In Fig.15 we present the graphic representation of the
previously developed equations.

Starting from the previous discussion and by gathering the
developed stages, the entire FFT and Viterbi Common
Operator is presented in Fig.16. This common operator
architecture allows switching between two different functional
implementations of the Viterbi and FFT algorithms. The
reconfiguration can be easily performed using a single
parameter. The reconfigurable operators are composed by real
adders and multiplexers.

-

+

+

Figure 14. Third stage of the FFT butterfly decomposition

Viterbi ACS module

+ FFT Imag Part

Viterbi ACS module

+ FFT Real Part

Figure 15. Third stage for the FFT/Viterbi Common structure

Real

Real

Real

Real PartReal PartImag PartImag Part

Figure 16. FFT/Viterbi Common Operator

V. COMPLEXITY EVALUATION

In order to evaluate the performance and complexity of the

finite/infinite field Dual Mode FFT (DMFFT) architecture, it

was implemented on FPGA and compared to a Velcro

FFT/FNT operator implemented on the same target device.

Complexity evaluations in [13] showed that depending on the

word-length nc, DMFFT exhibits a memory saving between 20

and 30 %, a gain in ALUTs and performance-to-cost ratio gain

from 9.2 % up to 26 % and from 9.7 % up to 37.4 %

respectively [13].

With the aim of analyzing the impact of the FFT/Viterbi

CO on the global implementation complexity, we explored the

possible design scenarios considering the number of the

physically instantiated butterflies in a multistandard design

[28]. Then, the global complexity reduction is evaluated by

comparing the number of implemented logic gates for the CO

and Velcro based designs.

To explain this comparison, we illustrate in Fig. 17 a

simplified example of a two-standard terminal. For a classical

implementation (Velcro), we need to implement the maximum

number of required FFT butterflies and the maximal number

of Viterbi butterflies. On the other hand, the use of the CO

enables to reduce the number implemented butterflies because

of the „reuse‟ across the algorithms, rather than just across

standards.

STD 1

STD 2

Velcro

VITFFT

VITFFT

VITFFT

FFT/VITCO

Figure 17. An example showing resource allocation reduction for a CO based

two-standard implementation

In this case, the use of the FFT/Viterbi common operator

can reduce the complexity of the FFT and Viterbi by up to 5%,

when the number of the implemented Viterbi butterflies is

equal to the number of implemented FFT butterflies [28]. On

the other hand, the use of the DMFFT operator can reduce the

design complexity by up to 26% compared to classical

implementations [13]. This complexity gain can be interpreted

as little, but it should be kept in mind that the main motivation

of this work is to build operators of higher flexibility and that

can be used in a regular architecture. For that reason, showing

that this additional flexibility is not traded against additional

complexity is a very promising result.

In Table I we compare the proposed FFT/Viterbi common

operator with other reconfigurable PEs [25,26]. As shown in

this Table, the proposed cell provides an important gain in

complexity compared to [26] with a good performance in

terms of number of operations per cycle compared to [25].

Also throughput reduction can be compensated by the reuse of

physical entities through operator time multiplexing. Indeed,

[10] has shown that limiting the number of physical

butterflies‟ instances can be achieved without significant

overhead from the time multiplexing management.

TABLE I

Performance Comparisons for the Considered Operations

Proposed

FFT/Viterbi

CO

RMAC-PE

[25]

RCC [26]

Complexity

(Gate Count)
Reference -26% +103%

O
p

er
a

ti
o

n
s/

C
y

cl
e

FFT

Radix-2

Butterfly

1 0,33 1,5

Path

Metrics

Calc.

(ACS)

2 0,5 2

Branch

Metrics

Calc.

(BMC)

1 0,33 4

VI. CONCLUSION

In this paper, the similarities between the FFT and two FEC
decoding algorithms were studied. Based on the
parametrization technique, a pooling method focusing on
FFT/Viterbi and FFT/RS butterflies‟ structure were presented.

Common Operator architectures that can be used in the FFT,
Viterbi and RS decoding were proposed. It was shown that
with this CO it is possible to build a more general library
framework for FFT/FEC functions that permits. The proposed
regular structures can bring considerable advantages when
implemented in a Common Operator Bank (COB) [8]. In
addition, this gain in flexibility is done at no overhead cost
since the complexity is even decreased in some configurations.

REFERENCES

[1] J. Mitola, “The software radio architecture,” IEEE Communications
Magazine, 33, pp. 26–38, 1995.

[2] F. Jondral, “Software Defined Radio: Enabling technologies”, Wiley
2002.

[3] W. Tuttlebee, “Software Defined Radio – Baseband Technology for 3G
Handsets and Basestations,” Communications Engineer vol. 2, no. 2, pp.
46-47.

[4] L. Alaus, J. Palicot, C. Roland, Y. Louet, D. Noguet, “Promising
Technique of Parameterization For Reconfigurable Radio, the Common
Operators Technique: Fundamentals and Examples” Journal of Signal
Processing Systems, Springer, 2009.

[5] F. Jondral, “Parameter Controlled Software Defined Radio,” Software
Defined Radio Technical Conference, San Diego, Nov 2002.

[6] D. Noguet, G. Masera, V. Ramakrishnan, M.Belleville, D. Morche, G.
Asheid, "Considering microelectronic trends in advanced wireless
system design” Advances in Electronics and Telecommunications
Journal, April 2010.

[7] C. Moy, J. Palicot, V. Rodriguez, D. Giri, “Optimal Determination of
Common Operators for Multi-Standard Software-Defined Radio”, 4th
Karlsruhe Workshop on Software Radios, March 2006.

[8] L. Alaus, D. Noguet, J. Palicot, “A Common Operator Bank to resolve
scheduling issue on a SDR Terminal”. The 6th Advanced International
Conference on Telecommunications, 2010. [Submitted]

[9] Cooley, J. W. and Tukey, J. W, “An Algorithm for the Machine
Calculation of Complex Fourier Series”, Math. Computat., 19, 297–301,
1965

[10] L. Biard, D. Noguet, “An adaptable architecture for the Viterbi
algorithm”, The 7th International Symposium on Wireless Personal
Multimedia Communications, 2004.

[11] J.Takala, K. Punkka, “Scalable FFT Processors and Pipelined Butterfly
Units”, The Journal of VLSI Signal Processing, Springer Netherlands
2006

[12] S.T. Gul, C. Moy, J. Palicot, “Two scenarios of flexible Multi-standard
architecture designs using a multi-granularity exploration”, The 18th
Annual IEEE International Symposium on Personal, Indoor and Mobile
Radio Communications, 2007

[13] Ali Al Ghouwayel and Yves Louet "FPGA implementation of a re-
configurable FFT for multi-standard systemes in software radio
context", IEEE Trans. On Consumer Electronics Journal, vol. 55, n°2,
pp. 950-958, May 2009

[14] Rodriguez, V., Moy, C., Palicot, J. (2007). Install or invoke?: The
optimal tradeoff between performance and cost in the design of multi-
standard reconfigurable radios. In Wiley InterScience, Wireless
Communications and Mobile Computing Journal 7(9), (pp. 1143–1156),
DOI 10.1002/wcm.487.

[15] J. Palicot, C. Roland, “FFT: a Basic Function for a Reconfigurable
Receiver” ICT‟ 2003, Papeete, Tahiti.

[16] A. Al Ghouwayel, Y. Louët and J. Palicot, ”A Reconfigurable
Architecture for the FFT Operator in a Software Radio Context”, IEEE
ISCAS‟2006, Greece, May 2006.

[17] W. C. Gore, Transmitting Binary Symbols with Reed-Solomon Codes,
Proceedings of Princeton Conference on Information Sciences and
Systems, Princeton, NJ, 1973, pp. 495-497.

[18] A. Michelson, A Fast Transform in Some Galois Field and an
application to Decoding Reed-Solomon Codes, IEEE International
Symposium on Information Theory, Ronneby, Sweden, 1976, p. 49.

[19] A. Lempel and S. Winograd, A New Approach of Error Correcting
Codes, IEEE Trans. Inf. Theory IT-23, 503-508, 1977.

[20] R. T. Chien and D. M. Choy, Algebraic Generalization of BCH-Goppa-
Helgert Codes, IEEE Trans. Inf. Theory IT-21, 70-79, 1975.

[21] S. M. Reddy and J.P. Robinson, Random Error and Burst Correction by
Iterated Codes, IEEE Trans. Inf. Theory, vol IT-18, p. 172-185, Jan.
1972.

[22] S. B. Wicker and V. K. Bhargava, Reed-Solomon codes and their
applications, New York: IEEE Press, 1994.

[23] S. B. Wicker and V. K. Bhargava, Reed-Solomon codes and their
applications, New York: IEEE Press, 1994.

[24] A. Rhiemeier, Benefits and limits of parameterized channel coding for
software radio, 2nd Workshop on Software Radio, Karlsrhue, Germany,
March 2002. A. Rhiemeier, Benefits and limits of parameterized channel
coding for software radio, 2nd Workshop on Software Radio, Karlsrhue,
Germany, March 2002.

[25] H. Lange, O. Franzen, H. Schröder, M. Bücker, B, Oelkrug,
“Reconfigurable Multiply-Accumulate-based Processing Element”, In:
Proc. of the IEEE Workshop on heterogeneous Systems on a Chip,
Hamburg, Germany, 2002.

[26] C.Y. Jung, M.H. Sunwoo, S.K. Oh, “Design of reconfigurable
coprocessor for communication systems”, SIPS 2004. IEEE Workshop
on Signal Processing Systems, 2004.

[27] J. M. Pollard, The fast Fourier transform in a finite field, IEEE Trans.
Comput., vol. 25, pp. 365-374, Apr. 1971.

[28] M. Naoues, L. Alaus, D. Noguet, "A Common Operator for FFT and
Viterbi Algorithms," Digital System Design: Architectures, Methods and
Tools (DSD), 2010 13th Euromicro Conference on , vol., no., pp.309-
313, 1-3 Sept. 2010 doi: 10.1109/DSD.2010.80

Malek Naoues received his Diploma of Engineer in Telecommunications from Higher School of
Communication of Tunis in 2008 and his MSc in Telecommunication from the same school in 2009.
Since 2010, he works for CEA-LETI as a Ph.D student in collaboration with SUPELEC-France and
SUP’Com-Tunisia. His research activities regard flexible architectures for Multi-standards terminals.

Dr. Dominique NOGUET graduated from the National Institute of Applied Sciences (INSA) in
electrical engineering in 1992. He obtained an MSc in microelectronics of the University of Strasbourg
in 1994 and a PhD of Polytechnic National Institute Grenoble (INPG) in 1998 (Awarded “best INPG
PhD”). Since then, he has been with CEA-LETI where he has worked as ASIC designer, system
architect, and project manager in wireless digital processing. He has coordinated several national and
European research projects, among which ORACLE, the first EU project on Opportunistic Radio. He is
currently the technical manager of the EU QoSMOS project on cognitive radio, and the head of the
"digital architectures and prototypes" ANP group at CEA-LETI, where he also leads Cognitive Radio
Activities. He has been appointed “senior expert” of CEA since 2007. His main fields of interest are on
flexible digital radios and cognitive radios.

Dr. Laurent Alaus was born in 1982. He received his Master Degree of Science in 2006 from INSA
Lyon, France, where he dedicated his first research to cyclostationarity detection schemes for
Cognitive Radio. From 2007 to 2010, he worked for CEA-LETI, France in collaboration with
SUPELEC-SCEE Laboratory on flexible architectures for multi-standards terminals and received his
Ph.D. degree in Telecommunications in May 2010.

Dr. Yves LOUËT (M’04) was born in 1973. He received his Ph.D. degree in Digital Communications in
2000 and his Research Habilitation in 2010 from Rennes University, France. He is Professor in
SUPELEC- France and his research activities regard signal processing and digital communications for
Software Radio systems.

*Biography of all Authors
Click here to download Biography of all Authors: bio-1.doc

http://ees.elsevier.com/micpro/download.aspx?id=33772&guid=7057b66f-b6bd-4555-a7b5-52827945b998&scheme=1

