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Abstract—Monitoring the health conditions of equipment allows 

supplying advanced warning of their incipient failures; this can 

provide evidence useful to maintenance and replacement 

practices. However, uncertainties in the signal measurements and 

incompleteness in the representativeness of the measured data 

can overshadow the conclusions drawn from condition 

monitoring, and possibly lead the decision-maker to take wrong 

actions. In order to reduce the risk of wrong actions, confidence 

measures on the condition monitoring indications of the state of a 

component must be provided, so that the decision-maker can 

know to what degree he or she should trust such indications. As 

condition monitoring is usually structured in two modules 

performed in succession, one of reconstruction of the signal 

values in normal operating conditions and a following one of 

equipment health state diagnosis, it is reasonable to define 

confidence measures for the two processes individually, and then 

integrate the two into a single criterion for the whole condition 

monitoring. The research presented in this paper focuses on the 

definition of confidence measures for the signal reconstruction 

part of condition monitoring. The Evolving Clustering Method 

(ECM) is adopted to build the empirical model of signal 

reconstruction. Requirements for the reconstruction confidence 

are originally defined, and a single confidence measure is 

proposed to meet all the requirements identified. The confidence 

measure is analyzed with respect to two-dimensional artificial 

datasets and a real dataset concerning the Reactor Coolant Pump 

of a French Pressurized Water Reactor. The results obtained 

show that the proposed confidence measure meets all 

requirements and is more informative than the reconstruction 

error. 

Keywords-confidence measure; signal reconstruction; condition 

monitoring; evolving clustering method 

I.  INTRODUCTION 

Systems for condition monitoring of the health state of an 
equipment are often based on empirical models of signal 
regression whose performances may vary depending on the 
density and information content of the example signal patterns 
available to train the models [1-7]. Furthermore, the stochastic 
behavior of the processes and the signal measurements errors 
can overshadow the health-state conclusions drawn from 
condition monitoring, and possibly lead the decision-maker to 
take wrong actions. Given the criticality of these actions, it is 
important to provide the decision–maker with a measure of 
confidence on the condition monitoring system outcome [4]. 

In this respect, the confidence measure should be useful to 
recognize the two potentially dangerous cases of missing and 
false alarms. In the first case, the condition monitoring 
indicates that an unhealthy equipment is operating in normal 
conditions; this may cause an unexpected failure of the 
equipment with associated long downtimes, high costs and 
possible safety and environmental problems. Contrarily, in case 
of false alarms, an healthy state of the equipment is erroneously 
recognized as unhealthy; this may lead to an unnecessary stop 
of the equipment operation with the associated loss of 
production, and may subtract resources to deal with other 
actual failures. 

A typical scheme of condition monitoring can be described 
as follows. Historical data of equipment condition under 
normal operation are used to build a model (often empirical). 
The model is auto-associative in that it reconstructs the values 
of the signals measured to characterize the equipment 
condition. During operation, the actually observed signal 
values are compared with those reconstructed by the auto-
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associative model and the difference is computed. Based on 
this deviation, a decision about the health state of the 
equipment is made. The above two actions are often named 
fault detection [9,10]. 

Because the condition monitoring is composed by the two 
phases of signal reconstruction and health state diagnosis, it is 
reasonable to define the confidence measures for these two 
phases individually and then to integrate them into a single 
confidence measure on the whole condition monitoring 
process. 

In this paper, the research is focused on the development of 
a confidence measure for the signal reconstruction phase. The 
Evolving Clustering Method (ECM) [3] is adopted to build the 
empirical reconstruction model of the equipment behavior. On 
the basis of ECM, the special requirements for the 
reconstruction confidence are analyzed and a confidence 
measure is proposed to meet all the requirements. 

The remaining parts of the paper are structured as follows. 
Section II describes the process of condition monitoring in 
detail and points out the uncertainties existing in the process. 
Section III presents the ECM algorithm including the training 
phase and the procedure used for the signal reconstruction. In 
Section IV, the requirements for a confidence measure of 
signal reconstruction are discussed and a corresponding 
measure able to meet the requirement is proposed. In Section 
V, the proposed confidence measure is applied to both two-
dimensional artificial datasets and a real dataset concerning the 
condition monitoring of a Reactor Coolant Pump of a French 
Pressurized Water Reactor. Finally, Section VI states some 
conclusions and draws on potential future steps of the work. 

II. CONDITION MONITORING 

Fig. 1 shows the general framework used for condition 
monitoring of an equipment. This is typically based on: 

1) a signal reconstruction module, 

2) a diagnostic decision module. 

The former receives in input the vector containing the q 

sensor measurements  (1), ..., ( )
obs obs obs

x x x q  and provides 

in output the signal values expected in case of normal condition  

 ˆ ˆ ˆ(1),..., ( )nc nc ncx x x q . This module is usually based on 

an auto-associative model of the component behavior in normal 
conditions, obtained by techniques such as Principal 
Component Analysis (PCA) [10], Auto-Associative Kernel 
Regression Method (AAKR) [1], Auto-associative Neural 
Networks [11], Evolving Cluster Method [3], trained with data 
collected during operation in normal conditions.  

 

 

Figure 1 The condition monitoring approach in this work. 
The latter module takes the difference between the 

reconstructed  ˆ ˆ(1),..., ( )nc ncx x q  and observed values  

 (1),..., ( )obs obsx x q  to decide whether the system is in 

normal or abnormal conditions. In case of normal conditions, 
the measured values are expected to be very similar to the 
model reconstructed ones, i.e., the residuals are small; on the 
contrary, under abnormal conditions the measurements tend to 
deviate from the reconstruction allowing detection of the 
abnormality. 

However, incompleteness of the training data, intrinsic 
stochasticity of the plant processes and measurement noises 
may lead to wrong diagnostic decisions on the system health 
state. For this reason, it is important to develop a confidence 
measure on the condition monitoring indications of the state of 
the equipment, so that the decision-maker can know to what 
degree he or she should trust such indications to take actions. 

Proceeding systematically through the two successive 
phases of condition monitoring, the overall confidence on the 

condition monitoring, CMConf , is sought as a result of the 

confidence in the signal reconstruction, rConf , and in the 

diagnostic decision, dConf , properly aggregated. 

III. SIGNAL RECONSTRUCTION BY EVOLVING CLUSTERING 

METHOD (ECM) 

The algorithm considered in this work for reconstructing 
the equipment behavior in normal conditions is based on a 
clustering method called Evolving Clustering Method (ECM) 
[3]. For completeness of the paper, Section III.A briefly 
describes the basics of ECM, whereas Section III.B is 
dedicated to the reconstruction procedure based on ECM. 

A. The ECM algorithm 

Given a training dataset 
obs nc

X  formed by n q-

dimensional patterns  (1),..., ( )obs nc bs nc bs nc
i i ix x x q    

recorded during past operation of the equipment in normal 
conditions, the ECM algorithm provides a procedure to group 
the training patterns into clusters. The application of the 
algorithm requires to a priori fix the value of the parameter 
Dthr which defines the maximum allowed cluster radius. The 
clusters are then found by performing the following steps: 

Step 0: Assume the center of the first cluster 1v  equal to the 

first pattern in the dataset 1
obs ncx 

, the corresponding cluster 



radius R1=0, and set the pattern counter i=1 and the cluster 
counter m=1. 

Step 1: If all the patterns of the dataset have been processed 
(i=n), exit. Otherwise, i=i+1, consider the i-th pattern of the 

dataset 
obs nc
ix 

 and compute its distance Dik from the centers 

kv , 1,...,k m  of all the already formed clusters: 

 
mkvxD k

ncobs
iik ,...,1,2   

 
 (1) 

Although the distance computation can be based on weighted 
distances
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with the weights p(j) related to the importance of signal j in 
the equipment monitoring, in this work the Euclidean distance 
is considered, i.e. all the signals are given equal weights 
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Step 2: If, among the found distance values Dik, there are 
distances lower or equal to the corresponding cluster radii, i.e. 

ik kD R , assign the i-th pattern to the cluster k0 with the 

associated lowest distance Dik: 

 
mkvxk k

ncobs
i

k

,...,1,minarg0   

 (4) 

and go to step 1. Otherwise, if the i-th pattern does not belong 
to any cluster, perform steps 3, 4 and 5. 

Step 3: For all m existing cluster centers, compute the 
values Sik=Dik+Rk, k = 1,… ,m and identify the cluster ka 
characterized by the minimum value of Sik: 

mkSk
k

ika ,...,1minarg 

 
(5) 

Step 4: If 
aikS  is greater than 2Dthr, a new cluster m=m+1 

is created with center 
obs nc

m iv x   and radius Rm=0; then, go 

to Step 1. 

Step 5: If 
aikS  is less than or equal to 2Dthr, the cluster ka  

is updated by moving its center 
akv  and modifying its radius 

akR . The updated radius 
akR  is set to 

aikS  and the new center 

akv  is located on the line connecting 
obs nc
ix 

 to the old cluster 

center 
akv , in a position such that the distance between the 

new center 
akv  and the test pattern 

obs nc
ix 

 is equal to 
akR ; 

then, go to Step 1. 

Notice that this procedure guarantees that the maximum 
possible distance between a pattern of the training dataset and 
the nearest cluster center is lower or equal to the threshold 
value Dthr. 

B. Reconstruction Procedure 

Once the m clusters have been identified, the reconstruction 

 ˆ ˆ ˆ(1),..., ( )nc nc ncx x x q  of a test pattern 

 (1),..., ( )obs obs obsx x x q  is based on the following two 

steps: 

1)  identification of the cluster with the smallest distance 

from the test pattern. This is done by computing the distance 
),( k

test vxd


 of the test patterns with all the m cluster centers:  

mkvxvxd k
test

k
test ,...,1,),(2 



 

(6) 

and selecting as nearest cluster closestk  the one with the 

minimum distance: 

 

  mkvxdk k
test

k
closest ,...,1,),(minarg 



 
(7) 

2) Reconstruction of the test pattern as the nearest cluster 

center: 

closestk
obs vx


ˆ

 
(8) 

Notice that contrary to other algorithms, such as AAKR 
which requires to perform the reconstruction of a test pattern to 
have the accessibility to all the training patterns, the ECM 
reconstruction is based only on the cluster centers and thus it 
does not require the continuous accessibility of the training set. 

IV. CONFIDENCE MEASURE 

In this Section, a measure of the degree of confidence of the 
signal reconstruction performed by using the ECM algorithm 
described in the previous Section III.A is proposed. Basically, 
the objective is to answer to the questions: how accurate is the 
reconstruction expected to be? To what degree can we trust the 
reconstruction? 

To this purpose, notice that the metrics “accuracy” and 
“robustness” proposed in literature [1,2] to estimate the overall 
performance of the reconstruction algorithm on a set of test 
patterns different from those used to train the model are not 
satisfactory for our objective, since the reconstruction 
performance is expected to vary in different zones of the 
training space. Thus, the degree of confidence in the 
reconstruction should not be a fixed quantity independent from 
the location of the test pattern, but should vary according to the 
density and information content of the example patterns 
available to train the model. 

A. Requirements for a confidence measure 

The following four requirements which take into account 
the position of the test pattern with respect to the clusters found 
by the ECM algorithm should be considered in order to 
evaluate the confidence in the reconstruction: 

1) smaller is the distance between the test pattern and the 

nearest cluster center, higher should be the reconstruction 

confidence; 

2) if the test pattern has nearly the same distance from two 

or more cluster centers, the reconstruction confidence should 

be low; 

3) higher is the number of training patterns in the cluster 

nearest to the test pattern, higher should be the reconstruction 

confidence; 

4) higher is the density of the training patterns in the 

cluster nearest to the test pattern, higher should be the 

reconstruction confidence. 
Requirement 1) is motivated by the fact that if a pattern 

does not belong to a cluster or is far away from its center, its 
reconstruction as the center of the nearest cluster is expected to 
be not reliable. Requirement 2) considers that we should not be 
confident in the reconstruction of ambiguous patterns, i.e. 



patterns whose position is such that they can belong with the 
same confidence to two or more clusters. Finally, requirements 
3) and 4) are related to the density and information content of 
the training data: the number of patterns in the cluster is 
considered since we are less confident in a cluster formed by 
one or few training patterns which, for example, may 
correspond to an abnormal equipment condition and be 
erroneously introduced in the training dataset for the model of 
normal behavior. 

B. Definition of the confidence measure 

Given a test pattern  (1),..., ( )obs obs obsx x x q , the 

degree of confidence of its reconstruction 

 ˆ ˆ ˆ(1),..., ( )nc nc ncx x x q  is defined by: 
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(9) 
(

9) 

where: 

 knearest represents the label of the cluster with the 

center nearest to the test pattern 

 kv


 the center of the k-th cluster 

  



kn

i

k

ncobs

i

k

k vxd
n 1

2 ,
1 

  the mean square 

distance between the cluster center kv


 and all the 

training patterns belonging to the cluster 

 m  the total number of clusters 

 kn  the number of patterns belonging to the k -th 

cluster 

 n  the total number of training patterns 

 0n  an integer number representing a threshold for 

the number of patterns belonging to the cluster: when 

the number of patterns in the nearest cluster to the 

test pattern is below 0n , the confidence in the 

reconstruction is decreased. 

The term 

1

( 1) ( , )
1

( , )

nearest

obs
k

m
obs

k

k

m d x v

d x v






 is related to the 

distance of the test pattern to all the cluster centers. This term 
may be rewritten as: 
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Since 1

),(
;1







m

vxd

d

m

kkk

k

obs

others
nearest



 can be interpreted as 
the mean distance between the test pattern and all the cluster 
centers except the nearest one, the term in (10) results highest 
for those test patterns very close to the nearest cluster center 
and far away from all the other clusters, whereas it reaches its 
minimum value (1/m) in the case in which the test pattern has 
the same distance to all the cluster centers. These 
characteristics are in accordance to requirements 1) and 2). 
This term is derived from [12] where it is used for the 
estimation of the classification confidence of a k-nearest 
neighbor algorithm. 

The term 

2

2

( , )

21

2

obs
knearest

knearest

nearest

d x v

k

e






 is introduced in (9) 

to take into account the density of the nearest cluster to the test 
pattern. It depends from the square of the distance between the 
cluster center and the cluster, and the inverse of the quantity 

k  which is a measure of the cluster dispersion. Thus, once 

fixed the distance of the test pattern to the nearest cluster 
center, the degree of confidence in the reconstruction of the test 
pattern is higher for denser clusters as requested by 
requirement 4). 

Finally, the factor 
kn

n
 has been introduced in the 

confidence measure in order to meet requirement 3); basically, 
if the number of patterns in the nearest cluster is lower than the 
threshold value the confidence of the reconstruction is 

decreased of the factor  
kn

n
. 

V. VERIFICATION OF THE CONFIDENCE MEASURE 

In Section V.A some case studies based on artificial bi-
dimensional datasets are designed in order to verify if the 
proposed confidence measure effectively meets in practice the 
four requirements of Section IV.A. Then, in Section V.B the 
proposed confidence measure is applied to a real case study 
and the obtained results commented. 

A. Application to artificial case studies  

In the first case study, two clusters, each one formed by 100 
training patterns, have been generated from two bi-dimensional 
Gaussian distributions centered on (30, 100) and (70, 100), 
respectively, both with variance equal to 10 (red dots in Fig. 
2(a)). The application of the ECM procedure with threshold 



parameter Dthr = 0.15 has lead to the identification of three 
clusters whose center position along the horizontal axis is 
reported by a circle in Fig. 2(b), one containing the patterns on 
the left side of Fig. 2(a) and two containing the patterns on the 
right side. The obtained clusters have been used for the 
reconstruction of test patterns on the horizontal straight line 
passing for the centers of the Gaussian distributions (crosses in 
Fig. 2(a)). Fig. 2(b) reports the confidence in the 
reconstruction. Notice that in accordance with the first 
requirement, the confidence increases as the distance between 
the test pattern and the closest cluster center decreases. 
Although the data have been generated from two Gaussian 
symmetric distributions, a non symmetric behavior of the 
confidence measure in the two sides of Fig. 2(b) has been 
found due to the fact that the ECM algorithm results in one 
cluster for the right Gaussian distribution patterns and two for 
the left Gaussian distribution patterns. 

The training data used for the second case study have been 
generated by using the same bi-dimensional Gaussian 
distributions considered in case study 1, whereas the test set is 
formed by patterns on a circle (crosses in Fig. 3(a)) with center 
(30, 70) equal to the center of the left Gaussian distribution. 
Fig. 3(b) shows the variation of the confidence measure as a 
function of the angle θ scanning the circle starting at the dark 
dotted line in Fig. 3(a) (angle values increase in the counter 
clockwise direction). The results show that the degree of 
confidence achieved in the reconstruction of patterns which 
have the same distance from the center of the Gaussian 
distribution but different angles θ, tends to be different. In 
particular, pattern A at θ=0

o
(360

o
) is reconstructed with a 

degree of confidence equal to 0.33 whereas pattern B at θ = 
180

o
 with a degree of confidence equal to 0.39. This is in 

accordance with the second criterion of Section IV.A: the 
confidence on the reconstruction of pattern A is lower than that 
of pattern B since A is closer to the cluster on the right and thus 
more ambiguous. The peak of the confidence measure at 
θ=270

o
 is due to an additional  cluster center found by the 

ECM in proximity of the test pattern at θ=270
o
. 

In the third case study, 100 test patterns positioned on a 
vertical line in the middle between the two clusters (Fig. 4 (a), 
crosses) are reconstructed by the ECM with threshold Dthr 
equal to 0.30. Fig. 4 (b) shows that the degree of confidence in 
the reconstruction of this pattern is lower than 0.3. This result 
confirms the fulfillment of the second requirement according to 
which patterns with the same distance to two cluster centers 
should be reconstructed with a low degree of confidence. 
Furthermore, according to the first requirement, as the distance 
to the cluster center increases (values on the vertical axis tend 
to 50 or 150), the confidence tends to decrease. 

The fourth case study is similar to the third one except that 
the ECM threshold Dthr is decreased to 0.15 in order to allow 
the generation of small clusters formed by few patterns. Notice 
that in the case in which the nearest cluster to the test pattern is 
formed by a single training pattern, the confidence in the 
reconstruction becomes 0. This is the case of the two test 
patterns indicated by the circles in Fig. 5 (b). 

In the last case study, the training patterns are taken from 
two Gaussian distributions centered on (20, 100) and (80, 100) 
and with variance 10 and 100, respectively (Fig 6(a)). The 
degrees of confidence in the reconstruction of the test patterns 
belonging to the cluster on the left, characterized by higher 
density, are higher than those of the less dense cluster on the 
right. 

 

 

Figure 2 Case study 1: variation of the degree of confidence in the 

reconstruction as a function of the distance of the test pattern to the cluster 
centers. 

 

 
Figure 3 Case study 2: variation of the degree of confidence in the 

reconstruction depending on the presence of other clusters. 
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Figure 4 Case study 3: degree of confidence for patterns equally distant from 

two clusters (ECM with a large radius value). 

 

 

 
Figure 5 Case study 4: degree of confidence for patterns equally distant from 
two clusters (ECM with a small radius value).  

 

 

 
Figure 6 Case study 5: variation of the degree of confidence in function of the 

cluster density.  

 
These five case studies performed with properly designed 

bi-dimensional Gaussian data have shown that the proposed 
confidence measure meets the four requirements of Section 
IV.A. 

B. Confidence estimation in a real condition monitoring case 

study 

A real case study concerning 48 signals used to monitor the 
Reactor Coolant Pump (RCP) of a French Pressurized Water 
Reactor (PWR) is considered in this Section. The signals 
values have been measured every hour for a period of 11 
consecutive months and concern four RCPs, each one on a 
different line of the primary circuit. The 5768 48-dimensional 
available patterns have been divided into a training set of 3000 
and a test set containing the remaining 2798 test pattern. 

The ECM parameter Dthr has been set equal to the value of 
0.05 in an attempt to find an optimal compromise between a 
low value which would generate very accurate but low robust 
reconstructions (several clusters formed by few patterns) and 
an high value which would lead to less accurate but more 
robust reconstructions (few clusters formed by several 
patterns). 

Fig. 7 reports the variation of the degree of confidence with 
the distance between the test pattern and the nearest cluster 
center. In accordance to the first requirement, the confidence 
tends to decrease as the distance between the test pattern and 
the nearest cluster center increases. Notice that this distance is 
equal to the reconstruction error since the reconstruction of the 
test pattern coincides with the nearest cluster center (Section 
III.B). Furthermore, Fig. 7 shows that there are some patterns 
reconstructed with confidence 0. These test patterns are 
assigned to a cluster formed by a single pattern far away from 
the other patterns; thus, their reconstructions are not believed 
reliable in accordance to the third criterion. These low degrees 
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of confidence are justified from the practical point of view by 
the fact that the training dataset may erroneously contain 
isolated patterns which do not correspond to normal operation 
and for this reason should not be considered for the 
reconstruction of the equipment behavior in normal conditions. 

 

Figure 7 Variation of the degree of confidence of the signal reconstruction 
with the distance between the test pattern and the nearest cluster center.. 

A second real case study in which two different training 
sets are considered has also been performed. Training set 1 is 
formed by 4000 patterns, training set 2 by 400 patterns 
randomly sampled from the training patterns of training set 1. 
Given the composition of the training sets, the clusters obtained 
by applying the ECM method to training set 2 are expected to 
be less dense than those obtained based on training set 1. Table 
1 reports the mean confidence achieved in the classification of 
the same test set. In accordance to requirement 4), when the 
denser training set 1 is used, the mean degree of confidence 
tends to become higher. 

TABLE I.  AVERAGE CONFIDENCE IN THE RECONSTRUCTION OF THE 

TEST PATTERNS IN FUNCTION OF THE CLUSTER DENSITY  

VI. CONCLUSIONS 

Due to the criticality of condition monitoring in complex 
systems, it is important to provide decision makers with not 
only an estimation of the equipment health state but also a 
measure of the confidence in the condition monitoring model 
outcome. To this purpose, we have considered a condition 
monitoring scheme based on two modules performing (1) 
signal reconstruction and (2) diagnostics decision on the 
equipment health state. As reconstruction model, we have 
employed an auto-associative empirical algorithm based on the 

Evolving Clustering Method (ECM). We have, then, 
introduced a novel measure of confidence on the obtained 
signal reconstruction, verified it by application to artificial 
datasets and applied it to a real condition monitoring problem 
concerning an important component of a nuclear power plant. 
The results that we have obtained show that the proposed 
measure meets the requirements which the confidence is 
expected to depend on, related to the density and information 
content of the training space. 

Future research activity should be devoted to the estimation 
of the confidence in the diagnostic decision on the equipment 
health state and to the proper combination of the developed 
confidence measures in order to obtain an overall measure of 
confidence in the condition monitoring process. 
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patterns 
Average Confidence 

raining set 1 4000 0.439 

training set 2 400 0.360 
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