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1 INTRODUCTION  

Uncertainty analysis is a fundamental part of the risk 
analysis of complex systems such as nuclear power 
plants, aerospace systems and others. 

In risk analysis, uncertainty is conveniently con-
sidered of two different types: randomness due to 
inherent variability in the system behavior and im-
precision due to lack of knowledge and information 
on the system. The former type of uncertainty is of-
ten referred to as objective, aleatory, stochastic whe-
reas the latter is often referred to as subjective, epis-
temic, state-of-knowledge (Helton 2004).  

In the context of risk analysis, the aleatory uncer-
tainty is related to the occurrence of the events 
which define the various possible accident scenarios, 
whereas epistemic uncertainty arises from a lack of 
knowledge of fixed but poorly known parameter 
values entering the evaluation of the probabilities 
and consequences of the accident scenarios. 

In the current risk assessment practice, both types 
of uncertainties are represented by means of proba-
bility distributions. However, resorting to a single 
probabilistic representation of epistemic uncertainty 
may not be possible when sufficient data is not 
available for statistical analysis, even if one adopts 
expert elicitation procedures to incorporate diffuse 
information into the corresponding probability dis-
tributions, within a subjective view of probability. 
Indeed, an expert may not have sufficiently refined 
knowledge or opinion to characterize the relevant 
epistemic uncertainty in terms of probability distri-
butions (Helton 2004). 

As a result of the potential limitations associated 
to a probabilistic representation of epistemic uncer-
tainty under limited information, a number of alter-
native representation frameworks have been pro-

posed, e.g., fuzzy set theory, evidence theory, possi-
bility theory and interval analysis (Klir & Yuan 
1995; Aven & Zio 2011). 

Possibility theory is attractive for risk assessment, 
because of its representation power and its relative 
mathematical simplicity. It offers two measures of 
likelihood, namely possibility and necessity meas-
ures, that may be interpreted as lower and upper 
probabilities in the representation of imprecision in 
the experts' probability assignments. 

The possibilistic representation of uncertainty can 
both be combined with and transformed into the tra-
ditional probabilistic representation. In this respect, 
an integrated (“hybrid”) computational framework 
has been proposed for jointly propagating probabilis-
tic and possibilistic representations through a model 
(Baudrit et al. 2006). This framework has been ap-
plied to propagate uncertainties in event trees (Ba-
raldi & Zio, 2008) and fault trees (Flage et al. 2010; 
Flage et al. 2011). 

In the present paper, the integrated framework of 
propagation is tested on a flood risk model (Pasanisi 
et al. 2009; Limbourg & de Rocquigny, 2010) consi-
dered a realistic benchmark for uncertainty model-
ing. 

The reminder of the paper is organized as fol-
lows. In Section 2, some basic concepts about possi-
bility theory are summarized; in Section 3, the de-
tails about the integrated propagation framework are 
given; in Section 4, approaches for constructing pos-
sibility distributions are discussed; in Section 5, the 
flood model considered for the uncertainty propaga-
tion task is presented; in Section 6, the results of the 
joint propagation of aleatory and epistemic uncer-
tainties through the flood model are reported and 
commented; finally, in Section 7, conclusions and 
direction for future work are provided. 
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2 BASICS OF POSSIBILITY THEORY 

In possibility theory, uncertainty is represented by a 
possibility function )(yπ . For eachy in a set Ω , 

)(yπ expresses the degree of possibility of y . When 
0)( =yπ  for some y , it means that the outcomey is 

considered an impossible situation. When 1)( =yπ  
for some y , it means that the outcomey is possible, 
i.e., is just unsurprising, normal, usual (Dubois 
2006). This is a much weaker statement than when 
probability is 1.  

The possibility function gives rise to probability 
bounds, upper and lower probabilities, referred to as 
necessity and possibility measures (N ,Π ). They 
are defined as follows.  

The possibility of an event A , ( )AΠ , is defined 
by  

( ) { })(sup yA
Ay

πΠ
∈

= ,  (1) 

and the necessity measure ( )AN  is defined by 

( ) { })(sup1)(1 ynotAAN
Ay

πΠ
∉

−=−= . 

Let PPPP(π ) be a family of probability distributions 
such that for all eventsA , ( ) )()( AAPAN Π≤≤ . 
Then, 

( ) )(inf APAN =  and ( ) )(sup APA =Π  (2) 

where inf and sup are with respect to all probability 
measures in PPPP. Hence the necessity measure is inter-
preted as a lower level for the probability and the 
possibility measure is interpreted as an upper limit. 
Referring to subjective probabilities, the bounds re-
flect that the analyst is not able or willing to precise-
ly assign his/her probability, and the bounds are the 
best he/she can do given the information available; 
in other words, he or she can only describe a subset 
of PPPP which contains his/her probability (Dubois 
2006). 

3 PROPAGATION OF EPISTEMIC AND 
ALEATORY UNCERTAINTIES THROUGH A 
MODEL 

Let us consider a model whose output is a function 
( )nYYYfZ ,...,, 21=  of n  uncertain variables 

njYj ,,1, L= , ordered in such a way that the first k  
are random (aleatory uncertainty), with probability 
distributions ( )yp

iY  and the last kn −  are possibilis-
tic (epistemic uncertainty), represented by possibility 
distributions ( )nk YY ππ ,,1 L+ . The propagation of this 
hybrid uncertainty information can be performed by 
combining the Monte Carlo technique with the ex-
tension principle of fuzzy set theory (Baudrit et al. 
2006).  

The operative steps of the procedure are: 
1 set i = 0 

2 set i = i + 1 
3 sample the thi −  realization ( )i

k
i yy ,,1 L  of the 

random variable vector ( )kYY ,,1 L  
4 set the possibility value α  to 0 
5 select the corresponding α-cuts of the possibility 

distributions ( )nk YY ππ ,,1 L+  as intervals of possi-
ble values of the possibilistic variables 
( )nk YY ,,1 L+  

6 calculate the smallest and largest values of 
( )nk

i
k

i YYyyf ,,,,, 11 LL + , denoted by if
α

 and 
i

f α  
respectively, considering the fixed values 
( )i

k
i yy ,,1 L  sampled for the random variables 

( )kYY ,,1 L  and all values of the possibilistic va-
riables ( )nk YY ,,1 L+  in the cuts−α  of their pos-
sibility distributions ( )nk YY ππ ,,1 L+ ; such extreme 
values if

α
 and 

i
f α  are the lower and upper lim-

its, respectively, of the cut−α  interval [ ]ii
ff

αα ,  
of ( )nk

i
k

i YYyyf ,,,,, 11 LL +  
7 if 1<α  then set α∆αα +=  (e.g., 05.0=α∆ ) 

and return to step 5. above; otherwise obtain the 
fuzzy random realization (fuzzy interval) fiπ  of 

( )YfZ =  as the collection of the values ifα  and 
i

f α  for each cut−α  (notice that since 
05.0=α∆  then Nα = 1/ α∆  + 1 = 1/0.05 + 1 = 

21 values of α are considered in the procedure, 
i.e., Nα = 21 α-cuts of the possibility distributions 
( )nk YY ππ ,,1 L+  are selected; thus, the fuzzy ran-
dom realization f

iπ  of ( )YfZ =  is constructed 
as the collection of its Nα = 1/ α∆  + 1 = 1/0.05 + 
1 = 21 α-cut intervals [ ]ii

ff
αα , ) 

8 if i < m (e.g., m = 10000) then return to step 2. to 
generate a new realization of the random va-
riables; otherwise, stop the algorithm 
At the end of the procedure an ensemble of m 

random realizations of fuzzy intervals is obtained, 
i.e., ( )f

m
f ππ ,,1 L . 

Two considerations are in order with respect to 
the choices of Nα and m. A small number Nα of α-
cuts (e.g., Nα = 5) leads to a rough and imprecise 
characterization of the fuzzy random realizations f

iπ  
of Z ; on the other hand, a large number Nα of α-cuts 
(e.g., Nα = 100) causes a remarkable increase in the 
computational time. Thus, the choice of the number 
Nα of α-cuts is driven by the trade–off between esti-
mation accuracy and computational cost. Similarly, 
the number m of realizations of the random variables 
has to be large enough to guarantee an accurate and 
precise propagation of the corresponding aleatory 
uncertainty: in practice, m is usually of the order of 
thousands. 

For each set Acontained in the universe of dis-
course ZU  of the output variable Z , it is possible to 
obtain the possibility measure )(Af

iΠ  and the ne-



cessity measure )(Af
iΝ  from the corresponding 

possibility distribution )(zf
iπ , by:  

{ })(max)( zA f
i

Az

f
i πΠ

∈
= , ZUA⊆∀  (3) 

{ } ( )AzA f
i

f
i

Az

f
i ΠπΝ −=−=

∉
1)(1inf)( , ZUA⊆∀  (4) 

The m different realizations of possibility and ne-
cessity can then be combined to obtain the belief 

)(ABel  and the plausibility )(APl  for any setA , re-
spectively (Baudrit et al. 2006): 

∑
=

=
m

i

f
ii ANpABel

1

)()(  (5) 

∑
=

=
m

i

f
ii ApAPl

1

)()( Π  (6) 

where ip  is the probability of sampling the thi −  
realization ( )i

k
i yy ,,1 L  of the random variable vector 

( )kYY ,,1 L . For each set A , this technique thus 
computes the probability-weighted average of the 
possibility measures associated with each output 
fuzzy interval. 

The likelihood of the value ( )Yf  passing a given 
threshold z  can then be computed by considering 
the belief and the plausibility of the set ( ]zA ,∞−= ; 
in this respect, ( ]( )zYfBel ,)( ∞−∈  and ( ∈)(YfPl  
( ])z,∞−  can be interpreted as bounding, average 
cumulative distributions ( ]( )zYfBelzF ,)()( ∞−∈= , 

( ]( )zYfPlzF ,)()( ∞−∈=  (Baudrit et al. 2006). 

4 APPROACHES FOR CONSTRUCTING 
POSSIBILITY DISTRIBUTIONS 

In this Section, a number of approaches for con-
structing possibility distributions of the variables 
subject to epistemic uncertainty are briefly de-
scribed. In Section 4.1, triangular possibility distri-
butions are considered; in Section 4.2, the use of 
Chebyshev inequality is illustrated; finally, in Sec-
tion 4.3, two methods for transforming a probability 
distribution into a possibility distribution are de-
scribed based on the principle of maximum speci-
ficity (Section 4.3.1) and on the normalization of the 
probability density function (Section 4.3.2). 

4.1 Triangular function 

Let us suppose that the analyst knows that an uncer-
tain variable can take values in a given range [a, b] 
and the most likely value is c. To represent this in-
formation a possibility distribution can be taken as a 
triangle with base determined by the range [a, b] 
(i.e., the absolute physical limits of the variable) and 
with vertex taken in correspondence of the most 

likely value c: in other words, the possibility distri-
bution equals 0 in correspondence of the extreme 
values a and b of the physically allowable range and 
1 in correspondence of the most likely value c. It has 
been shown that the family of probability distribu-
tions defined by a triangular possibility distribution 
with range [a,b] and vertex c contains all the proba-
bility distributions with support [a,b] and mode c 
(Baudrit & Dubois 2006). 

4.2 Chebyshev inequality 

If the analyst knows the mean µ  and the standard 
deviation σ  of the uncertain variable of interest, 
then the Chebyshev inequality (Baudrit & Dubois 
2006) can be used to construct a possibility distribu-
tion. Actually, the use of continuous possibility dis-
tributions for representing probability families heavi-
ly relies on probabilistic inequalities. Such 
inequalities provide probability bounds for intervals 
forming a continuous nested family around a typical 
value. This nestedness property leads to interpreting 
the corresponding family as being induced by a pos-
sibility measure. These bounds are usually used for 
proving convergence properties but, in this context, 
they can be used for representing knowledge. This is 
the case of the Chebyshev inequality, for instance. 
As pointed, for instance by Baudrit & Dubois 
(2006), the classical Chebyshev inequality defines a 
bracketing approximation on the confidence inter-
vals around the known mean µ  of a random variable 
Y, knowing its standard deviation σ . The Cheby-
shev inequality can be written as follows: 

( )
2

1
1

k
kYP −≥≤− σµ  for 1≥k  (7) 

Chebyshev inequality defines a possibility distribu-
tion that dominates any density with given mean and 
variance: it allows to define a possibility distribution 
π  by considering intervals [ ]σµσµ kk +− ,  as α-

cuts of π  and letting ( ) ( ) 2/1 kkk =+=− σµπσµπ . 
Notice that from (7) P(Y ∈ [µ – kσ, µ + kσ]) ≥  

211 k− , for 1≥k ; moreover, P(Y ∈ [µ – kσ, µ + 
kσ]) ≥  α−1  by definition of α-cut interval. As a 
consequence, α = 1/k2 by construction. Since in this 
paper α = 0.05, 0.1, …, 0.95, 1 (see Section 3), then 
k = 4.4721, 3.1623, …, 1.0260, 1. The resulting pos-
sibility distribution defines a probability family 
PPPP

µ,σ(π ) which has been proven to contain all distri-
butions with mean µ  and standard deviation σ , 
whether the unknown probability distribution func-
tion is symmetric or not, unimodal or not (Baudrit & 
Dubois 2006). 



4.3 Probability – possibility transformations  

In this Section, we consider transformations from 
probability distributions to possibility distributions. 
It is worth noting that in the transformation proce-
dure (i.e., going from probability to possibility) 
“some information is lost because there is a conver-
sion from pointed-valued probabilities to interval-
valued ones” (Dubois et al. 1993). 

Given the interpretation of possibility and neces-
sity measures as upper and lower probabilities, a 
possibility distribution π  induces a family PPPP(π ) of 
probability measures. There is not a one-to-one rela-
tion between possibility and probability, and trans-
formations from a probability measure P into a pos-
sibility distribution π  can only ensure that 
− PPPP(π ) includes P; and 
− PPPP(π ) is selected according to some principle (ra-

tionale); e.g., “minimize loss of information”, in 
some sense. 
The following should be basic principles for such 

transformations (Dubois et al. 1993): 
1 The probability-possibility consistency principle. 

The family PPPP(π ) is formally defined as PPPP(π ) 
{ })()(,: AAPYAP Π≤⊆∀= .  

It seems natural to require a transformation to se-
lect P from PPPP(π ) (Dubois et al. 1993). This is re-
ferred to as the probability-possibility consistency 
principle, formulated as YAAAP ⊆∀≤ ),()( Π  

2 Preference preservation. 
A possibility distribution π  induces a preference 
ordering on Y, such that )'()( yy ππ > means that 
the outcome y  is preferred to 'y . A transforma-
tion should therefore satisfy ⇔> )'()( yy ππ  

)'()( ypyp > . 
In the following, two methods for transforming a 

probability distribution into a possibility distribution 
are considered: the first one is based on the principle 
of maximum specificity (Section 4.3.1); the second 
one on the normalization of the probability density 
function (Section 4.3.2). 

4.3.1 The principle of maximum specificity 
The most specific possibility distribution tπ , or 

rather the minimum area under π , that dominates a 
given probability density p is given by: 

=+== ∫∫
+∞

∞− )(

)()())(()(
yh

y
tt dxxpdxxpyhy ππ  

))(()( yhFyF +=  (8) 

where )(1)( ⋅−=⋅ FF  and { ≥= )(:max)( xpxyh  
})(yp . 

It is interesting to observe that for this transfor-
mation: [ ]( ) [ ]( ) [ ]( ) 1)(,)(,)(, =≤= yhyyhyPyhyN Π , 
i.e., the transformation prescribes equality between 
the necessity of a given α-cut and the probability of 
the same α-cut. 

The transformation applies to unimodal, conti-
nuous and support bounded probability densities p. 
Moreover, this criterion is not necessarily adapted to 
the transformation of a subjective probability distri-
bution reflecting an expert opinion (Dubois et al. 
2004). 

4.3.2 Normalization of probability density 
The possibility distribution resulting from the trans-
formation is given by the normalization of probabili-
ty density, i.e., )(sup/)( ypypp =µ . Note that the 

distribution resulting from this normalization (when 
taken to be a possibility distribution) does not in 
general adhere to the probability-possibility consis-
tency principle (Dubois and Prade 1980). 

5 CASE STUDY: FLOOD PROTECTION 
DESIGN 

The case study deals with the design of a protection 
dike. The problem concerns a residential area that is 
closely located to a river; due to this location, there 
is a potential risk of flood. As prevention and mitiga-
tion measures, a dike has to be built to protect the 
area. Different design options must be considered 
taking into account that the construction of a dike 
involves high building costs and annual maintenance 
costs and the natural phenomenon of flooding is sub-
ject to a large amount of uncertainties. Thus, the ana-
lyst has to evaluate different design options while 
covering flood uncertainty. 

The system model analyzed in this study is an 
analytical approximation for calculating the maximal 
water level of the river (i.e., the output variable of 
the model, cZ ) as a function of a number of parame-
ters (i.e., the input variables of the model): 

( )

5/3

/ 













−∗∗
+=

LZZBK

Q
ZZ

vms

vc  (9) 

where: Q  is the yearly maximal water discharge 
(m3/s); mZ and vZ are the riverbed levels (m asl) at 
the upstream and downstream part of the river under 
investigation, respectively; sK  is the Strickler fric-
tion coefficient; B  and L  are the width and length 
of the river part (m), respectively. 

The input variables are classified as follows (Pa-
sanisi et al. 2009): 
− Constants:  

• 300=B  m; 
• 5000=L  m. 

− Aleatory variables: 
• The maximal water flow Q  is the variable 

with the largest amount of data available. A 
large set of water flow data is available to 
perform Bayesian inference (149 annual 



maximal flow values) on the parameters of 
the distribution. The Gumbel distribution 

( )βα ,qGum  is a well-established probabilis-
tic model for maximal flows: 

( ) =βα ,qGum   








 −















 −−=
β

α
β

α
β

qq
expexpexp

1
 (10) 

The Bayesian estimates (posterior means) of 
the parameters of the distribution are 

0.1014=α  and 4.565=β  (Pasanisi et al. 
2009). 

• The uncertainty in the upstream and down-
stream levels, mZ  and vZ  respectively, are 
quantified by a bivariate normal distribution 

( )ΣΣΣΣ,µµµµN . Indeed, as the upstream and down-
stream sections are quite close it seems rea-
sonable to model them as possibly dependent 
variables. A total of 29 pairs of data 

( ) ( )( )i
v

i
m ZZ ,  have been used to perform Baye-

sian inference and setting the posterior distri-
butions for µµµµ  and ΣΣΣΣ . The point values *µ  
and *Σ  used in this paper for the distribution 
parameters µµµµ  and ΣΣΣΣ  are *µµµµ  

== ],[ **
vm µµ [55.0, 50.2] and *ΣΣΣΣ ,,[ **

mvm σσ=  
], **

vvm σσ  = [0.46, 0.3388; 0.3388, 0.39]: 
these are the posterior means of the proba-
bility density functions of the parameters µµµµ  
and ΣΣΣΣ . 
An additional consideration is in order with 
respect to the fact that variable Zv appears 
twice in model function (9). Actually, the 
presence of repeated variables causes analyt-
ical difficulties in several uncertainty propa-
gation methods, including interval analysis 
and fuzzy arithmetic (Ferson et al. 2003): in 
particular, it typically leads to an overestima-
tion of the uncertainty. However, this is not 
the case for MC simulation (here employed 
to propagate aleatory uncertainty) because it 
(automatically) escapes the problem of re-
peated variables by instantiating each occur-
rence to the same randomly sampled value. 

− Epistemic variables: 
• The Strickler friction coefficient sK  is per-

haps the most critical source of uncertainty. It 
is affected by epistemic uncertainty, since it 
is a simplification of a much more complex 
hydraulic model. In addition, assessing the 
uncertainty of sK  is difficult because, in 
practice, even if this coefficient is strongly 
related to the morphology of the river, it can-
not be measured. As a consequence, data may 
only be retrieved through indirect calibration 
noised by significant observational uncertain-

ty: this is reflected in the availability of only 
a very small series of 5 data sets with ± 15% 
noise (Limbourg & de Rocquigny 2010). The 
absolute physical limits of sK  are [a, b] = [5, 
60], but the real value is expected to vary in a 
smaller range. 
In (Pasanisi et al. 2009), this epistemic varia-
ble is treated within a probabilistic frame-
work: it is considered that the probability dis-
tribution of sK  is normal with mean µ  and 
standard deviation σ  equal to 30 and 7.5, re-
spectively. In this paper, the epistemic uncer-
tainty associated to sK  is represented by 
means of possibility distributions; the four 
methods described in the previous Section 4 
are used. For the method of Section 4.1 (i.e., 
triangular possibility distribution), the base of 
the triangle is [5, 60] (i.e., the absolute physi-
cal limits of sK ) and the most likely value is 
30 (i.e., the mean µ  of the normal probabili-
ty density function of sK  used in (Pasanisi et 
al. 2009)); for the methods of Section 4.2, 
4.3, 4.4 (i.e., Chebyshev inequality and prob-
ability-possibility transformations), the mean 
µ  and the standard deviation σ  used are 30 
and 7.5 (i.e., the mean and the standard devi-
ation of the probability density function of 

sK  used in (Pasanisi et al. 2009)). 
The possibility distributions for sK  resulting 
from the application of the methods in Sec-
tion 4.1-4.4 are shown in Figure 4. 

It is worth noting that the area underlying the pos-
sibility distribution is related to the imprecision in 
the knowledge of the possibilistic variable: the larger 
the area, the higher the imprecision. In Figure 4, a 
direct visual comparison of the areas underlying the 
four possibility distributions considered is shown. 
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Figure 4. Comparison of the four different possibility distribu-
tions used for Ks: triangular function (Section 4.1), Chebyshev 
inequality (Section 4.2), principle of maximum specificity (Sec-
tion 4.3.1), normalization of the probability density (Section 
4.3.2). 
 

It can be noticed that the larger areas are those 
underlying the possibility distributions built using 
the triangular function and the Chebyshev inequality. 
In fact, the information available to the analyst for 



building these two possibility distributions is quite 
scarce: in the first case, only the physical limits and 
the most likely value of the variable are known; in 
the second case, only the mean value and the stan-
dard deviation are considered. On the contrary, the 
smaller areas underlying the possibility distributions 
constructed by the transformation methods are ex-
plained by the larger amount of information availa-
ble to the analyst on the epistemic variable of inter-
est, i.e., the probability distribution function itself. 

For each of the four cases considered (i.e., for 
each of the possibility distributions built), the inte-
grated uncertainty propagation procedure of Section 
2 is run with m = 10000 realizations of the probabil-
istic variables; for each realization of the probabilis-
tic variables, 21 values of α (0, 0.05, 0.1, …, 1) are 
considered to process the epistemic uncertainty asso-
ciated to Ks. The results are compared to those ob-
tained with a pure probabilistic approach, as in (Pa-
sanisi et al. 2009), by sampling 10000 times a joint 
vector ),,,( svm KZZQ  by the joint pdf 

)(),()( svm KpZZpQp ⋅⋅ . With respect to the epis-
temic uncertain variable sK , this approach consists 
in marginalizing the joint pdf of ),( sc KZ : 

)()|(Zc ss KpKp ⋅ , over all possible values of sK . 

6 RESULTS 

Figure 5 (a-d) shows the comparison of the cumula-
tive distribution functions of the maximal water lev-
el of the river (i.e., the output variable of the model, 

cZ ) obtained by the probabilistic uncertainty propa-
gation approach (solid lines) with the belief (lower 
curves) and plausibility (upper curves) functions ob-
tained by the integrated framework of uncertainty 
propagation where the possibility distributions for Ks 
are constructed with the methods of Sections 4.1-4.3. 

It can be seen that: 
− the integrated framework explicitly propagates 

the uncertainty by separating the contributions 
coming from the probabilistic and possibilistic 
variables; this separation is visible in the output 
distributions of the maximal water level of the 
river where the separation between the belief and 
plausibility functions reflects the imprecision in 
the knowledge of the possibilistic variable sK  
and the slope pictures the variability of the proba-
bilistic variables vm ZZQ  , , ; 

− the separation between the belief and plausibility 
functions is larger for the cases in Figures 5a and 
5b (where the possibility distributions are those of 
Figure 4, built using the triangular function and 
Chebyschev inequality, respectively) than for 
those in Figures 5c and 5d (where the possibility 
distributions are those of Figure 4, built using the 
probability-possibility transformations); the larger 
gap between the belief and plausibility functions 
in Figures 5a and 5b than in Figures 5c and 5d is 

explained by the larger area contained under the 
corresponding possibility distribution functions 
(actually, the larger the area, the higher the im-
precision in the knowledge of the possibilistic va-
riable).  

− the uncertainty in the output distribution of the 
pure probabilistic approach is given only by the 
slope of the cumulative distribution; 

− as expected, the cumulative distribution of the 
maximal water level of the river obtained by the 
pure probabilistic method is within the belief and 
plausibility functions obtained by the hybrid ap-
proach 
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Figure 5. Comparison of the cumulative distribution functions 
of the maximal water level of the river Zc obtained by the prob-
abilistic uncertainty propagation approach (solid line) with the 
belief (lower dashed curve) and plausibility (upper dashed 
curve) functions obtained by the hybrid approach with the pos-
sibility distribution of Ks built using a) a triangular function, b) 
the Chebyshev inequality, c) the principle of maximum speci-
ficity d) the normalization of probability density (see Section 4 
and Figure 4). 

 
The final goal of the risk model assessment is to 

determine i) the dike level necessary to guarantee a 
given flood return period or ii) the flood risk for a 
given dike level. 

With respect to item i) above, a reasonable quan-
tity of interest is the 99% quantile of cZ , i.e., 99.0

cZ , 
taken as the annual maximal flood level. This cor-
responds to the level of a “centennial” flood, the 
yearly maximal water level with a 100 year-return 
period. With respect to item ii) above, the quantity of 
interest that is mostly relevant to the decision maker 
is the probability that the maximal water level of the 
river cZ  exceeds a given threshold *z , i.e., 

( )*zZP c > ; in the present paper, *z  = 55.5 m as in 
(Limbourg & de Rocquigny 2010). Table 1 reports 
the lower ( 99.0

,lowercZ ) and upper ( 99.0
,uppercZ ) 99th percen-

tiles obtained from the two limiting cumulative dis-
tributions by using the four different possibility dis-

tributions proposed in Section 4 (i.e., triangular 
function, Chebyshev inequality, principle of maxi-
mum specificity and normalization of the probability 
density function) and the corresponding 

( )*zZBel c >  and ( )*zZPl c > . In addition, as syn-
thetic mathematical indicators of the imprecision in 
the knowledge of cZ  (i.e., of the separation between 
the belief and plausibility functions), the percentage 
widths: 
− 99.0

,
99.0

,
99.0

, /)( probclowercuppercZc ZZZW −=  of the interval 
[ ]99.0

,
99.0

, , upperclowerc ZZ  with respect to the percentile 
99.0

,probcZ  obtained by the pure probabilistic ap-
proach  

− ( ) ( )( ) ( )probccc zZPzZBelzZPlW */*** >>−>=
 of the interval ( ) ( )[ ]*,* zZPlzZBel cc >>  have 
been reported. 
The numerical results in Table 1 confirm the si-

milarities between the cumulative distributions ob-
tained by using the triangular function and the Che-
byshev inequality for the possibilistic representation 
of the uncertainty on sK , and between the cumula-
tive distributions obtained by the two different trans-
formations from probability to possibility distribu-
tions.  

 

 

Table 1. Lower and upper values of the Zc percentiles and the threshold exceedance probability, and calculation of the indicator W 
about the width of the confidence interval. 

Possibility distribution Zc
0.99 

(Pure probabilistic value = 56.10) 
P[Zc ≥ 55.5] 
(Pure probabilistic value = 0.0191) 

 [[[[ ]]]]990990 .
,

.
, , upperclowerc ZZ  [[[[ ]]]]%ZcW  [[[[ ]]]]PlBel ,  [[[[ ]]]]%*W  

Triangular function [54.57, 59.29] 8 [0.0015, 0.1682] 873 

Chebyshev inequality [54.40, 60.00] 10 [0.0014, 0.1631] 847 

Transformation probability to 
possibility (principle of max-
imum specificity) 

[54.83, 55.99] 2 [0.0043, 0.0344] 157 

Transformation probability to 
possibility (normalization) 

[54.60, 56.69] 4 [0.0028, 0.0705] 355 

 
7 CONCLUSIONS 

We have applied to a risk flood model a computa-
tional framework for the joint propagation of proba-
bilistic and possibilistic uncertainties. Aleatory and 
epistemic uncertainties have been kept separate in 
the model, i.e., some of the variables are purely 
probabilistic (aleatory uncertainty) and some are 
purely possibilistic (epistemic uncertainty). 

The following analyses have been carried out: 
1 A comparison between the “hybrid” and the “pure 

probabilistic” approach, highlighting that: 
− the “global” uncertainty of the output within 

the pure probabilistic approach is only given 

by the cumulative distribution: the contribu-
tions of aleatory and epistemic uncertainties 
are here merged; 

− the hybrid approach explicitly propagates the 
uncertainty by separating the contributions 
coming from the probabilistic and possibilis-
tic variables; 

− the larger gap between the belief and plausi-
bility functions is explained by the larger 
area contained under the corresponding pos-
sibility distribution functions; 

− as expected, the cumulative distribution of 
the model output obtained by the pure prob-
abilistic method is within the belief and plau-



sibility functions obtained by the hybrid ap-
proach. 

2 A comparison of four methods for constructing 
the possibility distributions of the variables sub-
ject to epistemic uncertainty, showing that: 

− the choice of the possibility distribution de-
pends on the information available about the 
variable: when the physical limits and the 
most likely value are available, a triangular 
possibility distribution can be constructed; 
when the mean and the standard deviation 
can be computed, e.g., by means of empirical 
data, the Chebyshev inequality can be used; 
when a probability distribution is available, 
the methods for transforming probability into 
possibility distributions can be employed; 

− there are similarities between the results ob-
tained by using: 
•  the triangular function and the Chebyshev 

inequality;  
•  the two transformations from probability 

to possibility distributions (i.e., those 
based on the principle of maximum speci-
ficity and on the normalization of the 
probability density function). 

These similarities are explained by the same 
“uncertainty content” borne by the correspond-
ing possibility distributions (as demonstrated 
by the similar area limited by the possibility 
distribution functions). 

 
Future research will be devoted to: 

− the study and development of methods for 
the joint propagation of probabilistic and 
possibilistic uncertainty in cases when the 
uncertain variables are not purely aleatory or 
purely epistemic (for example, the uncertain-
ty of a variable might be described by a 
probability distribution whose parameters are 
themselves poorly known and represented by 
a possibility distribution);  

− the comparison of the integrated probabilistic 
– possibilistic approach to other computa-
tional frameworks for the joint propagation 
of aleatory and epistemic uncertainties, e.g., 
the double Monte Carlo method (Baudrit et 
al. 2008) and the Dempster – Shafer theory 
of evidence (Ferson et al. 2003); 

− the treatment of dependencies between prob-
abilistic and possibilistic variables; 

− the use of advanced integrated simulation 
methods within the framework of uncertainty 
propagation for reducing the associated com-
putational cost. 
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