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Monte Carlo and fuzzy interval propagation of hghuncertainties on a
risk model for the design of a flood protectionalik

P. Baraldi, N. Pedroni, E. Zio & E. Ferrario
Politecnico di Milano, Milano, Italy

A. Pasanisi, M. Couplet
Electricité de France, Chatou, France

ABSTRACT: A risk model may contain uncertaintieattinay be best represented by probabilistributions
and others by possibility distributions. In thigppa a computational framework that jointly propaggproba-
bilistic and possibilistic uncertainties is comphweith a pure probabilistic uncertainty propagatibhe com-
parison is carried out with reference to a risk elabncerning the design of a flood protection dike

1 INTRODUCTION posed, e.g., fuzzy set theory, evidence theorysipos
bility theory and interval analysis (Klir & Yuan

Uncertainty analysis is a fundamental part of thle r 1995; Aven & Zio 2011).

analysis of complex systems such as nuclear power Possibility theory is attractive for risk assesstnen

plants, aerospace systems and others. because of its representation power and its relativ
In risk analysis, uncertainty is conveniently con-mathematical simplicity. It offers two measures of

sidered of two different types: randomness due ttikelihood, namely possibility and necessity meas-

inherent variability in the system behavior and im-ures, that may be interpreted as lower and upper

precision due to lack of knowledge and informationprobabilities in the representation of imprecisian

on the system. The former type of uncertainty is ofthe experts' probability assignments.

ten referred to as objective, aleatory, stochastie- The possibilistic representation of uncertainty can
reas the latter is often referred to as subjecépés- both be combined with and transformed into the tra-
temic, state-of-knowledge (Helton 2004). ditional probabilistic representation. In this resp

In the context of risk analysis, the aleatory unceran integrated (“hybrid”) computational framework
tainty is related to the occurrence of the eventkas been proposed for jointly propagating probsbili
which define the various possible accident scesariotic and possibilistic representations through a ehod
whereas epistemic uncertainty arises from a lack gBaudrit et al. 2006). This framework has been ap-
knowledge of fixed but poorly known parameterplied to propagate uncertainties in event trees (Ba
values entering the evaluation of the probabilitiegaldi & Zio, 2008) and fault trees (Flage et al1@0
and consequences of the accident scenarios. Flage et al. 2011).

In the current risk assessment practice, both types In the present paper, the integrated framework of
of uncertainties are represented by means of probaropagation is tested on a flood risk model (Pasani
bility distributions. However, resorting to a siagl et al. 2009; Limbourg & de Rocquigny, 2010) consi-
probabilistic representation of epistemic uncettain dered a realistic benchmark for uncertainty model-
may not be possible when sufficient data is noing.
available for statistical analysis, even if one @do The reminder of the paper is organized as fol-
expert elicitation procedures to incorporate difus lows. In Section 2, some basic concepts about possi
information into the corresponding probability dis- bility theory are summarized; in Section 3, the de-
tributions, within a subjective view of probability tails about the integrated propagation framewoek ar
Indeed, an expert may not have sufficiently refinedyiven; in Section 4, approaches for constructingt po
knowledge or opinion to characterize the relevansibility distributions are discussed; in Sectiontte
epistemic uncertainty in terms of probability distr flood model considered for the uncertainty propaga-
butions (Helton 2004). tion task is presented; in Section 6, the resulth®

As a result of the potential limitations associatedoint propagation of aleatory and epistemic uncer-
to a probabilistic representation of epistemic wnce tainties through the flood model are reported and
tainty under limited information, a number of alter commented; finally, in Section 7, conclusions and
native representation frameworks have been prddirection for future work are provided.



2 BASICS OF POSSIBILITY THEORY seti=i+1
sample thei —th realization (yi y,L) of the

random variable vectdh(l oy Y

w N

In possibility theory, uncertainty is representgdab
possibility function n(y). For eaclyin a set @2,

n(y) expresses the degree of possibilityyofwhen 4 Setthe possibility valuer to 0 o
n(y) =0 for somey, it means that the outcorgés 5 select the correspondingcuts of the possibility
considered an impossible situation. Whe@y)= 1 distributions (nYw;--,nYng as intervals of possi-
for somey, it means that the outcorgés possible, ble values of the possibilistic variables

i.e., is just unsurprising, normal, usual (Dubois
2006). This is a much weaker statement than Wheg caicylate the smallest and largest values of
propability s 1. S o f(y eyl Y oY, ), denoted byf! and T

The possibility function gives rise to probability Y N Yicr Tiaas s n/ y__a a
bounds, upper and lower probabilities, referredgo ~ espectively, —considering the fixed values

—_

Ykﬂ,...,y)

n

necessity and possibility measureN (/7). They Y1 y'k) sampled for the random variables
are defined as follows. Y, ,---, Y, ) and all values of the possibilistic va-
The possibility of an evens\, /7(A), is defined riables (Y,,,. -, Y, ) in the @ —cuts of their pos-
by sibility distributions (/7% ---, 77 ); such extreme
77(A) = sud(y)}, (1) valuesiia and f_ are the lower and ipper lim-
YOA its, respectively, of ther —cut interval rf o f'a
and the necessity measux{A) is defined by of F(Vres Vo Yoo+ Vo)
N(A) =1- /7(notA :1—sudﬂ(y)}. 7 if a<1thenseta=a+4a (e.qg., A(_?/ = 0.05_)
yOA and return to step 5. above; otherwise obtain the
Let #(71) be a family of probability distributions fuzzy random realization (fuzzy intervaly' of
such that for all even, N(A)<P(A)</7(A). Z = (Y) as the collection of the value§ and
Then, f_ for each a-cut (notice that since
N(A):inf P(A) and /7(A)=supP(A) (2) Aa =0.05 thenN, = 1/Aa + 1 =1/0.05+1 =

. . . 21 values ofa are considered in the procedure,
whereinf andsup are with respect to all probability . B L
measures i. Hence the necessity measure is inter- ;&; Ne = 21¢-cuts of the possibility distributions
preted as a lower level for the probability and the ., %) are selected; thus, the fuzzy ran-
possibility measure is interpreted as an uppertlimi dom realizationsz' of Z = f(Y) is constructed
Referring to subjective probabilities, the bounds r  as the collection of ithl, = 1{Aa + 1 = 1/0.05 +
flect that the analyst is not able or willing tepise- 1 = 21a-cut intervals[?a, fl [)
Ig atssgg? rk]\is/her grobqbiliwt,han_d fthe b?unds B'Elel;[l 8 if i <m (e.g.,m = 10000) then return to step 2. to
est he/she can do given the information available; N
in other words, he or she can only describe a $ubse generate a new realization of the random va-

of # which contains his/her probability (Dubois ~'iables; otherwise, stop the algorithm

2006). At the end of the procedure an ensemblemof
random realizations of fuzzy intervals is obtained,
ie., (;Tlfﬂ,; :

3 PROPAGATION OF EPISTEMIC AND Two considerations are in order with respect to

ALEATORY UNCERTAINTIES THROUGH A the choices ONa andm. A small numbelNa of a-
MODEL cuts (e.g.,.N, = 5) leads to a rough and imprecise

characterization of the fuzzy random realizatiarls

Let us consider a model whose output is a functio?’f Z; on the other hand, a large numbgrof a-cuts
7 = f(Yl’YZ""!Yn) of n uncertain variables (€.9.,N, = 100) causes a remarkable increase in the

Y, j=1---.n, ordered in such a way that the fikst computational time. Thus, the choice of the number
]l ) )

are random (aleatory uncertainty), with probabilityN« Of a-cuts is driven by the trade—off between esti-
distributions p, (y) and the lash -k are possibilis- mation accuracy and computational cost. Similarly,

tic (epistemic Uncertainty), represented by pobsibi the numbem of realizations of the random variables
distributions?ﬂ“ ”Ynj/. ’The propagation of this has to be large enough to guarantee an accurate anc

hybrid uncertainty information can be performed byPrécise propagation of the corresponding aleatory
combining the Monte Carlo technique with the ex-Uncertainty: in practicem is usually of the order of

tension principle of fuzzy set theory (Baudrit &t a thousands. _ _ _ _
2006). For each setAcontained in the universe of dis-

The operative steps of the procedure are: courseU, of the output variable , it is possible to
1 seti=0 obtain the possibility measuné?if A( gnd the ne-



cessity measureV,'(A) from the corresponding likely valuec: in other words, the possibility distri-

possibility distributionsz’ £ ) by: bution equals 0 in correspondence of the extreme
valuesa andb of the physically allowable range and
' (A = ma><{77if (z)}, OADU, (3) 1 in correspondence of the most likely vatudt has
1A

been shown that the family of probability distribu-
. _ . o~ tions defined by a triangular possibility distrilmut
N (A= lg}:{l‘ﬂi (Z)}:l—ﬂi (A) OAOU, (4)  with range f,b and vertex c contains all the proba-
bility distributions with supportd,b] and modec
The m different realizations of possibility and ne- (Baudrit & Dubois 2006).
cessity can then be combined to obtain the belief
Bel(A) and the plausibilityPlI(A Yor any sefA, re-

spectively (Baudrit et al. 2006): 4.2 Chebyshev inequality
m If the analyst knows the mean and the standard
Bel(A) :z p N, (A (5) deviation o of the uncertain variable of interest,
i=1 then the Chebyshev inequality (Baudrit & Dubois

2006) can be used to construct a possibility digtri
R ‘ tion. Actually, the use of continuous possibilitig-d
PI(A) = Z P/7(A) ) tributions for representing probability familiesave
= ly relies on probabilistic inequalities. Such
where p, is the probability of sampling the—th inequalities provide probability bounds for intds/a
realizatio FYL'“, y, ) of the random variable vector forming a continuous nested family around a typical
Y, .-+, Y, ). For each setA, this technique thus value. This nestedness property leads to intereti
computes the probability-weighted average of thehe corresponding family as being induced by a pos-
possibility measures associated with each outpudibility measure. These bounds are usually used for
fuzzy interval. proving convergence properties but, in this context
The likelihood of the vaIuef(Y) passing a given they can be used for representing knowledge. Bhis i
threshold z can then be computed by consideringg\‘e caset%f tf]je Qhe:)ySheVblnegualcllt){t, fgr ISSt)aUCG-
: o —(— : s pointed, for instance by Baudri ubois
j[::ethb_ellref and ttEGIF fla\t:sgn(ll_tzoo;])thensdmplg f O;Z]D (2006), the classical Chebyshev inequality defimes
! IS rESPectbel (¥) 2]} @ . (¥) bracketing approximation on the confidence inter-
(~,2]) can be interpreted as bounding, averaggals around the known mean of a random variable
cumulative distributions= (2) = Bel(f (Y)O(-,2]), Y, knowing its standard deviatioor. The Cheby-
F(2)=PI(f(Y)O(-,2]) (Baudrit et al. 2006). shev inequality can be written as follows:

PQY—y\ska)ﬂ—iz for k=1 @
4 APPROACHES FOR CONSTRUCTING k
POSSIBILITY DISTRIBUTIONS Chebyshev inequality defines a possibility distribu

In this Section, a number of approaches for Contion that dominates any density with given mean and
structing possibility distributions of the variable variance: it allows to define a possibility distrtton

subject to epistemic uncertainty are briefly de-7? Py considering intervalgy — ko, 4 +ko] asa-
scribed. In Section 4.1, triangular possibilitytdis ~ cuts of 7 and letting7r(y — ko) = ri{p + ko) =1/K®.
Chebyshey inequalty 1 usiated: iraly, e oo, Tt 1M (PO L) i <oy + k) 2
tion 4.3, two methods for transforming a probapilit ' T ’ _ » M
distribution into a possibility distribution are -de kol) 2 1-a by definition ofa-cut interval. As a

scribed based on the principle of maximum speciconsequencey = 14 by construction. Since in this

ficity (Section 4.3.1) and on the normalizationtleé  papera = 0.05, 0.1, ..., 0.95, 1 (see Section 3), then

probability density function (Section 4.3.2). k=4.4721, 3.1623, ..., 1.0260, 1. The resulting pos-
sibility distribution defines a probability family
4.1 Triangular function #"“(n) which has been proven to contain all distri-

butions with meany and standard deviatiow ,
Let us suppose that the analyst knows that an uncer el
tain variable can take values in a given rarged] whether the unknown probability distribution func-

and the most likely value is To represent this in- {ion is symmetric or not, unimodal or not (Baudit
formation a possibility distribution can be takenaa Dubois 2006).

triangle with base determined by the range 4]

(i.e., the absolute physical limits of the varigded

with vertex taken in correspondence of the most



4.3 Probability — possibility transformations The transformation applies to unimodal, conti-
uous and support bounded probability densipies
oreover, this criterion is not necessarily adapted

the transformation of a subjective probability dist

bution reflecting an expert opinion (Dubois et al.

I2004).

In this Section, we consider transformations fro
probability distributions to possibility distribains.

It is worth noting that in the transformation prece
dure (i.e., going from probability to possibility)
“some information is lost because there is a conve
sion from pointed-valued probabilities to |nterval-4_3_2 Normalization of probability density

valued ones” (Dubois et al. 1993). Lo o 4
Given the interpretation of possibility and neces—The possibility distribution resulting from the ris

sity measures as upper and lower probabilities, g)rmatiqn i; given by the normalization of probabil
possibility distribution7z induces a family?(n) of ~ ty density, i.e.,z, = p(y)/supp ¥ ) Note that the

probability measures. There is not a one-to-oree rel gjstribution resulting from this normalization (whe
tion between possibility and probability, and trans yaken to be a possibility distribution) does not in

formations from a probability measueinto a pos- general adhere to the probability-possibility censi

sibility distribution 7 can only ensure that o .
— #(n) includesP; and tency principle (Dubois and Prade 1980).

— &P(n) is selected according to some principle (ra-

tionale); e.g., “minimize loss of information”, in 5 CASE STUDY: FLOOD PROTECTION

some sense.
The following should be basic principles for such DESIGN

transformations (Dubois et al. 1993):

1 The probability-possibility consistency principle.
The family #(7) is formally defined ase(n)
={P:0AOY,P(A) < /71(A)}.

It seems natural to require a transformation to se: . :
lect P from #(71) (Dubois et al. 1993). This is re- LON measures, a dike has to be built to proteet th
ferred to as the probability-possibility consistgnc ar€a- Different design options must be considered
principle, formulated a®(A) < /7 (A), JADY f[aklng into account that the construction c_)f a dike

2 Preference preservation. involves high building costs and annual maintenance
A possibility distribution7 induces a preference COSts and the natural phenomenon of flooding is sub
ordering onY, such than(y) > 7 y 'Jneans that ject to a large amount o_f uncertainties. Thqs,&ﬂﬂl‘@- .
the outcomey is preferred toy .' A transforma- lyst has to evaluate different design options while

. . N covering flood uncertainty.
t;;)(r;/) ih[;)&lg therefore  satisfyr(y) > 7(y') The system model analyzed in this study is an

In the following, two methods for transforming a analytical approximation for calculating the maXIma
probability distribution into a possibility disttition v;/]ater Igvlelzof the rflver .("e" fthe OUtEUt v?namife
are considered: the first one is based on theiptinc € Mode . c)asa ur]cglon ofahnum derlo' parame-
of maximum specificity (Section 4.3.1); the second(®'S (i.e., the input variables of the model):
one on the normalization of the probability density a5
function (Section 4.3.2). Q

)/ LJ

Z,=27,+
K,O0BO,/(Z,,-Z,

The case study deals with the design of a protectio
dike. The problem concerns a residential areaishat
closely located to a river; due to this locatidmere
eits a potential risk of flood. As prevention and igat

¢ =4, )
4.3.1 The principle of maximum specificity

The most specific possibility distributior', or
rather the minimum area under, that dominates a

given probability densityp is given by:

where: Q is the yearly maximal water discharge
(m3/s); Z,,and Z, are the riverbed levels (m asl) at
the upstream and downstream part of the river under

y o investigation, respectivelyK is the Strickler fric-
' (y) =m(h(y) = J'p(x)dx+ J'p(x)dx: tion coefficient; B and L are the width and length
~eo h(y) of the river part (m), respectively.
The input variablesre classified as follows (Pa-
=F(y) + F(h(y)) (8) sanisi et al. 2009):
_ — Constants:
where F()=1-F()) and h(y)= max{x: p(x) = e B=300m;
P(Y)} . L=5000m.
It is interesting to observe_that for this transfor — Aleatory variables:
mation: N([, h(yﬂ): P(y.h(y)]) < 7(y.h(y)]) =1, « The maximal water flowQ is the variable
i.e., the transformation prescribes equality betwee with the largest amount of data available. A
the necessity of a givemcut and the probability of large set of water flow data is available to

the samer-cut. perform Bayesian inference (149 annual



maximal flow values) on the parameters of
the distribution. The Gumbel distribution
Gu q|a,,85J is a well-established probabilis-
tic model for maximal flows:

Gun(q|a,ﬂ):
= 1ex;{— ex;{ﬂﬂ exp{a _ q} (10)
B B B
The Bayesian estimates (posterior means) of
the parameters of the distribution are

a =10140 and [ =5654 (Pasanisi et al.
2009).

* The uncertainty in the upstream and down-

stream levels,Z , and Z, respectively, are
guantified by a bivariate normal distribution
N(u,=). Indeed, as the upstream and down-
stream sections are quite close it seems rea-
sonable to model them as possibly dependent
variables. A total of 29 pairs of data
(Z,E?,ZV(”) have been used to perform Baye-
sian inference and setting the posterior distri-
butions for 4 and . The point valuesy’

and X" used in this paper for the distribution
parameters 4 and X are U4
=[u.,, 1,]1=[55.0, 50.2] andz" =[o,,,0.,,.
o,,0,] = [0.46, 0.3388; 0.3388, 0.39]:
these are the posterior means of the proba-
bility density functions of the parameters

andX.

ty: this is reflected in the availability of only
a very small series of 5 data sets with + 15%
noise (Limbourg & de Rocquigny 2010). The
absolute physical limits oK, are f, b] = [5,
60], but the real value is expected to vary in a
smaller range.

In (Pasanisi et al. 2009), this epistemic varia-
ble is treated within a probabilistic frame-
work: it is considered that the probability dis-
tribution of K, is normal with meanu and
standard deviatiow equal to 30 and 7.5, re-
spectively. In this paper, the epistemic uncer-
tainty associated toK, is represented by
means of possibility distributions; the four
methods described in the previous Section 4
are used. For the method of Section 4.1 (i.e.,
triangular possibility distribution), the base of
the triangle is [5, 60] (i.e., the absolute physi-
cal limits of K,) and the most likely value is
30 (i.e., the mean: of the normal probabili-

ty density function ofK, used in (Pasanisi et
al. 2009)); for the methods of Section 4.2,
4.3, 4.4 (i.e., Chebyshev inequality and prob-
ability-possibility transformations), the mean
M and the standard deviatian used are 30
and 7.5 (i.e., the mean and the standard devi-
ation of the probability density function of
K, used in (Pasanisi et al. 2009)).

The possibility distributions foK, resulting
from the application of the methods in Sec-
tion 4.1-4.4 are shown in Figure 4.

It is worth noting that the area underlying the-pos
sibility distribution is related to the imprecision

An additional consideration is in order with the knowledge of the possibilistic variable: theyé&

respect to the fact that variablg appears

the area, the higher the imprecision. In Figure 4,

twice in model function (9). Actually, the direct visual comparison of the areas underlyirEg th
presence ofepeatedvariables causes analyt- four p055|b|I|ty dlstrlbutlons conS|dered IS shown.

ical difficulties in several uncertainty propa-
gation methods, including interval analysis
and fuzzy arithmetic (Ferson et al. 2003): in
particular, it typically leads to anverestima-
tion of the uncertainty. However, this is not
the case for MC simulation (here employed
to propagate aleatory uncertainty) because it
(automatically) escapes the problem of re-
peated variables by instantiatiegchoccur-
rence to thesamerandomly sampled value.

— Epistemic variables:

The Strickler friction coefficientK, is per-

1

Triangular distributiol
- = 7Chebyshevinequahty
Maximum specificity
Normalization

0.9F

0.8

0.4

L et L L L t
-10 0 10 20 30 40 50 60 70
Ks

haps the most critical source of uncertainty. ltrigure 4. Comparison of the four different posstiitlistribu-
is affected by epistemic uncertainty, since ittions used folKs: triangular function (Section 4.1), Chebyshev

is a simplification of a much more complex inequality (Section 4.2), principle of maximum sifiedy (Sec-
hydraulic model. In addition, assessing thetlon 4.3.1), normalization of the probability dems{Section

uncertainty of K, is difficult because, in

practice, even if this coefficient is strongly
related to the morphology of the river, it can-
not be measured. As a consequence, data m
only be retrieved through indirect calibration
noised by significant observational uncertain-

It can be noticed that the larger areas are those
derlying the possibility distributions built ugin
the triangular function and the Chebyshev inequalit
In fact, the information available to the analyst f



building these two possibility distributions is tgui
scarce: in the first case, only the physical linaitel
the most likely value of the variable are known; in

explained by the larger area contained under the
corresponding possibility distribution functions
(actually, the larger the area, the higher the im-

the second case, only the mean value and the stan-precision in the knowledge of the possibilistic va-

dard deviation are considered. On the contrary, th
smaller areas underlying the possibility distribong

e riable).

— the uncertainty in the output distribution of the

constructed by the transformation methods are ex- pure probabilistic approach is given only by the

plained by the larger amount of information availa-
ble to the analyst on the epistemic variable oérint
est, i.e., the probability distribution functiosetf.

slope of the cumulative distribution;
— as expected, the cumulative distribution of the
maximal water level of the river obtained by the

For each of the four cases considered (i.e., for pure probabilistic method is within the belief and

each of the possibility distributions built), thete-

plausibility functions obtained by the hybrid ap-

grated uncertainty propagation procedure of Section proach

2 is run withm = 10000 realizations of the probabil-
istic variables; for each realization of the prabsb

Pl
— — — Bel
Prob cdf

tic variables, 21 values of (0, 0.05, 0.1, ..., 1) are
considered to process the epistemic uncertainty- ass
ciated toKs. The results are compared to those ob-
tained with a pure probabilistic approach, as ia- (P
sanisi et al. 2009), by sampling 10000 times atjoin
vector (Q,Z,Z,K,) by the joint pdf
p(Q)p(Z,,,Z,) p(K,). With respect to the epis-

a) /

Cumulative Distribution

temic uncertain variablé, this approach consists
in marginalizing the joint pdf of (Z, K, )
p(Z. | K,) p(K,), over all possible values df, .

6 RESULTS

Figure 5 (a-d) shows the comparison of the cumula-
tive distribution functions of the maximal watevde

el of the river (i.e., the output variable of theael,

Z_) obtained by the probabilistic uncertainty propa-
gation approach (solid lines) with the belief (lawe
curves) and plausibility (upper curves) functiofiis o
tained by the integrated framework of uncertainty
propagation where the possibility distributions Kar
are constructed with the methods of Sections 41-4.

It can be seen that:

the integrated framework explicitly propagates
the uncertainty by separating the contributions
coming from the probabilistic and possibilistic
variables; this separation is visible in the output
distributions of the maximal water level of the
river where the separation between the belief and
plausibility functions reflects the imprecision in
the knowledge of the possibilistic variable,

and the slope pictures the variability of the proba
bilistic variablesQ,z,Z,;

the separation between the belief and plausibility
functions is larger for the cases in Figures 5a and
5b (where the possibility distributions are those o
Figure 4, built using the triangular function and
Chebyschev inequality, respectively) than for
those in Figures 5¢ and 5d (where the possibility
distributions are those of Figure 4, built using th
probability-possibility transformations); the large
gap between the belief and plausibility functions
in Figures 5a and 5b than in Figures 5c and 5d is

Cumulative Distribution

Cumulative Distribution
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Figure 5.Comparison of the cumulative distribution functions tributions proposed in Section 4 (i.e., triangular

of the maximal water level of the rivég obtained by the prob-
abilistic uncertainty propagation approach (soiig) with the
belief (lower dashed curve) and plausibility (uppashed
curve) functions obtained by the hybrid approacthhe pos-
sibility distribution ofKs built using a) a triangular function, b)
the Chebyshev inequality, c) the principle of maximspeci-
ficity d) the normalization of probability densifgee Section 4
and Figure 4).

function, Chebyshev inequality, principle of maxi-
mum specificity and normalization of the probalilit
density  function) and the corresponding
Bel(z, > z*) and PI(Z, > z*). In addition, as syn-
thetic mathematical indicators of the imprecisian i
the knowledge ofZ, (i.e., of the separation between

The final goal of the risk model assessment is t&'€ Delief and plausibility functions), the percege
determine i) the dike level necessary to guaraatee Widths:

given flood return period or ii) the flood risk far
given dike level.

With respect to item i) above, a reasonable quan- 09

tity of interest is the 99% quantile &, i.e., Z>*,

taken as the annual maximal flood Ie_vel. This cor— = (PI(z, > z*)- Bel(z, > z*))/ P(z, > z*)
responds to the level of a “centennial” flood, the
yearly maximal water level with a 100 year-return

period. With respect to item ii) above, the quarit
interest that is mostly relevant to the decisiorkena
is the probability that the maximal water levelto¢
river Z. exceeds a given threshola*, i.e.,
P(z, > z*); in the present papeg* = 55.5 m as in

= Wy =(Zooer = Zatower) | Zoan  Of the interval
[zc?igsver,zgfgper with respect to the percentile
cpop ODtained by the pure probabilistic ap-
proach

prob
of the interval [BeI(ZC > z*), PI(Zc > z*) have
been reported.

The numerical results in Table 1 confirm the si-
milarities between the cumulative distributions ob-
tained by using the triangular function and the -Che
byshev inequality for the possibilistic represeiotat
of the uncertainty orK,, and between the cumula-

(Limbourg & de Rocquigny 2010). Table 1 reportstive distributions obtained by the two differerdris-

the lower @2m,) and upper Z25>.) 99" percen-

tiles obtained from the two limiting cumulative dis
tributions by using the four different possibiliys-

formations from probability to possibility distribu
tions.

Table 1. Lower and upper values of thepercentiles and the threshold exceedance protyalzitid calculation of the indicatdy

about the width of the confidence interval.

Possibility distribution 7%

P[Z.>55.5]

(Pure probabilistic value = 56.10) (Pure probabilistic value = 0.0191)

(200 28] Waclel  [Be.PI] W~ o]
Triangular function [54.57, 59.29] 8 [0.0015, 0.268 873
Chebyshev inequality [54.40, 60.00] 10 [0.00146361] 847
Transformation probability to[54.83, 55.99] 2 [0.0043, 0.0344] 157
possibility (principle of max-
imum specificity)
Transformation probability to [54.60, 56.69] 4 [0.0028, 0.0705] 355

possibility (normalization)

7 CONCLUSIONS

We have applied to a risk flood model a computa-
tional framework for the joint propagation of preba

bilistic and possibilistic uncertainties. Aleatoaynd

epistemic uncertainties have been kept separate in
the model, i.e., some of the variables are purely
probabilistic (aleatory uncertainty) and some are -

purely possibilistic (epistemic uncertainty).
The following analyses have been carried out:

1 A comparison between the “hybrid” and the “pure

probabilistic” approach, highlighting that:
- the “global” uncertainty of the output within

the pure probabilistic approach is only given

by the cumulative distribution: the contribu-
tions of aleatory and epistemic uncertainties
are here merged,;
— the hybrid approach explicitly propagates the
uncertainty by separating the contributions
coming from the probabilistic and possibilis-
tic variables;
the larger gap between the belief and plausi-
bility functions is explained by the larger
area contained under the corresponding pos-
sibility distribution functions;
— as expected, the cumulative distribution of
the model output obtained by the pure prob-
abilistic method is within the belief and plau-
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