INTRODUCTION

Uncertainty analysis is a fundamental part of the risk analysis of complex systems such as nuclear power plants, aerospace systems and others.

In risk analysis, uncertainty is conveniently considered of two different types: randomness due to inherent variability in the system behavior and imprecision due to lack of knowledge and information on the system. The former type of uncertainty is often referred to as objective, aleatory, stochastic whereas the latter is often referred to as subjective, epistemic, state-of-knowledge [START_REF] Helton | Alternative Representations of Epistemic Uncertainty[END_REF]).

In the context of risk analysis, the aleatory uncertainty is related to the occurrence of the events which define the various possible accident scenarios, whereas epistemic uncertainty arises from a lack of knowledge of fixed but poorly known parameter values entering the evaluation of the probabilities and consequences of the accident scenarios.

In the current risk assessment practice, both types of uncertainties are represented by means of probability distributions. However, resorting to a single probabilistic representation of epistemic uncertainty may not be possible when sufficient data is not available for statistical analysis, even if one adopts expert elicitation procedures to incorporate diffuse information into the corresponding probability distributions, within a subjective view of probability. Indeed, an expert may not have sufficiently refined knowledge or opinion to characterize the relevant epistemic uncertainty in terms of probability distributions [START_REF] Helton | Alternative Representations of Epistemic Uncertainty[END_REF].

As a result of the potential limitations associated to a probabilistic representation of epistemic uncertainty under limited information, a number of alternative representation frameworks have been pro-posed, e.g., fuzzy set theory, evidence theory, possibility theory and interval analysis [START_REF] Klir | Fuzzy Sets and Fuzzy Logic: Theory and Applications[END_REF][START_REF] Flage | Probabilistic and possibilistic treatment of epistemic uncertainties in fault tree analysis[END_REF].

Possibility theory is attractive for risk assessment, because of its representation power and its relative mathematical simplicity. It offers two measures of likelihood, namely possibility and necessity measures, that may be interpreted as lower and upper probabilities in the representation of imprecision in the experts' probability assignments.

The possibilistic representation of uncertainty can both be combined with and transformed into the traditional probabilistic representation. In this respect, an integrated ("hybrid") computational framework has been proposed for jointly propagating probabilistic and possibilistic representations through a model (Baudrit et al. 2006). This framework has been applied to propagate uncertainties in event trees [START_REF] Baraldi | A Combined Monte Carlo and Possibilistic Approach to Uncertainty Propagation in Event Tree Analysis[END_REF] and fault trees [START_REF] Flage | Possibilityprobability transformation in comparing different approaches to the treatment of epistemic uncertainties in a fault tree analysis[END_REF][START_REF] Flage | Probabilistic and possibilistic treatment of epistemic uncertainties in fault tree analysis[END_REF]).

In the present paper, the integrated framework of propagation is tested on a flood risk model [START_REF] Pasanisi | Some useful features of the Bayesian setting while dealing with uncertainties in industrial practice[END_REF][START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF] considered a realistic benchmark for uncertainty modeling.

The reminder of the paper is organized as follows. In Section 2, some basic concepts about possibility theory are summarized; in Section 3, the details about the integrated propagation framework are given; in Section 4, approaches for constructing possibility distributions are discussed; in Section 5, the flood model considered for the uncertainty propagation task is presented; in Section 6, the results of the joint propagation of aleatory and epistemic uncertainties through the flood model are reported and commented; finally, in Section 7, conclusions and direction for future work are provided.
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ABSTRACT: A risk model may contain uncertainties that may be best represented by probability distributions and others by possibility distributions. In this paper, a computational framework that jointly propagates probabilistic and possibilistic uncertainties is compared with a pure probabilistic uncertainty propagation. The comparison is carried out with reference to a risk model concerning the design of a flood protection dike.

In possibility theory, uncertainty is represented by a possibility function ) ( y π

. For each y in a set Ω , ) ( y π expresses the degree of possibility of y . When 0 ) ( = y π for some y , it means that the outcome y is considered an impossible situation. When 1 ) ( = y π for some y , it means that the outcome y is possible, i.e., is just unsurprising, normal, usual [START_REF] Dubois | Possibility theory and statistical reasoning[END_REF]. This is a much weaker statement than when probability is 1.

The possibility function gives rise to probability bounds, upper and lower probabilities, referred to as necessity and possibility measures ( N , Π ). They are defined as follows.
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Let P P P P(π ) be a family of probability distributions such that for all events A , ( )
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where inf and sup are with respect to all probability measures in P P P P. Hence the necessity measure is interpreted as a lower level for the probability and the possibility measure is interpreted as an upper limit. Referring to subjective probabilities, the bounds reflect that the analyst is not able or willing to precisely assign his/her probability, and the bounds are the best he/she can do given the information available; in other words, he or she can only describe a subset of P P P P which contains his/her probability [START_REF] Dubois | Possibility theory and statistical reasoning[END_REF].

PROPAGATION OF EPISTEMIC AND ALEATORY UNCERTAINTIES THROUGH A MODEL

Let us consider a model whose output is a function

( ) n Y Y Y f Z ,..., , 2 1 = of n uncertain variables n j Y j , , 1 , L =
, ordered in such a way that the first k are random (aleatory uncertainty), with probability distributions )

n k Y Y π π , , 1 L + .
The propagation of this hybrid uncertainty information can be performed by combining the Monte Carlo technique with the extension principle of fuzzy set theory (Baudrit et al. 2006).

The operative steps of the procedure are: 

1 set i = 0 2 set i = i + 1 3 sample the th i - realization ( ) i k i y y ,
i i f f α α , of ( ) n k i k i Y Y y y f , , , , , 1 1 L L + 7 if 1 < α then set α ∆ α α + = (e.
Y f Z = is constructed as the collection of its N α = 1/ α ∆ + 1 = 1/0.05 + 1 = 21 α-cut intervals [ ] i i f f α α ,
) 8 if i < m (e.g., m = 10000) then return to step 2. to generate a new realization of the random variables; otherwise, stop the algorithm At the end of the procedure an ensemble of m random realizations of fuzzy intervals is obtained, i.e., ( )

f m f π π , , 1 L
. Two considerations are in order with respect to the choices of N α and m. A small number N α of αcuts (e.g., N α = 5) leads to a rough and imprecise characterization of the fuzzy random realizations f i π of Z ; on the other hand, a large number N α of α-cuts (e.g., N α = 100) causes a remarkable increase in the computational time. Thus, the choice of the number N α of α-cuts is driven by the trade-off between estimation accuracy and computational cost. Similarly, the number m of realizations of the random variables has to be large enough to guarantee an accurate and precise propagation of the corresponding aleatory uncertainty: in practice, m is usually of the order of thousands.

For each set A contained in the universe of discourse Z U of the output variable Z , it is possible to obtain the possibility measure
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The m different realizations of possibility and necessity can then be combined to obtain the belief ) ( A Bel and the plausibility ) ( A Pl for any set A , respectively (Baudrit et al. 2006):
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where i p is the probability of sampling the th irealization ( )

i k i y y , , 1 L of the random variable vector ( ) k Y Y , , 1 L
. For each set A , this technique thus computes the probability-weighted average of the possibility measures associated with each output fuzzy interval.

The likelihood of the value ( )

Y f
passing a given threshold z can then be computed by considering the belief and the plausibility of the set Baudrit et al. 2006).
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APPROACHES FOR CONSTRUCTING POSSIBILITY DISTRIBUTIONS

In this Section, a number of approaches for constructing possibility distributions of the variables subject to epistemic uncertainty are briefly described. In Section 4.1, triangular possibility distributions are considered; in Section 4.2, the use of Chebyshev inequality is illustrated; finally, in Section 4.3, two methods for transforming a probability distribution into a possibility distribution are described based on the principle of maximum specificity (Section 4.3.1) and on the normalization of the probability density function (Section 4.3.2).

Triangular function

Let us suppose that the analyst knows that an uncertain variable can take values in a given range 

Chebyshev inequality

If the analyst knows the mean µ and the standard deviation σ of the uncertain variable of interest, then the Chebyshev inequality (Baudrit & Dubois 2006) can be used to construct a possibility distribution. Actually, the use of continuous possibility distributions for representing probability families heavily relies on probabilistic inequalities. Such inequalities provide probability bounds for intervals forming a continuous nested family around a typical value. This nestedness property leads to interpreting the corresponding family as being induced by a possibility measure. These bounds are usually used for proving convergence properties but, in this context, they can be used for representing knowledge. This is the case of the Chebyshev inequality, for instance.

As pointed, for instance by Baudrit & Dubois (2006), the classical Chebyshev inequality defines a bracketing approximation on the confidence intervals around the known mean µ of a random variable Y, knowing its standard deviation σ . The Chebyshev inequality can be written as follows:

( )

2 1 1 k k Y P - ≥ ≤ - σ µ for 1 ≥ k (7)
Chebyshev inequality defines a possibility distribution that dominates any density with given mean and variance: it allows to define a possibility distribution

π by considering intervals [ ] σ µ σ µ k k + -, as α- cuts of π and letting ( ) ( ) 2 / 1 k k k = + = - σ µ π σ µ π . Notice that from (7) P(Y ∈ [µ -kσ, µ + kσ]) ≥ 2 1 1 k - , for 1 ≥ k ; moreover, P(Y ∈ [µ -kσ, µ + kσ]) ≥ α - 1
by definition of α-cut interval. As a consequence, α = 1/k 2 by construction. Since in this paper α = 0.05, 0.1, …, 0.95, 1 (see Section 3), then k = 4.4721, 3.1623, …, 1.0260, 1. The resulting possibility distribution defines a probability family P P P P µ,σ (π ) which has been proven to contain all distributions with mean µ and standard deviation σ , whether the unknown probability distribution function is symmetric or not, unimodal or not (Baudrit & Dubois 2006).

Probability -possibility transformations

In this Section, we consider transformations from probability distributions to possibility distributions. It is worth noting that in the transformation procedure (i.e., going from probability to possibility) "some information is lost because there is a conversion from pointed-valued probabilities to intervalvalued ones" [START_REF] Dubois | On possibility/probability transformations[END_REF].

Given the interpretation of possibility and necessity measures as upper and lower probabilities, a possibility distribution π induces a family P P P P(π ) of probability measures. There is not a one-to-one relation between possibility and probability, and transformations from a probability measure P into a possibility distribution π can only ensure that -P P P P(π ) includes P; and -P P P P(π ) is selected according to some principle (rationale); e.g., "minimize loss of information", in some sense. The following should be basic principles for such transformations [START_REF] Dubois | On possibility/probability transformations[END_REF]): 1 The probability-possibility consistency principle.

The family P P P P(π ) is formally defined as

P P P P(π ) { } ) ( ) ( , : A A P Y A P Π ≤ ⊆ ∀ =
. It seems natural to require a transformation to select P from P P P P(π ) [START_REF] Dubois | On possibility/probability transformations[END_REF]. This is referred to as the probability-possibility consistency principle, formulated as 
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The principle of maximum specificity

The most specific possibility distribution t π , or rather the minimum area under π , that dominates a given probability density p is given by:
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. It is interesting to observe that for this transformation:
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, the transformation prescribes equality between the necessity of a given α-cut and the probability of the same α-cut.

The transformation applies to unimodal, continuous and support bounded probability densities p. Moreover, this criterion is not necessarily adapted to the transformation of a subjective probability distribution reflecting an expert opinion [START_REF] Dubois | Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities[END_REF]).

Normalization of probability density

The possibility distribution resulting from the transformation is given by the normalization of probability density, i.e., ) ( sup / ) ( y p y p p = µ . Note that the distribution resulting from this normalization (when taken to be a possibility distribution) does not in general adhere to the probability-possibility consistency principle [START_REF] Dubois | Fuzzy Sets and Systems: Theory and Applications[END_REF].

CASE STUDY: FLOOD PROTECTION DESIGN

The case study deals with the design of a protection dike. The problem concerns a residential area that is closely located to a river; due to this location, there is a potential risk of flood. As prevention and mitigation measures, a dike has to be built to protect the area. Different design options must be considered taking into account that the construction of a dike involves high building costs and annual maintenance costs and the natural phenomenon of flooding is subject to a large amount of uncertainties. Thus, the analyst has to evaluate different design options while covering flood uncertainty.

The system model analyzed in this study is an analytical approximation for calculating the maximal water level of the river (i.e., the output variable of the model, c Z ) as a function of a number of parameters (i.e., the input variables of the model):

( ) 5 / 3 /         - * * + = L Z Z B K Q Z Z v m s v c (9)
where: Q is the yearly maximal water discharge (m3/s); m Z and v Z are the riverbed levels (m asl) at the upstream and downstream part of the river under investigation, respectively; s K is the Strickler friction coefficient; B and L are the width and length of the river part (m), respectively.

The 
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The Σ . An additional consideration is in order with respect to the fact that variable Z v appears twice in model function (9). Actually, the presence of repeated variables causes analytical difficulties in several uncertainty propagation methods, including interval analysis and fuzzy arithmetic [START_REF] Ferson | Construction Probability Boxes and Dempster-Shafer Structures[END_REF]: in particular, it typically leads to an overestimation of the uncertainty. However, this is not the case for MC simulation (here employed to propagate aleatory uncertainty) because it (automatically) escapes the problem of repeated variables by instantiating each occurrence to the same randomly sampled value.

-Epistemic variables:

• The Strickler friction coefficient s K is perhaps the most critical source of uncertainty. It is affected by epistemic uncertainty, since it is a simplification of a much more complex hydraulic model. In addition, assessing the uncertainty of s K is difficult because, in practice, even if this coefficient is strongly related to the morphology of the river, it cannot be measured. As a consequence, data may only be retrieved through indirect calibration noised by significant observational uncertain-ty: this is reflected in the availability of only a very small series of 5 data sets with ± 15% noise [START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF]. The absolute physical limits of s K are [a, b] = [5, 60], but the real value is expected to vary in a smaller range. In [START_REF] Pasanisi | Some useful features of the Bayesian setting while dealing with uncertainties in industrial practice[END_REF], this epistemic variable is treated within a probabilistic framework: it is considered that the probability distribution of s K is normal with mean µ and standard deviation σ equal to 30 and 7.5, respectively. In this paper, the epistemic uncertainty associated to s K is represented by means of possibility distributions; the four methods described in the previous Section 4 are used. For the method of Section 4.1 (i.e., triangular possibility distribution), the base of the triangle is [5, 60] (i.e., the absolute physical limits of s K ) and the most likely value is 30 (i.e., the mean µ of the normal probability density function of s K used in [START_REF] Pasanisi | Some useful features of the Bayesian setting while dealing with uncertainties in industrial practice[END_REF])); for the methods of Section 4.2, 4.3, 4.4 (i.e., Chebyshev inequality and probability-possibility transformations), the mean µ and the standard deviation σ used are 30 and 7.5 (i.e., the mean and the standard deviation of the probability density function of s K used in [START_REF] Pasanisi | Some useful features of the Bayesian setting while dealing with uncertainties in industrial practice[END_REF]). The possibility distributions for s K resulting from the application of the methods in Section 4.1-4.4 are shown in Figure 4. It is worth noting that the area underlying the possibility distribution is related to the imprecision in the knowledge of the possibilistic variable: the larger the area, the higher the imprecision. In Figure 4, a direct visual comparison of the areas underlying the four possibility distributions considered is shown. It can be noticed that the larger areas are those underlying the possibility distributions built using the triangular function and the Chebyshev inequality. In fact, the information available to the analyst for building these two possibility distributions is quite scarce: in the first case, only the physical limits and the most likely value of the variable are known; in the second case, only the mean value and the standard deviation are considered. On the contrary, the smaller areas underlying the possibility distributions constructed by the transformation methods are explained by the larger amount of information available to the analyst on the epistemic variable of interest, i.e., the probability distribution function itself.

For each of the four cases considered (i.e., for each of the possibility distributions built), the integrated uncertainty propagation procedure of Section 2 is run with m = 10000 realizations of the probabilistic variables; for each realization of the probabilistic variables, 21 values of α (0, 0.05, 0.1, …, 1) are considered to process the epistemic uncertainty associated to K s . The results are compared to those obtained with a pure probabilistic approach, as in [START_REF] Pasanisi | Some useful features of the Bayesian setting while dealing with uncertainties in industrial practice[END_REF], by sampling 10000 times a joint vector ) , , , (
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. With respect to the epistemic uncertain variable s K , this approach consists in marginalizing the joint pdf of ) , (

s c K Z : ) ( ) | (Z c s s K p K p ⋅
, over all possible values of s K .

RESULTS

Figure 5 (a-d) shows the comparison of the cumulative distribution functions of the maximal water level of the river (i.e., the output variable of the model, c Z ) obtained by the probabilistic uncertainty propagation approach (solid lines) with the belief (lower curves) and plausibility (upper curves) functions obtained by the integrated framework of uncertainty propagation where the possibility distributions for K s are constructed with the methods of Sections 4.1-4.3. It can be seen that: the integrated framework explicitly propagates the uncertainty by separating the contributions coming from the probabilistic and possibilistic variables; this separation is visible in the output distributions of the maximal water level of the river where the separation between the belief and plausibility functions reflects the imprecision in the knowledge of the possibilistic variable s K and the slope pictures the variability of the probabilistic variables

v m Z Z Q , ,
; the separation between the belief and plausibility functions is larger for the cases in Figures 5a and5b (where the possibility distributions are those of Figure 4, built using the triangular function and Chebyschev inequality, respectively) than for those in Figures 5c and5d (where the possibility distributions are those of Figure 4, built using the probability-possibility transformations); the larger gap between the belief and plausibility functions in Figures 5a and5b than in Figures 5c and5d is explained by the larger area contained under the corresponding possibility distribution functions (actually, the larger the area, the higher the imprecision in the knowledge of the possibilistic variable). the uncertainty in the output distribution of the pure probabilistic approach is given only by the slope of the cumulative distribution; as expected, the cumulative distribution of the maximal water level of the river obtained by the pure probabilistic method is within the belief and plausibility functions obtained by the hybrid approach Figure 5. Comparison of the cumulative distribution functions of the maximal water level of the river Z c obtained by the probabilistic uncertainty propagation approach (solid line) with the belief (lower dashed curve) and plausibility (upper dashed curve) functions obtained by the hybrid approach with the possibility distribution of K s built using a) a triangular function, b) the Chebyshev inequality, c) the principle of maximum specificity d) the normalization of probability density (see Section 4 and Figure 4).

The final goal of the risk model assessment is to determine i) the dike level necessary to guarantee a given flood return period or ii) the flood risk for a given dike level.

With respect to item i) above, a reasonable quantity of interest is the 99% quantile of c Z , i.e., 99 . 0 c Z , taken as the annual maximal flood level. This corresponds to the level of a "centennial" flood, the yearly maximal water level with a 100 year-return period. With respect to item ii) above, the quantity of interest that is mostly relevant to the decision maker is the probability that the maximal water level of the river c Z exceeds a given threshold * z , i.e., ( )

* z Z P c >
; in the present paper, * z = 55.5 m as in [START_REF] Limbourg | Uncertainty analysis using evidence theory -confronting level-1 and level-2 approaches with data availability and computational constraints[END_REF]. Table 1 
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The numerical results in Table 1 confirm the similarities between the cumulative distributions obtained by using the triangular function and the Chebyshev inequality for the possibilistic representation of the uncertainty on s K , and between the cumulative distributions obtained by the two different transformations from probability to possibility distributions. 

CONCLUSIONS

We have applied to a risk flood model a computational framework for the joint propagation of probabilistic and possibilistic uncertainties. Aleatory and epistemic uncertainties have been kept separate in the model, i.e., some of the variables are purely probabilistic (aleatory uncertainty) and some are purely possibilistic (epistemic uncertainty).

The following analyses have been carried out: 1 A comparison between the "hybrid" and the "pure probabilistic" approach, highlighting that:

the "global" uncertainty of the output within the pure probabilistic approach is only given by the cumulative distribution: the contributions of aleatory and epistemic uncertainties are here merged; the hybrid approach explicitly propagates the uncertainty by separating the contributions coming from the probabilistic and possibilistic variables; the larger gap between the belief and plausibility functions is explained by the larger area contained under the corresponding possibility distribution functions; as expected, the cumulative distribution of the model output obtained by the pure probabilistic method is within the belief and plau-sibility functions obtained by the hybrid approach. 2 A comparison of four methods for constructing the possibility distributions of the variables subject to epistemic uncertainty, showing that:

the choice of the possibility distribution depends on the information available about the variable: when the physical limits and the most likely value are available, a triangular possibility distribution can be constructed; when the mean and the standard deviation can be computed, e.g., by means of empirical data, the Chebyshev inequality can be used; when a probability distribution is available, the methods for transforming probability into possibility distributions can be employed; there are similarities between the results obtained by using:

• the triangular function and the Chebyshev inequality; • the two transformations from probability to possibility distributions (i.e., those based on the principle of maximum specificity and on the normalization of the probability density function). These similarities are explained by the same "uncertainty content" borne by the corresponding possibility distributions (as demonstrated by the similar area limited by the possibility distribution functions). Future research will be devoted to:

the study and development of methods for the joint propagation of probabilistic and possibilistic uncertainty in cases when the uncertain variables are not purely aleatory or purely epistemic (for example, the uncertainty of a variable might be described by a probability distribution whose parameters are themselves poorly known and represented by a possibility distribution); the comparison of the integrated probabilistic -possibilistic approach to other computational frameworks for the joint propagation of aleatory and epistemic uncertainties, e.g., the double Monte Carlo method [START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF]) and the Dempster -Shafer theory of evidence [START_REF] Ferson | Construction Probability Boxes and Dempster-Shafer Structures[END_REF]; the treatment of dependencies between probabilistic and possibilistic variables; the use of advanced integrated simulation methods within the framework of uncertainty propagation for reducing the associated computational cost.

  step 5. above; otherwise obtain the fuzzy random realization (fuzzy interval) α are considered in the procedure, i.e., N α = 21 α-cuts of the possibility distributions

  [a, b] and the most likely value is c. To represent this information a possibility distribution can be taken as a triangle with base determined by the range [a, b] (i.e., the absolute physical limits of the variable) and with vertex taken in correspondence of the most likely value c: in other words, the possibility distribution equals 0 in correspondence of the extreme values a and b of the physically allowable range and 1 in correspondence of the most likely value c. It has been shown that the family of probability distributions defined by a triangular possibility distribution with range [a,b] and vertex c contains all the probability distributions with support [a,b] and mode c(Baudrit & Dubois 2006).

  , two methods for transforming a probability distribution into a possibility distribution are considered: the first one is based on the principle of maximum specificity (Section 4.3.1); the second one on the normalization of the probability density function (Section 4.3.2).

  as the upstream and downstream sections are quite close it seems reasonable to model them as possibly dependent variables. A total of 29 pairs of data

Figure 4 .

 4 Figure 4. Comparison of the four different possibility distributions used for K s : triangular function (Section 4.1), Chebyshev inequality (Section 4.2), principle of maximum specificity (Section 4.3.1), normalization of the probability density (Section 4.3.2).

Table 1 .

 1 Lower and upper values of the Z c percentiles and the threshold exceedance probability, and calculation of the indicator W about the width of the confidence interval.

	Possibility distribution	Z c	0.99		P[Z c ≥ 55.5]
		(Pure probabilistic value = 56.10) [ [ [ [ ] ] ] ] 99 0 99 0 . , . , , upper c lower c Z Z [ [ [ [ ] ] ] ] % Zc W	(Pure probabilistic value = 0.0191) [ [ [ [ ] ] ] ] Pl Bel, [ [ [ [ ] ] ] ] % * W
	Triangular function	[54.57, 59.29]	8	[0.0015, 0.1682]	873
	Chebyshev inequality	[54.40, 60.00]	10	[0.0014, 0.1631]	847
	Transformation probability to	[54.83, 55.99]	2	[0.0043, 0.0344]	157
	possibility (principle of max-				
	imum specificity)				
	Transformation probability to	[54.60, 56.69]	4	[0.0028, 0.0705]	355
	possibility (normalization)