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1 INTRODUCTION 

We consider critical infrastructures (CIs); these are 
large scale, man-made networked systems, mostly 
spanning long distances, which grant the continuous 
production and distribution of goods (e.g. fluids, 
energy, data) and services (e.g. banking, health care) 
essential for the welfare and security of modern So-
ciety. Such infrastructures are named critical, as any 
incapacity or destruction would have a debilitating 
impact on the health, safety, security, economics and 
social well being (Kröger and Zio 2011). 

To evaluate the vulnerability of CIs models must 
be built describing the flow of the physical quanti-
ties within the networks. 

Functional models have been proposed to capture 
the basic features of CI networks within a weighted 
topological analysis framework which abstracts the 
representation of the dynamics of the CI elements 
(Motter and Lai 2002; Dobson, Carreras et al. 2007; 
Zio and Sansavini 2009). These models have been 
shown to shed light on the way complex networks 
react to faults and attacks (Kröger and Zio 2011). 

A characteristic of CIs is that they are highly in-
terconnected and mutually dependent in complex 
ways, both physically and through information and 
communication technologies used for data acquisi-
tion and control, leading to the concept of "systems 
of systems" (Rinaldi 2004). This adds the need of 
assessing the influences and limitations which inte-
racting CIs impose on their operating conditions 
(Zimmerman 2001). 

The functional modeling of interdependent CIs 
can be carried out in a simulation framework which 
abstracts the physical details of the individual infra-

structures, but at the same time captures their essen-
tial operating features and interdependencies, and 
examines the emergent effects of cascading failures 
(Newman et al. 2005; Zio and Sansavini 2011). In 
such modeling framework, interdependencies are 
represented as links (edges) connecting nodes across 
the interdependent systems; these links are concep-
tually similar to those of the individual systems and 
can be bidirectional with respect to the interdepen-
dence. 

In this paper, the modeling framework described 
above is extended to account for the physical nature 
of the components and their interdependencies. The 
propagation of cascading failures in a power trans-
mission network is taken as reference example; its 
components are physically specialized in “genera-
tors” and “distributors”; the effects onto two other 
interdependent CIs (communication and transporta-
tion) are investigated, whereby the interdependen-
cies are distinguished in “physical”, “cyber”, “geo-
graphic” and “logical” (Rinaldi et al. 2001). The 
analysis focuses on cascading failures triggered by 
the intentional removal of a single component, e.g. 
due to a malicious attack. 

Inaccuracies in the values of the parameters of the 
cascading failure model may lead to erroneous esti-
mations of the effects that a failure has on the CI 
system. Then, uncertainties in the model parameters 
are accounted for within a probabilistic framework.  

The paper is organized as follows: the modeling 
of cascading failures in the power transmission CI 
with physical characterization of the components is 
presented in Section 2; in Section 3, the characteri-
zation of interdependencies is introduced; in Section 
4, the functional model for interdependent CIs is de-
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tailed; in Section 5, the proposed model is applied to 
three interdependent CIs whose topological struc-
tures are based on the 380 kV Italian power trans-
mission network (TERNA 2002, Rosato, Bologna et 
al. 2007). Conclusions are drawn in Section 6. 

2 A MODEL OF CASCADING FAILURES IN A 
POWER TRANSMISSION NETWORK 

The model proposed represents the power grid as a 
network of N nodes (substations) and K edges 
(transmission lines). Two types of substations are 
distinguished: NG generators are the sources of pow-
er and ND distribution substations are at the outer 
edge of the transmission grid, as centers of local dis-
tribution grids. 

While the connectedness of the power grid allows 
for the transmission of power over large distances, it 
also implies that local disturbances may propagate 
over the whole grid. The failure of a power line due 
to a lightning strike or a short-circuit leads to over-
loads in nearby lines. Power lines are guarded by au-
tomatic devices that take them out of service when 
the voltage is too high. Generating substations are 
designed to switch off if their power cannot be 
transmitted; this protective measure has the un-
wanted effect of diminishing power for all consum-
ers. Another possible consequence of power line 
failure is the incapacitation of transmission substa-
tions, possibly causing the power from generators to 
not reach distribution substations and ultimately 
consumers. 

In the unperturbed state, each distribution substa-
tion can receive power from any of the generators. 
As substations lose function, the number of genera-
tors, NG

i
, connected to (and able to feed) a certain 

distribution substation i decreases. The concept of 
connectivity loss, CL, is used to quantify the average 
decrease in the number of generators connected to a 
distributing substation (Albert et al. 2004). The cal-
culation of this parameter relies on the topological 
structure of the network and the available least-
resistance pathways. Denoting by NG the order of the 
generation subset at the unperturbed state of the 
network, and NG

i
 the number of generation units able 

to supply flow to distribution node i after disruptions 
take place, CL takes the following form: 
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where the averaging is done over all distributing 

substations. In synthesis, CL measures the decrease 

in the ability of distribution substations to receive 

power from the generators. 
The load on a transmission or distribution substa-

tion is modeled as dependent on the number of links 
transiting through it, when flow is sent from each 

available generation node to each distribution node. 
In this view, the maximum load or amount of flow 
passing through a node is related to the node bet-
weenness (Sabidussi 1966; Nieminen 1974; Freeman 
1978; Freeman, Borgatti et al. 1991; Little 2002), 
calculated as the number of shortest paths that pass 
through a node when flow is sent from each availa-
ble generation node to each distribution node. The 
node with the highest value of betweenness is that 
through which the largest electric power flows with-
in the system. Assuming that power is routed 
through the most direct path, the number of shortest 
paths that transit through a substation is a good ap-
proximation of how much power it is transmitting, 
i.e. its load (Albert et al. 2004). 

In the proposed modeling framework, the load at 
a component is then the total number of shortest 
paths connecting every generator to every distributor 
passing through that component (Newman and Gir-
van 2004), (Batagelj 1994). At any instant of time, 
the load is to be compared with the component ca-
pacity, i.e., the maximum load that it can process. In 
man-made CI networks, the capacity of a component 
is limited by technological limitations and economic 
considerations. For modeling purposes, it can be as-
sumed that the capacity Cj of component j is dimen-
sioned proportionally to its nominal load Lj at which 
it is designed to operate initially, 

 1 1,2,...,j j jC L j N     (2) 

where the parameter αj > 0 is called the tolerance pa-
rameter of the distributing substation j. This parame-
ter can be regarded as an operating margin allowing 
safe operations of the component under possible 
load increments. When αj = 0, the system is working 
at its limit capacity, its operating margin being null: 
any further load added to a component would result 
in its failure and removal from the network and in 
the propagation of a cascading failure involving a 
large part of the system. 

When all the components are working, the net-
work operates without problems in so far as αj > 0. 
On the contrary, the occurrence of component fail-
ures leads to a redistribution of the shortest paths in 
the network and, consequently, to a change in the 
loads of the surviving components. If the load on a 
component increases beyond capacity, the compo-
nent fails and a new redistribution of the shortest 
paths and loads follows, which, as a result, can lead 
to a cascading effect of subsequent failures. 

When looking at the potential of a cascading 
process triggered by the removal of a single compo-
nent, two situations are expected: if prior to its re-
moval the component is operating at a relatively 
small load (i.e., if a small number of shortest paths 
go through it), its removal will not cause major 
changes in the balance of loads and subsequent over-
load failures are unlikely; however, when the load of 



the component is relatively large, its removal is like-
ly to affect significantly the loads of other compo-
nents and possibly start a sequence of overload fail-
ures. Intuitively, the following behavior is expected 
(Motter and Lai 2002): global cascades occur if the 
network exhibits a highly heterogeneous distribution 
of loads and the removed component is among those 
with highest loads; otherwise, cascades are not ex-
pected.  

However, any uncertainty in the tolerance para-
meter αj can result in erroneous estimations of the 
operating margins that ensure safe operations with 
respect to the propagation of failures. To account for 
this, the tolerance αj is assumed to be described by a 
normal distribution, i.e. αj = N(, ). 

3 MODELLING OF INTERDEPENDENCIES 
AMONG CRITICAL INFRASTRUCTURES 

A framework for the characterization of interdepen-
dencies has been proposed in (Rinaldi et al. 2001). 
Interdependencies are characterized as either physi-
cal (an output from a system is required as an input 
to another system), cyber (the state of a system is 
dependent on information transmitted through an in-
formation infrastructure), geographic (two or more 
systems can be affected by the same local event, i.e. 
because they are spatially proximate), and logical 
(includes all other types of interdependencies, for 
example related to human behavior). 

Operatively, from the modeling point of view, in-
terdependencies between CIs can be represented as 
edges connecting nodes belonging to different infra-
structures. If a CI is not able to supply the demanded 
service the outgoing dependency edge is removed, 
thus signaling the unavailability of the desired ser-
vice to other CIs. The effect of a removed depen-
dency edge is evaluated separately in the functional 
model of each of the dependent infrastructures. This 
means that each infrastructure only sees and acts 
upon local information regarding dependencies (Jo-
hansson and Jonsson 2009).  

In the following, physically specialized interde-
pendencies among three CIs, i.e. power transmis-
sion, communication and railway networks, are 
modeled and analyzed.  

4 FUNCTIONAL MODEL OF 
INTERDEPENDENT SYSTEMS 

Only the most essential functional properties of the 
CIs are modeled in order to provide a clear presenta-
tion of the developed methodology. More detailed 
functional models, embedding additional physical 
features, could be developed in case a more realistic 
characterization of the CIs is required. 

The functional models of the railway and com-

munication CIs are quantified by a connectedness 

evaluation algorithm which computes the shortest 

path lengths, dij, between node i and j in the two CIs. 

Upon failure, the variation in the systems perfor-

mances is then evaluated as the relative decrease in 

the average global efficiency, ΔEglob, with respect to 

the unperturbed systems. The average global effi-

ciency of a network, Eglob, is defined as the average 

of the inverse shortest path lengths in the network, 

i.e.  1 1glob ij

i j G
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  (Latora and Marchiori 

2005). 
A node of the railway network is in service as 

long as it has access to the telecommunication sys-
tem and as long as the power transmission system is 
supplying electricity. Hence, each node of the rail-
way network has a cyber dependency from the tele-
communication system and a physical dependency 
from the power transmission network. If the interde-
pendent node in the communication network fails, 
the node in the railway network may fail with prob-
ability pcr, while if the interdependent node in the 
power transmission network fails, the node in the 
railway network is disconnected. 

A node of the communication network is in oper-
ation as long as the power transmission system is 
able to supply electricity. Hence, each node of the 
communication network has a physical dependency 
from the power transmission network. If the interde-
pendent node in the power transmission network 
fails, the node in the railway network is discon-
nected. 

The functional model of the power transmission 
network has been introduced in Section 2. An input 
from the communication system is required for the 
nodes of the power transmission network to operate. 
Hence, each node of the power transmission network 
has a cyber dependency from the communication 
network. If the interdependent node in the commu-
nication network fails, the node in the power trans-
mission network may fail with probability pcp. 

The cyber dependencies from the communication 
network and the power transmission system, and 
from the communication network and the railway 
network imply different effects owing to different 
systems operating conditions. If communication is 
temporarily not required at a train station, then the 
effects of the unavailability of the dependent node in 
the communication network will not propagate to the 
railway network. The same argument holds for the 
cyber dependencies between the communication 
network and the power transmission system. This 
behavior is modeled assuming that pcr and pcp are 
described by a probability distribution, in particular 
two normal distributions are assumed, i.e. pcr = 
N(cr, cr) and pcp = N(cp, cp).       



From the functional descriptions of the three CIs, 
it follows that cascading failures propagate in the 
power transmission network only due to the rerout-
ing of the flows between generators and distributors, 
and their effects propagate to the communication 
and railway networks through the removal of the in-
terdependency connections. Moreover, unlike the 
communication and the power transmission systems, 
which show mutual interdependencies, the operation 
of the transportation network are affected by the 
other two CIs but has no effect on them. 

5 CASE STUDY 

The model of cascading failure introduced in Section 
2 has been applied to the topological network of the 
380 kV Italian power transmission network (Figure 
1). The network has N=127 nodes (NG=30 generator 
and ND=97 distributor nodes) connected by K=171 
links (TERNA 2002, Rosato, Bologna et al. 2007). 
We simulate the propagation of cascading failures in 
the power transmission network and the effects on 
the communication and railway networks. Due to the 
lack of actual data, but with no loss of generality, the 
topological structure of the railway network has 
been taken identical to the structure of the power 
transmission network. Conversely, the base topolog-
ical structure of the communication network has 
been taken from the power transmission network, 
but additional links have been added so that the 
neighborhood of each node forms a fully connected 
subgraph. For each node i, we identified the nodes ki 
that are directly connected to it (forming the so 
called neighborhood of i), and connected ki nodes by 
direct links. If node i malfunctions, information can 
still flow through this redundant wiring. This altera-
tion accounts for the presence of alternative commu-
nication routes among nodes which are not „too far‟ 
from one another. 
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Figure 1. The 380 kV Italian power transmission network 
(TERNA 2002, Rosato, Bologna et al. 2007) and two interde-
pendent CIs. Interdependencies are represented by links among 
the systems. Solid arrows symbolize “physical” dependencies 
on the power transmission infrastructure. Dashed arrows sym-
bolize “cyber” dependencies on the communication infrastruc-
ture. 

 

The effects of cascading failures triggered by the 
removal of substations in the power transmission 
system are first investigated. The scenario consi-
dered regards the malevolent targeted attack aiming 
at disconnecting node {88} (Figure 1), which han-
dles the largest load in the system, i.e., through 
which pass the largest number of generator-
distributor shortest paths. Previous studies have 
showed that power transmission networks can be 
very sensitive to this kind of attacks due to the diffi-
culty of handling flow redistribution when the most 
congested elements fail, because neighboring ele-
ments are also working close to their full capacity 
and are incapable of handling significant additional 
flows (Duenas-Osorio & Vemuru 2009). Hence, the 
disconnection of a most congested node is regarded 
as a critical scenario of malicious attack. In addition 
to that, node {88} plays a strategic role in the sys-
tem, bridging the northern and the southern branches 
of the Tyrrhenian backbone. 

Once the triggering event occurs, flow redistribu-
tion takes place as a mechanism to equilibrate 
supply and demand constraints. The flow redistribu-
tion process is simulated at discrete time steps. At t0 
the network is intact; at t1 a failure occurs; at ti , i  2 
the cascading failure progresses as nodes overload 
and cause further failures in neighboring elements. 
The cascading process is followed until the response 
stabilizes; at this point, indicators of the severity of 
the cascade are computed, e.g. the connectivity loss, 
CL (Section 2). 

The analysis is made with respect to different 
values  of the tolerance parameter α and fixed 
standard deviation, =0.3. The parameters cr and 
cp are taken equal to 0.5; cr=0.3 and cp=0.2. A 
sensitivity analysis with respect to cr and cp is pre-
sented in Section 5.1; on the contrary, the , cr and 
cp values have been heuristically set. 

The variables αi, pcr and pcp can assume only non-
negative values. To describe their uncertainties nor-
mal distributions have been assumed to constrain the 
values to be  0. The conditional sampling of such 
distributions is such that when α  0, the presence 
of more tolerant components is favored, i.e. αi  0, 
and when cr  0 and cp  0, a stronger coupling 
among the interdependent CIs is favored, i.e. pcr  0 
and pcp  0, respectively.  

In Figure 2, the final value of the connectivity 
loss, CL, obtained after the system has stabilized in 
response to the disconnection of node {88}, is plot-
ted versus , the mean value of the probability dis-
tribution of the tolerance parameter, α. 

Values of =200% of the design working load 
have been considered as further increments of  do 
not improve CL. Obviously, such a wide safety mar-
gin of =200% of the design working load would in 
most cases not be a reasonable situation in standard 
practice. 

Railway 

Power transmission 

Communication 
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Figure 2. Final value of the connectivity loss, CL, vs. the ex-
pected value of the tolerance parameter, , when the system 
response has stabilized. The cascades are triggered by the re-
moval of the most congested node {88} in the power system. 
The error bars identify the standard error from 100 simulations 
for constant . 

 
As expected, increasing the flow-carrying capaci-

ty of the network elements (i.e. increasing ) re-
duces the extent of the cascades because flow redi-
stribution can be handled at the local scale. The 
typical jumps to larger values of the connectivity 
loss, related to the so-called “islanding” effect (Zio 
and Sansavini 2010), are absorbed by the uncertain-
ties on α. 

The results shown in Figure 2 allow identifying 
an operating safety margin with respect to the transi-
tion between the cascade-safe region and the onset 
of disrupting cascades. For example, if one wants to 
reduce the average connectivity loss CL below 60%, 
the power transmission network must be operated 
accounting for a safety margin  ≥ 57% beyond the 
design working load; the cascading failures occur-
ring beyond this safety margin would result in con-
nectivity losses lower than the selected value. Yet, 
such a wide safety margin might not be always 
available in real power transmission systems and 
component replacements might be required to comp-
ly with the prescribed safety margins.  

Information concerning the benefits from possible 
system improvements can also be inferred. For ex-
ample, the average connectivity loss is more sensi-
tive to variations in the ranges   [0%, 45%] and 
  [140%, 180%]. Hence, an increase in the toler-
ance within these ranges is more effective in im-
proving the system vulnerability towards cascading 
failures. 

We also analyzed the effects of the disconnection 
of the most congested node {88} in the power 
transmission CI on the communication and railway 
networks. Figure 3 shows the loss of service in these 
networks in terms of the relative decrease of the av-
erage global efficiency with respect to the unper-
turbed systems, ΔEglob, versus . Due to the strong 

physical interdependencies between the power 
transmission system and the other two CIs, the loss 
of service trend is closely related to the connectivity 
loss, CL, as it can be seen comparing Figure 2 and 
Figure 3. Due to the higher degree of redundancy in 
the communication network, the loss of service for 
this infrastructure is smaller than it is for the railway 
system. The curve in Figure 3 provides vulnerability 
information as the one in Figure 2. For example, if 
we aim at protecting the railway system by requiring 
a maximum loss of service, e.g. ΔEglob ≤ 0.5, the in-
terdependent power transmission network must be 
operated at  ≥ 66%. 
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Figure 3. Loss of service in terms of the relative decrease of the 
average global efficiency with respect to the unperturbed sys-
tems vs. the expected value of the tolerance parameter, . The 
cascades are triggered by the removal of the most congested 
node {88} in the power transmission system. The error bars 
identify the standard error from 100 simulations for constant 
. 

 
With respect to the malicious targeted attack of 

single nodes, the components of the system can be 
ranked in view of the damage caused by the cascade 
of failures triggered by their individual removal. To 
this aim, in Figure 4 the histogram of the average 
connectivity loss, CL, caused by the removal of each 
node in the power transmission system is presented 
for  = 30% which is a reasonable assumption in 
standard practice. Surprisingly, the most congested 
node {88} is not among the most critical. Nodes 
{14, 79, 76, 71 and 12} are ranked as the most criti-
cal ones, being bottlenecks for many generator-
distributor shortest paths due to their position in the 
network. Hence, an attacker aiming at disrupting the 
most „active‟ node would not actually produce the 
maximum „desirable‟ damage. 

The ranking of the most critical components is 
dependent on the expected value of the tolerance pa-
rameter, , characteristic of the system; thus, it 
must be reevaluated in case the system undergoes 
modifications affecting its operating margins.  

Expected 

Expected 



The analysis performed is limited to the removal 
of individual nodes, as removing groups of nodes 
constitutes a combinatorial problem which lies 
beyond the scope of the current work. 

In Figure 5, the removal of each node in the pow-
er transmission system is associated with its conse-
quences on the interdependent CIs. Similarities with 
Figure 4 appear, for the reasons explained above. 
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Figure 4. The average connectivity loss, CL, caused by the re-
moval of each node (abscissa) in the power transmission sys-
tem. The expected value of the tolerance parameter is  = 
30%. 
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Figure 5. The average loss of service, ΔEglob, caused by the re-
moval of each node (abscissa) in the power transmission sys-
tem. The expected value of the tolerance parameter is  = 
30%. 

 
We performed an additional analysis focused on 

the intentional removal of the most connected node 
{64} of the communication system. The results are 
reported in Figures 6 and 7 for values of the interde-
pendency strengths cr = cp = 0.5. Comparing Fig-
ures 6 and 7 with Figures 2 and 3, it appears that cy-
ber dependencies are on the average less critical than 
physical dependencies with respect to the failure 
propagation, due to their assumed probabilistic na-
ture. Yet, an attack on the communication network 
results in highly-variable consequences as it can be 

seen from the wide error bars in Figure 6 and 7. This 
renders more difficult any decision-making on CI 
protection. 
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Figure 6. Final value of the connectivity loss, CL, vs. the ex-
pected value of the tolerance parameter, . The results are av-
eraged over 100 cascades triggered by the removal of the most 
connected node {64} in the communication system. cr = cp = 
0.5. 
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Figure 7. Loss of service, ΔEglob, vs. the expected value of the 
tolerance parameter, . The results are averaged over 100 cas-
cades triggered by the removal of the most connected node 
{64} in the communication system. cr = cp = 0.5. 

5.1 Sensitivity analysis with respect to cp and cr 

To look at the effects of the interdependency 
strengths on the failure propagation, we carried out a 
sensitivity study with respect to pcp for two different 
 values. Its results are reported in Figures 8 and 9, 
with cr = 0.5. A linear decrease in the effects of the 
cascading failure CL and ΔEglob, is shown when the 
interdependency strength, cp, is reduced. The 
curves in Figures 8 and 9 convey information con-
cerning the vulnerability of CIs with respect to the 
interdependency strength. As an example, if a max-
imum service loss is prescribed for the railway sys-
tem, e.g.  ΔEglob ≤ 40%, the interdependencies be-

Expected 



tween the communication system and the power sys-
tem must be operated so that cp ≤ 54%. 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Mean value of the interdependency strength 
cp

A
v
e
ra

g
e
 c

o
n
n
e
c
ti
v
it
y
 l
o
s
s
,  

C
L

 

 



 = 0



 = 0.3

 
Figure 8. Average connectivity loss, CL, vs. the interdependen-
cy strength, cp. The results are averaged over 100 cascades 
triggered by the removal of the most connected node {64} in 
the communication system. cr = 0.5. 
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Figure 9. Average loss of service, ΔEglob, vs. the interdepen-
dency strength, cp. The results are averaged over 100 cascades 
triggered by the removal of the most connected node {64} in 
the communication system. cr = 0.5. 

 
The interdependent CIs are not sensitive to varia-

tions of cr, which do not influence the cascade trig-
gering in the power system. 

Finally, the removal of each node in the commu-
nication system is associated with its consequences 
on the interdependent CIs (Figures 10 and 11). The 
most connected node {64} in the communication 
system is the most critical with respect to failure 
propagation in the power system and in the railway 
network. Other critical nodes are {81, 78, 79, 61, 14, 
110}. Nodes {14, 79, 110, 76, 81, 78, 61 and 64} are 
ranked as most critical for the communication infra-
structure. Compared to the removal of the power sta-
tions, the relative ranking of some node originally 
present has changed and other nodes (i.e., node 
{12}) are not among the most critical. It turns out 
that the nodes {81, 78, 79, 61, 12, 14 and 64} link-
ing the northern and the Tyrrhenian sections of the 
networks are the most critical. Moreover, node 

{110} that links the Adriatic and the Tyrrhenian sec-
tions of the networks is also ranked as critical. 
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Figure 10. Average connectivity loss, CL, caused by removal of 
each node (abscissa) in the communication system (100 simu-
lations for each node).  = 30%, cr = cp = 0.5.  
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Figure 11. Average loss of service, ΔEglob, caused by removal 
of each node (abscissa) in the communication system (100 si-
mulations for each node).  = 30%, cr = cp = 0.5. 

6 CONCLUSIONS 

To improve the modeling of cascading failures prop-
agation based on network theory, we have intro-
duced the physical characterization of the compo-
nents and of the interdependencies among CIs. The 
model has been applied to assess the cascade propa-
gation process triggered by a defined node-removal 
scenario. Three interdependent CIs have been consi-
dered, namely the power transmission, the commu-
nication and the railway networks. We have ac-
counted for uncertainties in the model parameters by 
a classic probabilistic framework of representation. 

The knowledge gained from the type of analysis 
performed can help setting the value of the operating 
safety margin, , so as to limit the consequences of 
cascading failures, e.g. measured by CL or ΔEglob. 

Expected 

Expected 



Ranking of the nodes according to the disruptions 
triggered by their individual removal has shown that 
nodes which could be thought of as most critical be-
cause of their high congestion or connectivity are 
not always associated with the largest consequences 
following their removal. This points to the fact that 
the physical characterization of the components and 
interdependencies and the introduction of the uncer-
tainties add a further level of complexity to the cas-
cade propagation, so that the system bottlenecks 
cannot be identified simply by the static topological 
analysis alone. 

The proposed modeling framework allows also to 
look at the extent to which the interdependency pa-
rameters affect the cascade propagation, for different 
operating safety margins, . For example, given an 
operating safety margin value, the systems can be 
designed and operated, tweaking the interdependen-
cy strength, cr, so as to limit the maximum average 
connectivity loss, CL or service loss, ΔEglob. 

Future developments of this work will be the 
modeling of active safety systems for preventing and 
mitigating cascading failures propagations and the 
analysis of interdependent CIs having their own in-
dividual cascade dynamics. 
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