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1 INTRODUCTION 
The use of importance measures (IM) is an integral 
part of reliability and risk analysis. IM are used to 
study the effect on system level reliability or risk pa-
rameters of altering component level parameters. A 
number of uncertainty importance measures (UIM) 
have also been proposed in the literature. These ex-
tend the „classical‟ reliability and risk IM in the 
presence of epistemic uncertainty. UIM are used to 
study to what degree uncertainty about risk and reli-
ability parameters at the component level influences 
uncertainty about parameters at the system level. 

Consider the following setting: We are interested 
in the quantity Y, possibly a vector, and introduce a 
model g(X) which links n input quantities 
X = (X1,X2,…,Xn) to Y. In the present paper, particu-
lar attention is paid to the case p = g(q), where p and 
q are reliability or risk parameters at the system and 
component level, respectively. Typically p and q 
have the interpretation of long-run frequencies, e.g. 
the fraction of time a system and its components are 
functioning, respectively. This interpretation is seen, 
for example, in the probability of frequency ap-
proach to risk analysis (Kaplan & Garrick, 1981). 

Classical IM are used to analyze changes to p 
given changes to q. For example, the so-called „im-
provement potential‟ of component i is defined as 
the change to the system availability p when the 

component availability qi is set equal to 1. Further-
more, the Birnbaum IM is defined as the partial de-
rivative of p with respect to qi.  

UIM are typically founded on a Bayesian perspec-
tive. A subjective probability distribution F is intro-
duced for q and propagated through a model g. The 
result is a probability distribution of p, and UIMs are 
used to analyse changes to the distribution of p given 
changes to F. Reference is made to Section 2 for a 
brief review of IM and UIM. 

In a Bayesian perspective subjective probabilities 
express epistemic uncertainty; hence, they do not re-
flect imprecision in probability assignments. The 
term imprecision here labels the phenomenon cap-
tured by a wide range of extensions of the classical 
theory of probability, including lower and upper pre-
visions (Walley, 1991), belief and plausibility func-
tions (Dempster, 1967; Shafer, 1976), possibility 
measures (Dubois & Prade, 1988), robust Bayesian 
methods (Berger, 1984), p-boxes (Ferson et al., 
2003) and interval probability (Weichselberger, 
2000). 

One much studied type of UIM is that reflecting 
the effect on system level parameter uncertainty of 
removing component level parameter uncertainty. 
For example, for a probability distribution F of com-
ponent level parameters q which propagated through 
a model g induces a probability distribution of the 
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ABSTRACT: A number of uncertainty importance measures have been proposed in the literature to extend 
classical risk and reliability importance measures in the presence of epistemic uncertainty. Uncertainty impor-
tance measures typically reflect to what degree uncertainty about risk and reliability parameters at the compo-
nent level influences uncertainty about parameters at the system level. The definition of these measures is 
typically founded on a Bayesian perspective where subjective probabilities are used to express epistemic un-
certainty; hence, they do not reflect the effect of imprecision in probability assignments, as captured by alter-
native uncertainty representation frameworks such as imprecise probability, possibility theory and evidence 
theory. In the present paper we consider the issue of imprecision in relation to uncertainty importance meas-
ures. We define an imprecision importance measure to evaluate the effect of removing imprecision – in the 
present paper focusing on imprecision removal to the extent that no epistemic uncertainty remains; as further 
work we suggest to also consider the more general case of imprecision removal to the extent that a probabilis-
tic representation of uncertainty remains. A numerical example is presented to illustrate the suggested measure 
in the case of a possibilistic uncertainty representation. 



system level parameter p, this type of UIM evaluates 
changes to the distribution of p by assuming qi 
known for some i. Of course, the value of qi cannot 
be specified with certainty and so the resulting 
measure becomes a function of qi. An example is the 
measure Var(p) – Var(p|qi), expressing the reduction 
in the variance of the system level parameter p that is 
achieved by specifying the value of the component 
level parameter qi. One way to proceed is to consider 
the expected value of the above measure, as done by 
Iman (1987), namely: 
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Aven & Nøkland (2010) investigate the link between 
UIM and traditional IM. In doing so they distinguish 
between the cases that X and Y as introduced above 
are (a) observable events and quantities, such as the 
occurrence of a system failure and the number of 
system failures, and (b) unobservable parameters, 
such as p and q. Based on their findings a combined 
set of IM and UIM is defined. 

In the present paper we consider the case that a 
distribution pair Hq is introduced for q. We may for 
example have Hq = [Nq, Πq], where Nq and Πq are the 
cumulative necessity and possibility distributions of 
q, respectively; or Hq = [Belq, Plq], where Belq and 
Plq are the cumulative belief and plausibility distri-
butions of q, respectively; or Hq = [Hq

l
, Hq

u
] where 

Hq
l
 and Hq

u
 are lower and upper imprecise probabil-

ity distributions of q, respectively. Defining the im-
precision of a distribution pair as the area between 
its lower and upper cumulative distributions, we de-
fine an imprecision importance measure (IIM) that 
evaluates the effect on system level parameter im-
precision of removing component level parameter 
imprecision. Two extents of imprecision removal are 
possible: 

 
i. Removal of imprecision to the extent that a 

probabilistic representation remains. 
ii. Removal of imprecision to the extent that no 

epistemic uncertainty remains. 
 

The latter case may be seen as a special case of the 
former. The definition of an IIM in terms of impreci-
sion removal is associated with an analogous prob-
lem as was seen above for uncertainty removal in the 
case of UIM; namely, the measure can be defined 
but neither the specific value of a component level 
parameter nor its probability distribution can really 
be specified. We are led to consider, respectively: 
 

I. The least and most specific probability distribu-
tions consistent with Hq. 

II. The IIM as a function of qi. 
 

In the following we refer to these as type I and type 
II measures. In the present paper we focus on the 
type II measure. 

The remainder of the paper is organized as fol-
lows: In Section 2 we review some basic classical 
IM and some UIM. In Section 3 we review the con-
cepts of uncertainty and imprecision, as well as their 
representation. In Section 4 we define an IIM as in-
dicated above, and in Section 5 the suggested meas-
ure is evaluated in terms of a numerical example. 
Section 6 provides a discussion and some directions 
for further work. 

2 CLASSICAL IM AND UIM 
There are essentially two fundamental classical IM: 
the „improvement potential‟ of a component, de-
scribing the effect on the system reliability of mak-
ing the component perfectly reliable; and the Birn-
baum IM, reflecting the effect on system reliability 
of an incremental change in the reliability of a com-
ponent. The improvement potential of a component 
is defined by (e.g. Aven & Jensen, 1999; Rausand & 
Høyland, 2004) 
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where h(q) is the system reliability function, i.e. an 
expression of p as a function of q; and 
h(1i,q) = h(q1,...,1i,...qn), i.e. the system reliability 
function when component i is perfectly reliable. The 
IMs referred to as risk achievement worth (RAW) 
and risk reduction worth (RRW) (e.g. Cheok et al., 
1998; Rausand & Høyland, 2004; Zio, 2009) repre-
sent minor adjustments of the improvement potential 
IM. The Birnbaum IM is defined by (e.g. Aven & 
Jensen, 1999; Rausand & Høyland, 2004; Zio, 2009) 
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i.e. as the partial derivative of the system reliability 
with respect to qi. The improvement potential IM is 
most relevant in the design phase of a system, 
whereas the Birnbaum IM is most relevant in the op-
erational phase (Nøkland & Aven, unpubl.). See 
Rausand & Høyland (2004) and Zio (2009) for a 
more in-depth review of classical IMs. 
UIMs were described to some extent in Section 1. 
The UIM by Iman (1987) is variance-based and 
hence an example of a measure in one of the three 
categories  described by Borgonovo (2006):  

 
i. Nonparametric techniques (input-output corre-

lation) 
ii. Variance-based importance measures 

iii. Moment-independent sensitivity indicators. 
 
See Borgonovo (2006) for a more in-depth review of 
UIMs. 



3 UNCERTAINTY, IMPRECISION AND ITS 
REPRESENTATION 

In engineering risk analysis a distinction is com-
monly made between aleatory (stochastic) and epis-
temic (knowledge-related) uncertainty (e.g. Aposto-
lakis, 1990; Helton & Burmaster, 1996). Aleatory 
uncertainty refers to variation in populations. Epis-
temic uncertainty refers to lack of knowledge about 
phenomena and usually translates into uncertainty 
about the parameters of a model used to describe 
random variation. Whereas epistemic uncertainty can 
be reduced, aleatory uncertainty cannot and for this 
reason it is sometimes called irreducible uncertainty 
(Helton & Burmaster, 1996). 

Traditionally, limiting relative frequency prob-
abilities are used to describe aleatory uncertainty and 
subjective probabilities are used to describe epis-
temic uncertainty. However, as described in Section 
1, several alternatives to probability as representa-
tion of epistemic uncertainty have been suggested, 
the motivation being to capture imprecision in sub-
jective probability assignments. Imprecision here re-
fers to inability to precisely specify a probability 
(distribution). 

Numerical possibility distributions can encode 
special convex families of probability measures 
(Dubois, 2006). In possibility theory, uncertainty and 
imprecision is represented by a possibility function 
π. For each element ω in a set Ω, π(ω) expresses the 
degree of possibility of ω. Since one of the elements 
of Ω is the true value, it is assumed that π(ω) = 1 for 
at least one element ω. The possibility measure of an 
event A, Π(A), is defined by 

)(sup)( 
 

 A , (4) 

and the necessity measure of A, N(A), by  

)(1)( AAN  . (5) 

Uncertainty about the occurrence of an event A, then, 
is represented by the couple [N(A), Π(A)], where the 
necessity and possibility measures can be given the 
interpretation of probability bounds, i.e. lower and 
upper probabilities, respectively. 

4 AN IMPRECISION IMPORTANCE MEASURE 

Consider the system level reliability or risk parame-
ter p and its distribution pair Hp induced by the 
propagation of a distribution pair Hq through a 
model g. Define the imprecision of a distribution 
pair H, denoted Δ(H), as the area between its lower 
and upper cumulative distributions, i.e. 

  dxxHxHH ))(min)((max)( . (6) 

For example, in the case of a distribution pair H = 
[N, Π] induced by a triangular possibility distribu-
tion π with support S, we have – by geometrical con-
siderations and recalling that a possibility distribu-
tion has unit height – that the imprecision of the 
possibility distribution is Δ(H) = |S|/2. In the case of 
a probabilistic representation of uncertainty we have 
max H(x) = min H(x) for all x, and hence Δ(H) = 0. 

Now define Δi(Hp) as the imprecision of Hp when 
the imprecision of the distribution on the parameter 
qi is removed. We may then define an imprecision 
removal importance measure (IRIM) as 

)()( pipi HHIRIM  , (7) 

which expresses the amount of system level impreci-
sion removal that comes from removing imprecision 
at the component level. The relative imprecision re-
moval effect can be studied in terms of the measure 
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which expresses the fraction of imprecision associ-
ated with the distribution pair Hp that is attributable 
to component i. 

As described in Section 1, imprecision can be re-
moved either to the extent that a probabilistic repre-
sentation remains, or to the extent that no epistemic 
uncertainty remains. Removal of imprecision to the 
extent that a probabilistic representation remains 
means that uncertainty about qi is described using a 
(subjective) probability distribution Fqi(x) = 
P(qi ≤ x), as illustrated in Figure 1. 

 

 
Figure 1. Removal of imprecision (imprecise probability si-
tribution – dashed lines) to the extent that a single-valued prob-
abilistic representation remains (solid line). 

 
Removal of imprecision to the extent that no epis-
temic uncertainty remains means that qi can be 
specified with certainty, and hence represented by 
δqi(x), where δqi(x) is the Dirac measure which 
equals 1 at x = qi and 0 otherwise, as illustrated in 
Figure 2. 

 



 
Figure 2. Removal of imprecision (imprecise probability 

sitribution – dashed lines) to the extent that a no epistemic 

uncertainty remains (solid line). 

 
As described in Section 1, a substitute to imprecision 
removal to the extent that a probabilistic representa-
tion remains is the least and most specific probabil-
ity distribution consistent with Hq. In the case of re-
moval of imprecision to the extent that no 
imprecision remains, we are led to consider the sug-
gested IIM as a function of qi, denoted 
(R)IRIMi

II
(qi). In Section 5 we present a numerical 

example evaluating the latter type of measure. 

5 NUMERICAL EXAMPLE 

We consider a system S consisting of three inde-
pendent components, where component 1 and 2 are 
connected in a parallel configuration, which is again 
connected to component 3 in a series configuration. 
The reliability block diagram associated with system 
S is shown in Figure 1. 

 

 
Figure 3. Reliability block diagram of system S. 

 
Component i has availability qi, i = 1, 2, 3. The 
availability of the system, denoted p, is then 

321 ))1)(1(1( qqqp  . (8) 

The availability parameters q = (q1, q2, q3) are as-
sumed to be unknown, the uncertainty being de-
scribed using marginal necessity/possibility distribu-
tion pairs H = (H1, H2, H3), where Hi(x) = [N(qi ≤ x), 
Π(qi ≤ x)], i = 1, 2, 3. 

We assume that the distribution pair H1 is in-
duced by a triangular possibility distribution π1 with 
lower support 0.90, mode 0.95 and upper support 
0.99; that the distribution pair H2 is induced by a 
trapezoidal possibility distribution π2 with lower 
support 0.92, lower mode 0.94, upper mode 0.96 and 

upper support 0.98; and that the distribution pair H3 
is induced by a uniform possibility distribution π3 
with lower support 0.85 and upper support 0.95. The 
component availability distributions and the result-
ing system availability distribution are illustrated in 
Figure 4. 
 

 
Figure 4. Input distribution functions on component 

availabilities and resulting system availability. 

 
Let s1 and s2 (c1 and c2) denote the lower and upper 
support (core) limit of a possibility distribution, re-
spectively. For a trapezoidal distribution we have s1 
< c1 < c2 < s2, for a triangular distribution s1 < c1 = c2 
< s2, and for a uniform distribution s1 = c1 < c2 = s2. 
For these distribution classes we then have that the 
imprecision equals 

2
)( 1212 ccss

H


 . (9) 

Table 1 lists the component and system availability 
distribution parameters as well as the associated im-
precision index. 
 
Table 1. Component and system availability distribution pa-
rameters and imprecision index for system S. __________________________________________________ 
i     s1   c1   c2   s2   Δ(Hi)  __________________________________________________ 
1     0.80  0.85  0.85  0.90  0.05 
2     0.80  0.85  0.90  0.95  0.10 
3     0.80  0.80  0.90  0.90  0.10 __________________________________________________ 
System   0.77  0.78  0.89  0.90  0.12 __________________________________________________ 

 
Figure 5 shows the type II RIRIM as a function of qi 
for all the three components in system S. 
 



 
Figure 5. Type II RIRIM for each component of system S. 

 
The (R)IRIM for each component is evaluated as a 
function of qi on the support of the associated distri-
bution. Fixing the value of the availability of com-
ponents 1 and 2 has the least imprecision removal 
effect on the system availability distribution. De-
pending on which values q1 and q2 are fixed at, the 
imprecision of the system availability distribution is 
reduced by a percentage between 1.29 and 7.54 for 
component 1 and between 9.05 and 12.6 for compo-
nent 2. The greatest imprecision reduction can be ob-
tained by fixing the value of the availability of com-
ponent 3. By fixing q3, the imprecision related to the 
system availability can be reduced by between 83.5 
and 85.3 per cent. Table 2 summarises the value 
ranges of the (R)IRIM. 

 
Table 2. Type II (R)IRIM value ranges. __________________________________________________ 
i     IRIMi

II
     RIRIMi

II
 __________________________________________________ 

1     [0.0015, 0.0087]  [1.29 %, 7.54 %] 
2     [0.0105, 0.0146]  [9.05 %, 12.6 %] 
3     [0.0969, 0.0990]  [83.5 %, 85.3 %] __________________________________________________ 

6 DISCUSSION AND FURTHER WORK 

In the present paper we have suggested an impor-
tance measure that can be used to evaluate the effect 
on system level parameter imprecision of removing 
component level parameter imprecision. Hence the 
suggested measure is defined analogously with the 
classical improvement potential IM which describes 
the effect of removing the unreliability of a compo-
nent, and analogously with a number of UIMs that 
describe the effect of removing uncertainty about 
component performance. 

Two extents of imprecision removal are consid-
ered: reduction to a probabilistic representation (type 
I) and removal of epistemic uncertainty (type II), the 
latter a special case of the former. Focus is put on 
the type II measure, and in a numerical example we 
study both the absolute and relative versions of the 
measure. 

The relative version of the measure expresses the 
fraction of the initial amount of imprecision on the 
system level parameter that is attributable to each 
component. In a ranking setting this format is per-
haps easier to comprehend than the underlying abso-
lute numbers; however, the fractions need to be seen 
in relation to the initial amount of imprecision on the 
system level parameter. 

Table 1 shows that component 2 and 3 have the 
same imprecision index when looked at in isolation, 
yet for the simple system example presented in Sec-
tion 5 the conclusion is clearly that component 3 has 
the greatest imprecision importance. Looking at the 
structure function of system S it is clear that changes 
to the availability of component 3 will have the 
greatest direct effect on the system availability. In re-
lation to system S it thus seems that the physical 
structure of the system is more important in terms of 
imprecision than is the shape of the individual dis-
tributions. For more complex systems and for other 
input distributions the conclusion may be less clear.  

Further work in relation to the suggested measure 
is intended directed towards the implementation of 
the type II measure on more complex systems. Fur-
ther work is also intended towards the development 
and implementation of the type I measure. More-
over, possibility theory provides a relatively simple 
and hence convenient uncertainty representation to 
use for the implementation of the suggested meas-
ures; however, other representations should also be 
considered in terms of application. 

Finally, IIMs may be seen simply as a (natural) 
technical extension of UIMs when the uncertainty 
representation is no longer single-valued probability 
but instead some alternative representation with the 
interpretation of lower and upper probabilities. More 
interesting and potentially more decisiveis the role of 
IIMs in highlighting the relevance – for decision-
making – of making the imprecision concept a cen-
tral object of study in risk and reliability analysis. 
There is currently much interest and debate concern-
ing the use of alternative representations of uncer-
tainty in this setting, and sensibly defined and deci-
sion-relevant IIMs would be a relevant argument in 
this debate. 
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