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ABSTRACT: Detection of anomalies andults in slurry pumps is an important task with imations for
their safe, economical, and efficient operation.a¥Weaused by abrasive and erosive solid partideme of
the main causes of failure. Condition monitoringl @m-line assessment of the wear status of wetiegpo-
nents in slurry pumps are expected to improve raaarice management and generate significant casggsav
for pump operators. In this context, the objectivehe present work is to present a framework far as-
sessment and measurement of the wear status of plunps when available data is extremely limiteour
sequential steps are performed: data collecticatufe extraction, feature selection and classiboatThe
main idea is to combine the predictions of multiplesupervised classifiers fed with different inptaken
from different signals, based on fuzzy C-meanstehrgg, to reduce the variance of the results abttiey are
less dependent on the specifics of a single classifhis will also reduce the variance of the biascause a
combination of multiple classifiers may learn a mmexkpressive concept class than a single classifier

1 INTRODUCTION In general terms, fault classification methods ban
Centrifugal slurry pumps are widely used in the oildivided into two categories (Venkatasubramanian et
sand industry, mining, ore processing, waste treatl.,, 2003): model-based and pattern recognition
ment, cement production, and other industries téechniques. In model-based methods, faults can be
move mixtures of solids and liquids. Equipmentdetected by performing some mathematical calcula-
manufacturers and owners invest significant retions. For example, in the case of interest hdre, t
sources in maintenance programs designed to ensis®te-of-the-practice entails oil pump failuresnigei
that the required hydraulic system performance isliagnosed by expert analysis of the parameter salue
maintained at maximum efficiency. In fact, unsche-measured during the monitoring time and their com-
duled outages, costly component replacements anmghrison with the nominal power curve of every oll
repairs that result from unexpected premature failpump: drawing the actual power curve according to
ures or gradual performance degradation caused blye measured parameters values, i.e., by manual
system wear can cost companies millions of dollaranalysis, allows the analyst to identify whethey an
each year (Mitchell, 1999; Hancock et al., 2006).  fault exists. Indeed, failed pumps often show hello
The motivation for this application comes from thepumping action and energy waste. Because of the
interest of a producer of oil extracted from oihda  nonlinearity of the wear behavior and the sizehef t

in developing a proper monitoring scheme to detednput data and their uncertainties, this way of-pro
pump failures in a system aimed at moving largeeeding requires significant human, material, and f
amounts of raw oil sand. The reason for the fadlurenancial resources while not guaranteeing the timely
is not exactly known, although it has been conjecedetection of faults, thus seriously affecting produ
tured that the main contribution to pump wear & th tion (Tian et al., 2007).

large flow of oil into the vanes and the presentte oOn the other hand, pattern recognition methodg offe
small particles of dirt and sand in the suckeddflui a framework that can satisfy a number of basic re-
(LaBour, 1995; Frith et al., 1996). Previous maite quirements, such as short calculation time, high ac
ance and condition monitoring schemes provided ineuracy, and capability of dealing with nonlinearawe
sufficient warning of the impending failure. A sys- behaviors (Zio, 2007). Especially, soft computing
tem that could distinguish between normal machinepproaches (e.g., Artificial Neural Networks and
operation and an impending mechanical failure wakuzzy Logic systems) have shown superior robust-
needed, i.e., a fault classifier had to be putpgara- ness, speed, and accuracy compared to model-basec
tion. methods (Shahrtash et al., 2008). In pattern raeogn



tion techniques, the conceptual basis for the dete¢Rumelhart et al., 1986; Hancock et al., 2006;). A
tion of failure onset is that different system fauh-  main limitation of ANNSs is that the results they de
itiate different patterns of evolution of the irgsted liver are difficult to interpret physically, andus the
variables, as measured by properly placed sensoumderlying model remains cryptic.

(Zio et al., 2006). FL modeling is designed to handle imprecise linguis
Pattern recognition methods entail three differentic concepts, such as “small”, “big”, “young”, and
stages: feature extraction, feature selection,ctasd  “low”, and deal with uncertainties (Zadeh, 19650 Zi
sification (Sheng et al., 2004). Figure 1 shows thet al., 2006). FL exhibits an inherent flexibiliynd
flowchart of pattern recognition methods: the firsthas proven to be a successful modeling framework
step entails the collection into a dataset of raad in a variety of industrial applications and pattern
e.g., vibration data; feature extraction consistthe recognition tasks (Wang et al., 2006; Wang et al.,
evaluation of the most common summary statistics2007). One of the main strengths of fuzzy logic
e.g. mean, standard deviation, in order to summarizmodeling compared with other schemes is its capa-
the characteristics of the available data; the aim bility of dealing with imprecise data (Marsegueeta
feature selection is then to obtain the featureghvh al., 2004). As for the limitations of fuzzy logithe

are essential for class separation which is thé@oa main difficulties stand in the fuzzy partitionind o
the last step, i.e., classification. the input and output spaces and in the establishmen
of the fuzzy rules that are at the basis of thesila
cation phase and may require a time-consuming, tri-

Dataset al-and-error process.
v In this work, we present a framework for the assess
Feature extraction ment and measurement of the wear status of slurry
1 pumps when available data is extremely limited. In
— , particular, great efforts are devoted to the design
eature Selection S . .
the classification strategy. In fact, in the caseelof
y interest, the application of supervised classiforat
Classification schemes were precluded due to the unavailability of

a comprehensive database of failures. Thus, as we
shall see, the approach adopted for detection ¢lo no
require training. In other words, the classifieins

Figure 1. Pattern recognition flowchart

In literature, a number of pattern recognition me

thods have been proposed that differ in the classifPlémented for fault detection in an unsupervised
cation stage, e.g., hierarchical trees (H-treespi(B manner, where the training and test phases collapse

man et al., 1984: Ripley, 1996; Loh et al. 1997)into th_e same clustering phage, and the classmassig
artificial neural networks (ANNs) (Rumelhart et,al. Ment is automated from available data of unknown

1986; Ripley, 1996; Zhang, 2000), and fuzzy |Ogicclasses. In particular, the aqopted un_supervised FL
(FL) ’systems’ (Zade’h 1965" Klir et' al. 1995 Wan pproach, i.e., fuzzy clustering, exploits the adva

et al.. 2006° Zio et al.’ 2006" Wang et ’al. ZOWD. ages of automated generation of fuzzy rules, low
these techniques have been applied to real clesifi COMPutational burden, and benefits from the high-

tion problems in a supervised scheme that entasls t '€V€l, human-like rule representation typical afzy
classifier to be first trained on data from knownSYS!€MS, which offer an appealingly powerful

faults and then used to classify new data. framework for tackling practical classification pro

H-trees evaluate the contribution of input featires 1€MS:

determining the output classes of similarity. Gaher MOreover, because of the shortage of data, the ro-
ly, the most effective feature is selected as tret f bustness of the classification approach is augrdente

node of the tree, and its border value is used tBy combining multiple classifiers so as to improve

create two different branches. Then, by the sarie cidpon the performance of individual classifiers. The

terion, the next most effective feature is found inic.k?a is to combine the predictions of multiple elas
each branch. This process is continued until thei fi Sifiers (for more details on the methodology, reter

nodes (leaves of the tree) obtained in all of the>ection V) to reduce the variance of the results an
branches contain only the output classes. Differerf!€ Pias. . .
procedures may be applied to search for the besst tr he paper is organized as follows. Section 2 ptesen

to solve a given problem, and then the best one ¢ Hg casesstutgjy a;d the sttrutchtur]fe otf the a;/allaghﬂe d
be selected by comparing the accuracy of the gesulfAPase. Section 3 presents the feature extradipn s
and the time required to create the tree (Loh et alof the pattern recognition process. Section 4 shows
1997). the results of box plot analysis for feature sébect

ANNSs can learn to perform the mapping of the in-The method with which the fuzzy rules are generated

put-output relationships underpinning system behaf-rom the data set is shown in Section 5. Sectiogr 6

vior by a process of training on many different ex-p]?rttﬁ th(_el results_o;‘ tr]le_lm(;athod f;)r ti:et clasbsm%t
amples of input and corresponding output state§ M€ Ol pump into faied or saie status, based o



the available vibration data. The monitoring scheméable 1. Measurement equipment.

is expected to provide advanced warning and lead

time to prepare the appropriate corrective action__| Eauipment Model Specification
Finally, advantages and limitations of the proposg 1| DAQ Device NI cDAQ 9172 Max. support module = 8
methodology are discussed. Resolution = 24 bit
2 | DAQ Module NI 9234 Input range = +/- 5V
Sampling rate = up to 51.2 kHz per
channel
Smart Asset
2 THE CASE STUDY . 3 | Maintenance Version 2.3.8
In this research, experimental data were collect{ | System (SAMS)
from a number of slurry pumps that are used to d , | Notebook BM T60 Intel Core2 processor 1.66 GHz
liver a mixture of bitumen, sand, and small piecks Computer Windows XP Professional
rock from one site to another. For each pump, vibr| Mounted on positions Casing Lower arfd
. . . 5 | Accelerometer PCB 352A60 | Casing Discharge
tion is monitored as a symptom of system healt Sensitivity = 10.2 mVig
i i i i Mounted on positions Suction Pipe and
Vibration SIQnaIS have been (.:O”e.Cted at the Iahﬂ. 6 | Accelerometer PCB 352C18| Discharge Pipe
outlet of slurry pumps operating in an oil sand enin Sensitivity = 9.7 mv/g
The pump vibration data were collected by the mine
Line 1 (L1) Line 2 (L2)

staff and one of the authors using the Smart Asset
Management System (SAMS) and then further ana-
lyzed using the proposed classification methods.
SAMS is a PC-based virtual instrument used to per-
form machine health monitoring (Tse, 2002). Its
measurement platform provides a Graphical User In-
terface that allows the user to choose from differe
diagnostic techniques (e.g., higher order stasiktic
analysis and orbit analysis) to conduct machinery
fault diagnosis. It can be installed in a noteb&gk

or desktop computer for portable or continuous ma-
chine health monitoring. SAMS also provides an
easy-to-use interface for data management, report
generation, trend analysis, etc., to help the reaint
ance staff in the recording and planning of mainten

Figure 2. The oil extraction lines layout

Only 11 batches of 4 sensory vibration signals are
ance activities. availab]e !n tota_ll. The number of patterns fpr each

pump is listed in Table Il. These degradation pat-
2.1 The Database terns are representative of different stages of pro

The data acquisition equipment (DAQ) consists of gressive pump deterioration. Despite that, in otder

National Instrument (NI) cDAQ 9172 and a DAQ analy;e only pumps subjected to simila_lr working
module NI 9234. Their specifications are listed inconditions, we only selected the degradation pater

Table I. Vibrations were measured by four accelef®lative to G1 and G2 from lines L1 and L2. Finally
rometers mounted in four different positions sa thath€ total number of available degradation pattéons
there were a total of four different vibration sigm ~ P€ classified is 7.

captured. They are denoted as S1, S2, S3, and S4ble 2. List of Available Degradation PatternsEach Pump
Accelerometers S1 and S2 were PCB 352A60 accdl L1 and L2. NA=Not Available.

lerometers (See Table l) that were mpunted on t1§l Available degradation pat- L2 Available degradation pat-
case of the pump and denoted as ‘Casing Lower’ and terns terns
‘Casing Discharge’, respectively. Accelerometers S31 1 Gl

and S4 were PCB 352C18 accelerometers (see Talfé 1 G2

[) mounted on the suction and discharge pipes, ne<3 2 G3 NA

spectively. All four accelerometers captured the vj 5 1 G4 1

bration signals from four different positions adimn-

ilar sampling frequency rate of 50 kHz. Each degradation pattern is composed of 30 interval

In Figure 2, the layout of the oil extraction si®  of records. each one lasting 1.3 [s], with pauses o
represented. It consists of two parallel lines,ant [s] in between (Figure 3).

L2, each composed of four different pumps. Thex™ preliminary analysis of the data showed that
pumps located in L1 are called G1, G2, G3, and G&mooth and gradual degradation of the pump per-
whereas G1, G2, G3, and G4 are those located in Lgsrmance occurred (except for catastrophic failyres
Each pump is different in type, size, and workingsych that there was no significant deviation of the
condition, i.e., ground elevation, process fluictdr signal along the total 40 seconds of records. Ttas,
ry, and wear. lighten the computational burden of the data treat-



ment, we have concentrated our analysis only on tharocess that generated the data (Guyon, 2003). De-
records from the first 1.3 [s] (65000 points), dist  pending on the nature of the regression technique,
ing the remaining 29 intervals, assuming that théhe presence of irrelevant or redundant features ca
pump is either failed or healthy at time O [s]. lead the system to focusing attention on the idiesy
crasies of the individual samples while losing sigh

of the broad relational picture that is essentwl f

1stinterval 27 interval 30" interval
N u |
allh

co generalization beyond the training set. This pnoble
is compounded when the number of observations is
C1 also relatively small, as in our case study. If the
- number of variables is comparable to the number of
training patterns, the parameters of the model may
c3 become unstable and are unlikely to be replicdted i

the study were to be repeated. Feature selection
seeks to remedy this situation by identifying a kma
Figure 3. Sketch of the degradation pattern strectu subset of relevant features and using only them to
construct the actual model. In this work, the selec
tion of the most relevant features to be used & th
3 FEATURE EXTRACTION classification phase is based on box plots. Boxsplo
Ten features were selected and extracted from thsrovide an excellent visual summary of many impor-
batches of vibration data collected by the acceleraant aspects of a distribution and are usefuldent
meters. For each of the 7 degradation patterns, th#ying its outliers (Massart et al., 2005).
following M=10 indexes (Lei et al., 2009) were eva-The conceptual basis for using box plots in distin-

luated (N is equal to 65000 sampling points): guishing the most relevant features for classificat
is that things can be distinguished from each other
(1) Peak Va|UemaX=.:”}'§X n; based on their inconsistency (Hsiao et al, 2009).

j=L..N

Outliers can in fact be used as a primary method fo

1Y pattern classification: the more outliers a paramet
(2) Mean:u:Wan distribution has, the more that parameter will be-u
1= _ ful in defining clusters in the feature space dedin
N B 2 by the considered parameter while avoiding cluster
(3) Standard dev'atlom'\fm_—l;(nj ~Y overlapping. There are several steps in conshycti
:ﬂ' a box plot. The first relies on the evaluation loé t
(4) Root mean squar@&ms= iz( % 25th, 50th, and 75th percentiles in the distributd
N & the 7 patterns.
N Figures 4-7 show how these three statistics aré use
(5) SkewnessSK{Z(“j—@SJ /(( N—1)o—3) in our case study: for each extracted feature, we
= draw a box extending from the 25th percentile ® th

N 75th percentile. The 50th percentile is drawn iesid
(6) Kurtosisku =| > (n; -u)* ((N—1)04) the box. We also put “whiskers” above and below
=1 each box to give additional information about the

L& spread of data. Whiskers are vertical lines thdtien
(7) Crest indicatorci :('glwa>;q|nj|J Nz(nj 2 a horizontal. They are drawn from the lowest and
1= =1 upper hinges to the lowest datum still within 1n5 |

o 1 g ter Quartile Range (IQR) of the lower quartile, and
(8) Clearance indicatorcLI :[jz”l‘?}?jJ”iU ﬁZW' the highest datum still within 1.5 IQR of the upper
' i= guartile, respectively (Massart et al., 2005). Fjna

1
< \ — L .
. B 1 we represent outliers in our box plots by adding ad
(9) Shape indicatos ‘,fNZ(”i)Z/(NZJ § |] ditional crosses beyond the whiskers.
1= = From the analysis of Figures 4-7, the relevant fea-
" tures for each sensor were:
i o 1 , - S1: skewness and kurtosis
(10) Impulse indicatom = (max |n /[N ]Z:; h ] © 25 ekewness
- S3: mean, standard deviation, kurtosis, clearance
indicator, shape indicator and impulse indicator
4 FEATURE SELECTION - S4: skewness o
The objective of feature selection is three-fold: t Most of the four signal box plots highlight skewses

improve the performance of the classifier, provideand kurtos_is spread distributions. According tc thi
faster and more cost-effective classification, andonsideration and to keep controlled the computa-

provide a better understanding of the underlyingional burden of the approach, only these two fea-



tures were considered to be key features on which CLASSIFICATION
the classification of the degradation patterns woul Fault detection may pose difficulties, becausenit e

be based.
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Figure 4. Box plots of the distributions of the Ifiracted features
from sensor S1.

Sensor 2: discharge case
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Figure 5. Box plots of the distributions of the Ifiracted features
from sensor S2.
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Sensor 3: suction pipe
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Figure 6. Box plots of the distributions of the Ifiracted features
from sensor S3.

Sensor 4: discharge pipe
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Figure 7. Box plots of the distributions of the Ifiracted features
from sensor S4.

tails the implementation of a classifier for labeli
the component status as healthy or failed. In pur a
plication, the shortage of data forces us to resort
an unsupervised classification scheme for all the
classifiers that in an attempt to improve the detec
tion-classification performance are combined to es-
timate the status of the pumps (Freund et al., 1996
Schapire, 1999; Friedman, 2000). Figure 8 illussat
the basic framework for the ensemble scheme
adopted. The key step was the formation of an en-
semble of diverse classifiers from a single data se
In this work, four different classifiers were fedthv
different inputs taken from different sensors (S2,

S3 and S4), but all relative to the same degradatio
pattern. The single classifier results were them-co
bined by two different methodologies (Friedman et
al., 2000):

- Majority voting

* Each ensemble member votes for one of the
classes (the one with the largest membership
value, see Section 5.1).

* Predicts the class with the highest number of
vote.

* In case of equal number of votes, the class is la-
beled as uncertain.

- Weighted voting
* Make a weighted sum of the votes of the en-
semble members (Weights depend on the per-
formance of each independent classifier).

I Data from S1 | | Data from S2 | | Data from S3 | | Data from S4 |

Classifier 1 | Classifier 2 | | Classifier 3 | Classifier 4

| Classification results

=

| Classification results

| Classification results

| Classification results

Combined
classification results

Figure 8. Scheme of combination of different clfisss.

5.1 The Unsupervised Fuzzy C-Means algorithm

Fuzzy C-Means (FCM) is one of the most popular
fuzzy clustering methods (Bezdek, 1981; Leguiza-
mon et al., 1996; Alata et al., 2008). The FCM me-
thod originated from hard C-Means clustering, al-
lowing data points to belong to two or more cluster
(Klir et al., 1995). The clusters emerge from the m

nimization of the following objective function:



NS - Degradation patterns with skewness values far
J(N'C)’;;”f sz( X §) (1) from zero, i.e., vibrational data not normally dis-
' tributed, are working in anomalous conditions

where J(N,C) is the sum of the square errors of the (failed components highly deform the parameter

distance of each individual data poti=1,2,...N, distributions).
to the centerc;, j=1,2,...C, of the given cluster Thus, circles are labels of degradation patterms fo
safe pumps, crosses indicate the class of failed
pumps and stars are the clusters centers. Tha-class
fication results based on the batch of four sensors
ically, d(x ¢) is the square of the distance betweerPl, S2, S3, and S4, from the 7 degradation patterns
b , . have been listed in Table Ill. Based on the FCM
x andc;, whereasn’ is the degree of membership ¢|assifier algorithm, when using majority votinget

greater than 1, and it modulates the fuzzinessef t UNCertain assignment percentage equal to 14%; whe-

e L . reas, using weighted voting, the correctness of the
_clust(_ars. FU.ZZY pa_lrtltlonlng IS car_rled out throtagh estimations reached 100%. In both cases, only one
iterative optimization ofJ(N, C), with the update of

_ pattern is labeled as failed pump. However, the non
membershlpSnf and the cluster centets by: aggregated results of the classifiers shown inregu
9-12 highlight that each classifier identifies Hedt

(class)j. The minimization is done with respect to
the membershipn:j and the centers, . More specif-

o = d, o @) ent number of patterns belonging to the two classes
i —2-1) In fact, in Figures 9 and 11, one pattern is latele
Zdu failed, whereas in Figures 10 and 12, three and two
;:1 patterns, respectively. This demonstrates thaaghe
Zm¢" gregation of the four classifier results is lespate
= 3) dent on the specifics of a single classifier, smgwi
= , that a combination of multiple classifiers may fear
Z;”h more expressive concept class than a single dlassif
For further details, the interested reader mayr fiefe €'
(Bezdek, 1981). o0 Casho e
6 RESULTS
The extracted features to be fed to the FCM cliassif
cation algorithm were selected by box plot analysis 1200

in Section IV, where we justified the choice of
skewness and kurtosis as important features. The
classification phase identified two clusters thanh c

be useful for labeling the degradation patternsehs

Kurtosis

800

ative either to failed or to healthy pumps. In this “r o o]
case, the classification results are shown in Ei@ur xo ]
12. By analyzing the skewness and kurtosis valfies o S

Skewness

the considered degradation patterns plotted on the
sg:atter plot of Figures 9-12, it turn_s OUt_ _thatmhmn Figure 9. Classification results for sensor S1 (Gfiassl). Circles =
differences between the two identified clustersqeaithy, Crosses = Failed

(represented by circles and crosses) are:

Sensor 2: Casing Discharge
140 T T T T

- Circles have skewness values close to zero and |
lower kurtosis values. .
- Crosses have skewness values far from zero and oo
higher kurtosis values.

@
S
T

Based on engineering-based considerations we have £, °
decided that:
40 4
- Degradation patterns with skewness values close . °
to zero, i.e., vibrational data normally distribdite I °
are relative to healthy pumps (the flow of abra- SV WS
sive and erosive particles can only generate white o sewes o
noise on the measurements)_ Figure 10. Classification results for sensor S2 (€li@s 2). Circles =

Healthy, Crosses = Failed



cording to the distances of the feature values from
350 : [ SemorsSwlon®ee : the centers. The application of the framework (data
collection, feature extraction, feature selectiom a
classification) can be useful for industries to namn

3001 * B

] the health of a machine prone to degradation and
sporadic catastrophic breakdowns and dynamically
| plan equipment maintenance. However, further veri-

Kurtosis

fication with additional real data is required the
framework to be of practical use in real industrial

1501 B

seor 1 applications.
50 ° B
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