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1 INTRODUCTION 
Centrifugal slurry pumps are widely used in the oil 
sand industry, mining, ore processing, waste treat-
ment, cement production, and other industries to 
move mixtures of solids and liquids. Equipment 
manufacturers and owners invest significant re-
sources in maintenance programs designed to ensure 
that the required hydraulic system performance is 
maintained at maximum efficiency. In fact, unsche-
duled outages, costly component replacements and 
repairs that result from unexpected premature fail-
ures or gradual performance degradation caused by 
system wear can cost companies millions of dollars 
each year (Mitchell, 1999; Hancock et al., 2006). 
The motivation for this application comes from the 
interest of a producer of oil extracted from oil sands 
in developing a proper monitoring scheme to detect 
pump failures in a system aimed at moving large 
amounts of raw oil sand. The reason for the failures 
is not exactly known, although it has been conjec-
tured that the main contribution to pump wear is the 
large flow of oil into the vanes and the presence of 
small particles of dirt and sand in the sucked fluid 
(LaBour, 1995; Frith et al., 1996). Previous mainten-
ance and condition monitoring schemes provided in-
sufficient warning of the impending failure. A sys-
tem that could distinguish between normal machine 
operation and an impending mechanical failure was 
needed, i.e., a fault classifier had to be put in opera-
tion. 

In general terms, fault classification methods can be 
divided into two categories (Venkatasubramanian et 
al., 2003): model-based and pattern recognition 
techniques. In model-based methods, faults can be 
detected by performing some mathematical calcula-
tions. For example, in the case of interest here, the 
state-of-the-practice entails oil pump failures being 
diagnosed by expert analysis of the parameter values 
measured during the monitoring time and their com-
parison with the nominal power curve of every oil 
pump: drawing the actual power curve according to 
the measured parameters values, i.e., by manual 
analysis, allows the analyst to identify whether any 
fault exists. Indeed, failed pumps often show hollow 
pumping action and energy waste. Because of the 
nonlinearity of the wear behavior and the size of the 
input data and their uncertainties, this way of pro-
ceeding requires significant human, material, and fi-
nancial resources while not guaranteeing the timely 
detection of faults, thus seriously affecting produc-
tion (Tian et al., 2007). 
On the other hand, pattern recognition methods offer 
a framework that can satisfy a number of basic re-
quirements, such as short calculation time, high ac-
curacy, and capability of dealing with nonlinear wear 
behaviors (Zio, 2007). Especially, soft computing 
approaches (e.g., Artificial Neural Networks and 
Fuzzy Logic systems) have shown superior robust-
ness, speed, and accuracy compared to model-based 
methods (Shahrtash et al., 2008). In pattern recogni-
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tion techniques, the conceptual basis for the detec-
tion of failure onset is that different system faults in-
itiate different patterns of evolution of the interested 
variables, as measured by properly placed sensors 
(Zio et al., 2006). 
Pattern recognition methods entail three different 
stages: feature extraction, feature selection, and clas-
sification (Sheng et al., 2004). Figure 1 shows the 
flowchart of pattern recognition methods: the first 
step entails the collection into a dataset of raw data, 
e.g., vibration data; feature extraction consists in the 
evaluation of the most common summary statistics, 
e.g. mean, standard deviation, in order to summarize 
the characteristics of the available data; the aim of 
feature selection is then to obtain the features which 
are essential for class separation which is the goal of 
the last step, i.e., classification. 

 
Figure 1. Pattern recognition flowchart 

 
In literature, a number of pattern recognition me-
thods have been proposed that differ in the classifi-
cation stage, e.g., hierarchical trees (H-trees) (Brei-
man et al., 1984; Ripley, 1996; Loh et al., 1997), 
artificial neural networks (ANNs) (Rumelhart et al., 
1986; Ripley, 1996; Zhang, 2000), and fuzzy logic 
(FL) systems (Zadeh, 1965; Klir et al., 1995; Wang 
et al., 2006; Zio et al., 2006; Wang et al., 2007). All 
these techniques have been applied to real classifica-
tion problems in a supervised scheme that entails the 
classifier to be first trained on data from known 
faults and then used to classify new data.  
H-trees evaluate the contribution of input features in 
determining the output classes of similarity. General-
ly, the most effective feature is selected as the first 
node of the tree, and its border value is used to 
create two different branches. Then, by the same cri-
terion, the next most effective feature is found in 
each branch. This process is continued until the final 
nodes (leaves of the tree) obtained in all of the 
branches contain only the output classes. Different 
procedures may be applied to search for the best tree 
to solve a given problem, and then the best one can 
be selected by comparing the accuracy of the results 
and the time required to create the tree (Loh et al., 
1997). 
ANNs can learn to perform the mapping of the in-
put-output relationships underpinning system beha-
vior by a process of training on many different ex-
amples of input and corresponding output states 

(Rumelhart et al., 1986; Hancock et al., 2006;). A 
main limitation of ANNs is that the results they de-
liver are difficult to interpret physically, and thus the 
underlying model remains cryptic. 
FL modeling is designed to handle imprecise linguis-
tic concepts, such as “small”, “big”, “young”, and 
“low”, and deal with uncertainties (Zadeh, 1965; Zio 
et al., 2006). FL exhibits an inherent flexibility and 
has proven to be a successful modeling framework 
in a variety of industrial applications and pattern 
recognition tasks (Wang et al., 2006; Wang et al., 
2007). One of the main strengths of fuzzy logic 
modeling compared with other schemes is its capa-
bility of dealing with imprecise data (Marseguerra et 
al., 2004). As for the limitations of fuzzy logic, the 
main difficulties stand in the fuzzy partitioning of 
the input and output spaces and in the establishment 
of the fuzzy rules that are at the basis of the classifi-
cation phase and may require a time-consuming, tri-
al-and-error process.  
In this work, we present a framework for the assess-
ment and measurement of the wear status of slurry 
pumps when available data is extremely limited. In 
particular, great efforts are devoted to the design of 
the classification strategy. In fact, in the case here of 
interest, the application of supervised classification 
schemes were precluded due to the unavailability of 
a comprehensive database of failures. Thus, as we 
shall see, the approach adopted for detection do not 
require training. In other words, the classifier is im-
plemented for fault detection in an unsupervised 
manner, where the training and test phases collapse 
into the same clustering phase, and the class assign-
ment is automated from available data of unknown 
classes. In particular, the adopted unsupervised FL 
approach, i.e., fuzzy clustering, exploits the advan-
tages of automated generation of fuzzy rules, low 
computational burden, and benefits from the high-
level, human-like rule representation typical of fuzzy 
systems, which offer an appealingly powerful 
framework for tackling practical classification prob-
lems. 
Moreover, because of the shortage of data, the ro-
bustness of the classification approach is augmented 
by combining multiple classifiers so as to improve 
upon the performance of individual classifiers. The 
idea is to combine the predictions of multiple clas-
sifiers (for more details on the methodology, refer to 
Section V) to reduce the variance of the results and 
the bias.  
The paper is organized as follows. Section 2 presents 
the case study and the structure of the available da-
tabase. Section 3 presents the feature extraction step 
of the pattern recognition process. Section 4 shows 
the results of box plot analysis for feature selection. 
The method with which the fuzzy rules are generated 
from the data set is shown in Section 5. Section 6 re-
ports the results of the method for the classification 
of the oil pump into failed or safe status, based on 



the available vibration data. The monitoring scheme 
is expected to provide advanced warning and lead 
time to prepare the appropriate corrective actions. 
Finally, advantages and limitations of the proposed 
methodology are discussed. 

2 THE CASE STUDY 
In this research, experimental data were collected 
from a number of slurry pumps that are used to de-
liver a mixture of bitumen, sand, and small pieces of 
rock from one site to another. For each pump, vibra-
tion is monitored as a symptom of system health. 
Vibration signals have been collected at the inlet and 
outlet of slurry pumps operating in an oil sand mine. 
The pump vibration data were collected by the mine 
staff and one of the authors using the Smart Asset 
Management System (SAMS) and then further ana-
lyzed using the proposed classification methods. 
SAMS is a PC-based virtual instrument used to per-
form machine health monitoring (Tse, 2002). Its 
measurement platform provides a Graphical User In-
terface that allows the user to choose from different 
diagnostic techniques (e.g., higher order statistical 
analysis and orbit analysis) to conduct machinery 
fault diagnosis. It can be installed in a notebook PC 
or desktop computer for portable or continuous ma-
chine health monitoring. SAMS also provides an 
easy-to-use interface for data management, report 
generation, trend analysis, etc., to help the mainten-
ance staff in the recording and planning of mainten-
ance activities. 

2.1 The Database 

The data acquisition equipment (DAQ) consists of a 
National Instrument (NI) cDAQ 9172 and a DAQ 
module NI 9234. Their specifications are listed in 
Table I. Vibrations were measured by four accele-
rometers mounted in four different positions so that 
there were a total of four different vibration signals 
captured. They are denoted as S1, S2, S3, and S4. 
Accelerometers S1 and S2 were PCB 352A60 acce-
lerometers (see Table I) that were mounted on the 
case of the pump and denoted as ‘Casing Lower’ and 
‘Casing Discharge’, respectively. Accelerometers S3 
and S4 were PCB 352C18 accelerometers (see Table 
I) mounted on the suction and discharge pipes, re-
spectively. All four accelerometers captured the vi-
bration signals from four different positions at a sim-
ilar sampling frequency rate of 50 kHz. 
In Figure 2, the layout of the oil extraction site is 
represented. It consists of two parallel lines, L1 and 
L2, each composed of four different pumps. The 
pumps located in L1 are called G1, G2, G3, and G5, 
whereas G1, G2, G3, and G4 are those located in L2. 
Each pump is different in type, size, and working 
condition, i.e., ground elevation, process fluid, histo-
ry, and wear. 

Table 1.  Measurement equipment. 

 Equipment Model Specification 

1 DAQ Device  NI cDAQ 9172 Max. support module = 8 

2 DAQ Module NI 9234 

Resolution = 24 bit 
Input range = +/- 5V 
Sampling rate = up to 51.2 kHz per 
channel 

3 
Smart Asset 
Maintenance 
System (SAMS) 

Version 2.3.8  

4 
Notebook 
Computer 

IBM T60 
Intel Core2 processor 1.66 GHz 
Windows XP Professional 

5 Accelerometer PCB 352A60 
Mounted on positions Casing Lower and 
Casing Discharge 
Sensitivity = 10.2 mV/g 

6 Accelerometer PCB 352C18 
Mounted on positions Suction Pipe and 
Discharge Pipe 
Sensitivity = 9.7 mV/g  

 

Figure 2. The oil extraction lines layout 

Only 11 batches of 4 sensory vibration signals are 
available in total. The number of patterns for each 
pump is listed in Table II. These degradation pat-
terns are representative of different stages of pro-
gressive pump deterioration. Despite that, in order to 
analyze only pumps subjected to similar working 
conditions, we only selected the degradation patterns 
relative to G1 and G2 from lines L1 and L2. Finally, 
the total number of available degradation patterns to 
be classified is 7. 

Table 2.  List of Available Degradation Patterns for Each Pump 
in L1 and L2. NA=Not Available. 

L1 Available degradation pat-
terns 

L2 Available degradation pat-
terns 

G1 1 G1 2 
G2 1 G2 3 
G3 2 G3 NA 
G5 1 G4 1 

 

Each degradation pattern is composed of 30 intervals 
of records, each one lasting 1.3 [s], with pauses of 2 
[s] in between (Figure 3). 
A preliminary analysis of the data showed that 
smooth and gradual degradation of the pump per-
formance occurred (except for catastrophic failures), 
such that there was no significant deviation of the 
signal along the total 40 seconds of records. Thus, to 
lighten the computational burden of the data treat-



ment, we have concentrated our analysis only on the 
records from the first 1.3 [s] (65000 points), discard-
ing the remaining 29 intervals, assuming that the 
pump is either failed or healthy at time 0 [s]. 

 
Figure 3. Sketch of the degradation pattern structure. 

3 FEATURE EXTRACTION 
Ten features were selected and extracted from the 
batches of vibration data collected by the accelero-
meters. For each of the 7 degradation patterns, the 
following M=10 indexes (Lei et al., 2009) were eva-
luated (N is equal to 65000 sampling points): 
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4 FEATURE SELECTION 
The objective of feature selection is three-fold: to 
improve the performance of the classifier, provide 
faster and more cost-effective classification, and 
provide a better understanding of the underlying 

process that generated the data (Guyon, 2003). De-
pending on the nature of the regression technique, 
the presence of irrelevant or redundant features can 
lead the system to focusing attention on the idiosyn-
crasies of the individual samples while losing sight 
of the broad relational picture that is essential for 
generalization beyond the training set. This problem 
is compounded when the number of observations is 
also relatively small, as in our case study. If the 
number of variables is comparable to the number of 
training patterns, the parameters of the model may 
become unstable and are unlikely to be replicated if 
the study were to be repeated. Feature selection 
seeks to remedy this situation by identifying a small 
subset of relevant features and using only them to 
construct the actual model. In this work, the selec-
tion of the most relevant features to be used in the 
classification phase is based on box plots. Box plots 
provide an excellent visual summary of many impor-
tant aspects of a distribution and are useful for iden-
tifying its outliers (Massart et al., 2005). 
The conceptual basis for using box plots in distin-
guishing the most relevant features for classification 
is that things can be distinguished from each other 
based on their inconsistency (Hsiao et al, 2009). 
Outliers can in fact be used as a primary method for 
pattern classification: the more outliers a parameter 
distribution has, the more that parameter will be use-
ful in defining clusters in the feature space defined 
by the considered parameter while avoiding cluster 
overlapping.  There are several steps in constructing 
a box plot. The first relies on the evaluation of the 
25th, 50th, and 75th percentiles in the distribution of 
the 7 patterns. 
Figures 4-7 show how these three statistics are used 
in our case study: for each extracted feature, we 
draw a box extending from the 25th percentile to the 
75th percentile. The 50th percentile is drawn inside 
the box. We also put “whiskers” above and below 
each box to give additional information about the 
spread of data. Whiskers are vertical lines that end in 
a horizontal. They are drawn from the lowest and 
upper hinges to the lowest datum still within 1.5 In-
ter Quartile Range (IQR) of the lower quartile, and 
the highest datum still within 1.5 IQR of the upper 
quartile, respectively (Massart et al., 2005). Finally, 
we represent outliers in our box plots by adding ad-
ditional crosses beyond the whiskers. 
From the analysis of Figures 4–7, the relevant fea-
tures for each sensor were: 

- S1: skewness and kurtosis 
- S2: skewness 
- S3: mean, standard deviation, kurtosis, clearance 

indicator, shape indicator and impulse indicator 
- S4: skewness 

Most of the four signal box plots highlight skewness 
and kurtosis spread distributions. According to this 
consideration and to keep controlled the computa-
tional burden of the approach, only these two fea-



tures were considered to be key features on which 
the classification of the degradation patterns would 
be based. 
 

 

 

 

 

 
 

Figure 4. Box plots of the distributions of the 10 extracted features 
from sensor S1. 

 

 

 

 

 

 
 

Figure 5. Box plots of the distributions of the 10 extracted features 
from sensor S2. 

 

 

 

 

 

 
 

Figure 6. Box plots of the distributions of the 10 extracted features 
from sensor S3. 
 

 

 

 

 

 

 
Figure 7. Box plots of the distributions of the 10 extracted features 
from sensor S4. 

5 CLASSIFICATION 
Fault detection may pose difficulties, because it en-
tails the implementation of a classifier for labeling 
the component status as healthy or failed. In our ap-
plication, the shortage of data forces us to resort to 
an unsupervised classification scheme for all the 
classifiers that in an attempt to improve the detec-
tion-classification performance are combined to es-
timate the status of the pumps (Freund et al., 1996; 
Schapire, 1999; Friedman, 2000). Figure 8 illustrates 
the basic framework for the ensemble scheme 
adopted. The key step was the formation of an en-
semble of diverse classifiers from a single data set. 
In this work, four different classifiers were fed with 
different inputs taken from different sensors (S1, S2, 
S3 and S4), but all relative to the same degradation 
pattern. The single classifier results were then com-
bined by two different methodologies (Friedman et 
al., 2000): 

- Majority voting 
• Each ensemble member votes for one of the 

classes (the one with the largest membership 
value, see Section 5.1). 

• Predicts the class with the highest number of 
vote. 

• In case of equal number of votes, the class is la-
beled as uncertain. 

- Weighted voting 
• Make a weighted sum of the votes of the en-

semble members (Weights depend on the per-
formance of each independent classifier). 

 

 

Figure 8. Scheme of combination of different classifiers. 

5.1 The Unsupervised Fuzzy C-Means algorithm 

Fuzzy C-Means (FCM) is one of the most popular 
fuzzy clustering methods (Bezdek, 1981; Leguiza-
mon et al., 1996; Alata et al., 2008). The FCM me-
thod originated from hard C-Means clustering, al-
lowing data points to belong to two or more clusters 
(Klir et al., 1995). The clusters emerge from the mi-
nimization of the following objective function: 
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For further details, the interested reader may refer to 
(Bezdek, 1981). 

6 RESULTS 
The extracted features to be fed to the FCM classifi-
cation algorithm were selected by box plot analysis 
in Section IV, where we justified the choice of 
skewness and kurtosis as important features. The 
classification phase identified two clusters that can 
be useful for labeling the degradation patterns as rel-
ative either to failed or to healthy pumps. In this 
case, the classification results are shown in Figure 9-
12. By analyzing the skewness and kurtosis values of 
the considered degradation patterns plotted on the 
scatter plot of Figures 9-12, it turns out that the main 
differences between the two identified clusters 
(represented by circles and crosses) are: 

-  Circles have skewness values close to zero and 
lower kurtosis values. 

-  Crosses have skewness values far from zero and 
higher kurtosis values. 

Based on engineering-based considerations we have 
decided that: 

-  Degradation patterns with skewness values close 
to zero, i.e., vibrational data normally distributed, 
are relative to healthy pumps (the flow of abra-
sive and erosive particles can only generate white 
noise on the measurements). 

-  Degradation patterns with skewness values far 
from zero, i.e., vibrational data not normally dis-
tributed, are working in anomalous conditions 
(failed components highly deform the parameter 
distributions). 

Thus, circles are labels of degradation patterns for 
safe pumps, crosses indicate the class of failed 
pumps and stars are the clusters centers. The classi-
fication results based on the batch of four sensors, 
S1, S2, S3, and S4, from the 7 degradation patterns 
have been listed in Table III. Based on the FCM 
classifier algorithm, when using majority voting, the 
correctness of the classification was 86%, with an 
uncertain assignment percentage equal to 14%; whe-
reas, using weighted voting, the correctness of the 
estimations reached 100%. In both cases, only one 
pattern is labeled as failed pump. However, the non-
aggregated results of the classifiers shown in Figures 
9-12 highlight that each classifier identifies a differ-
ent number of patterns belonging to the two classes. 
In fact, in Figures 9 and 11, one pattern is labeled as 
failed, whereas in Figures 10 and 12, three and two 
patterns, respectively. This demonstrates that the ag-
gregation of the four classifier results is less depen-
dent on the specifics of a single classifier, showing 
that a combination of multiple classifiers may learn a 
more expressive concept class than a single classifi-
er. 
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Figure 9. Classification results for sensor S1 (Classifier 1). Circles = 
Healthy, Crosses = Failed 
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Figure 10. Classification results for sensor S2 (Classifier 2). Circles = 
Healthy, Crosses = Failed 
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Figure 11. Classification results for sensor S3 (Classifier 3). Circles = 
Healthy, Crosses = Failed 
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Figure 12. Classification results for sensor S4 (Classifier 4). Circles = 
Healthy, Crosses = Failed 

 

Table 3.  Classification Results Using Unsupervised FCM with 
Box Plots as Selecting Methods for the Input Features 
(H=healthy, F=failed, ?=uncertain). 

Pattern 1 2 3 4 5 6 7 Correct Uncertain 

Majority voting H ? F H H H H 86% 14% 

Weighted sum H H F H H H H 100% 0% 

7 CONCLUSIONS 
In this work, we have presented a framework of 
analysis for assessing the wear status of pumps when 
available data is extremely limited. The method re-
lies on an unsupervised clustering ensemble me-
thods, based on FCM for classifying the available 
data. In particular, the adopted unsupervised FCM 
approach exploits the advantages of the automated 
generation of fuzzy rules, low computational burden, 
and the high-level, humanlike thinking and reason-
ing of fuzzy systems, which offer an appealingly 
powerful framework for tackling practical classifica-
tion problems. Fault detection based on FCM allows 
building clusters with uncertain boundaries accom-
modating for different pump locations and different 
pump types and sizes. Moreover, the cluster centers 
identified by the FCM can turn out useful during on-
line fault detection for classifying a new developing 
degradation pattern into healthy/failed clusters ac-

cording to the distances of the feature values from 
the centers. The application of the framework (data 
collection, feature extraction, feature selection and 
classification) can be useful for industries to monitor 
the health of a machine prone to degradation and 
sporadic catastrophic breakdowns and dynamically 
plan equipment maintenance. However, further veri-
fication with additional real data is required for the 
framework to be of practical use in real industrial 
applications. 
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