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Abstract
Thermal-Hydraulic (T-H) passive safety systemspmtentially more reliable than active systems,
and for this reason are expected to improve thetgadf nuclear power plants.
However, uncertainties are present in the operadiad modeling of a T-H passive system and the
system may find itself unable to accomplish itetion. For the analysis of the system functional
failures, a mechanistic code is used and the pridibpatof failure is estimated based on a Monte
Carlo (MC) sample of code runs which propagate tineertainties in the model and numerical
values of its parameters/variables.
Within this framework, sensitivity analysis aimsdatermining the contribution of the individual
uncertain parameters (i.e., the inputs to the madte code) to i) the uncertainty in the outputs o
the T-H model code and ii) the probability of fuontl failure of the passive system. The analysis
requires multiple (e.g., many hundreds or thousanelgaluations of the code for different
combinations of system inputs: this makes the @&soccomputational effort prohibitive in those
practical cases in which the computer code requsegeral hours to run a single simulation.
To tackle the computational issue, in this work tise of the Subset Simulation (SS) and Line
Sampling (LS) methods is investigated. The metamdested on two case studies: the first one is
based on the well-known Ishigami function [1]; tbecond one involves the natural convection
cooling in a Gas-cooled Fast Reactor (GFR) aftérogs of Coolant Accident (LOCA) [2].

Keywords: nuclear passive system, functional failure prdgbp reliability sensitivity analysis,

Subset Simulation, Line Sampling, Sobol indices.

1 Introduction

Modern nuclear reactor concepts make use of passifety features, which do not need external

input (especially energy) to operate [3] and, tharg, expected to improve the safety of nuclear
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power plants because of simplicity and reductiobah human interactions and hardware failures
[4]-[6].

However, thealeatory and epistemicuncertainties involved in theperation and modeling of
passive systems are usually larger than for asygtems [7], [8]. Due to these uncertainties, the
physical phenomena involved in the passive systaemationing (e.g., natural circulation) might
develop in such a way to lead the system to faifunhction (e.g., decay heat removal): actually,
deviations in the natural forces and in the coondgiof the underlying physical principles from the
expected ones can impair the function of the systiself [9]-[21]. In the analysis of such
functional failurebehavior [10], the passive system is modeled imgahanistic Thermal-Hydraulic
(T-H) code and the probability of failing to penforthe required function is estimated based on a
Monte Carlo (MC) sample of code runs which propagtdie uncertainties in the model and

numerical values of its parameters/variables [33

Within this framework, the objective of sensitivigyalysis is twofold: i) the determination of the
contribution of the individual uncertain parameteasiables (i.e., the inputs to the T-H code) te th
uncertainty in the outputs of the T-H model codgthe quantification of the importance of the
individual uncertain parameters/variables in affertthe performance (i.e., in practice, the
functional failure probability) of the passive st [39]-[41]. In this view, the sensitivity analgsi
outcomes provide two important insights. On the aide, the analyst can identify those
parameters/variables that are not important and lbeagxcluded from the modeling and analysis;
on the opposite side, the analyst is able to ifletiose parameters/variables whose epistemic
uncertainty plays a major role in determining tlhwadtional failure of the T-H passive system:
consequently, his/her efforts can be focused omeasing the state-of-knowledge on these
important parameters/variables and the relatedigdlyshenomena (for example, by the collection
of experimental data one may achieve an improveimehe state-of-knowledge on the correlations
used to model the heat transfer process in natoralection, and a corresponding reduction in the
uncertainty) [30], [38]. In the present context mdssive system functional failure probability
assessment the attention will be mainly focusethanlatter aspect, i.e., the identification of ko

uncertain variables playing a key role in the deteation of the passive system performance.

In all generality, approaches to sensitivity analysan be eithetocal or global. As the name
suggests, local methods consider the variatiomensystem model output that results from a local
perturbation about someominal input value. In the limit view, the sensitivity amure of the

contribution of a generic uncertain input paramétethe uncertainty of the output is tpartial
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derivative of the output with respect to the input paraméelf calculated around the nominal
values of the input parameters. Such measure feenthe critical parameters as those whose
variation leads to the most variation in the ouf@%, [42]. On the contrary, global techniques aim
at determining which of the uncertain input parargetinfluence the output the most when the
uncertainty in the input parameterspi®pagatedthrough the system model [43]. In this view, the
term “global” has two meanings: the first one iatfifor one input parameter whose uncertainty
importance is evaluated, the effect of tlmetire uncertainty distribution of this parameter is
considered; the second one is that the importaht@input parameter should be evaluated with
all other input parameters varying as well [44]. ExBamf methods for global sensitivity analysis
include the so-calledariance-basedechniques (such as those relying on the computati Sobol
indices [1], [39], [44]-[46] or the Fourier Amplitie Sensitivity Test (FAST) [47]) and the more
recentmoment independetdgchniques [43], [48]-[52]. The interested reaaday refer to [39], [42],
[53]-[58] for detailed and updated surveys on densi analysis methods.

Regardless of the techniqgue employed, sensitiviglysis relies omultiple (e.g., many hundreds
or thousands) evaluations of the system model {cfmeadifferent combinations of system inputs.
This makes the associated computational effort gy and at times prohibitive in practical cases
in which the computer codes require several hoarreyen days) to run a single simulation [32],
[59]". Further, in the present context of nuclear passistems, the computational issue is even
more dramatic because the estimation of the funatitailure probability isalso of interestbesides
the sensitivity analysis of the passive system goerédnce: as a consequence, the (typically,
hundreds of thousands) simulations performed fomeasing the functional failure probability have
to beaddedto those carried out for the sensitivity analysis.

In light of the computational problem, the main attjve of the present study is to show the
possibility of efficientlyembeddinghe sensitivity analysis of the performance olualear passive
systemwithin the estimation of its functional failure probatyi)iwhile resorting to a reasonably
limited number of system model code evaluations. To tims the use of two advanced Monte
Carlo Simulation (MCS) methods, namely Subset Sath (SS) [60], [61] and Line Sampling
(LS) [62], [63] is investigated.

In the SS approach, the functional failure probbis expressed as a product of conditional
probabilities of some chosen intermediate evertienTthe problem of evaluating the probability of

functional failure is tackled by performing a seqce of simulations of these intermediate events in

! For example, the computer code RELAP5-3D, whichsed to describe the thermal-hydraulic behavionwdlear
systems, may take up to twenty hours per run inesapplications.



their conditional probability spaces; the necessaopnditional samples are generated through
successive Markov Chain Monte Carlo (MCMC) simuala$i [64], in a way to gradually populate
the intermediate conditional regions until the Firfianctional failure region is reached. Two
approaches of literature are here considered fdoqeing the sensitivity analysis of the passive
system performance by SS: the first onéotal and embraces the so-called conceptetifibility
sensitivity in which the sensitivity of the performance oé thassive system to a given uncertain
input variable is quantified as tipartial derivativeof the system failure probability with respect to
the parameters (e.g., the mean, the variance, .thegbrobability distribution of the input variable
itself [65]; the second one obal and employs the conditional samples generated BN
simulation to obtain thentire distributionof the system failure probability conditional omet
values of the individual uncertain input paramédtensables [66], [67].

In the LS method, lines, instead of random poiatte,used to probe the failure domain of the multi-
dimensional problem under analysis. An “importaeicter” is optimally determined to point
towards the failure domain of interest and a nundferonditional, one-dimensional problems are
solved along such direction, in place of the mditrensional problem [62], [63]. In this approach,
the sensitivity of the passive system performandbe uncertain system input parameters/variables
can be studied through the examination of the atsnef the LS important vector pointing to the
failure region: alocal informative measure of the relevance of a giveceuain variable in
affecting the performance (i.e., in practice, thactional failure probability) of the passive syste

is the magnitude of the corresponding elementenLth important vector [68]-[71].

The SS- and LS-based approaches to sensitivitysinare tested on two case studies: the first one
is based on the highly nonlinear and non-monotorshigiami function [1], [39]; the second one
involves the natural convection cooling in a Gasted Fast Reactor (GFR) after a Loss of Coolant
Accident (LOCA) [2]. The results obtained by the-@8d LS-based sensitivity analysis techniques
are compared to those producedgbybal first- and total-order Sobol indices [39], [45].

In synthesis, the main contributions of the prepamter are the following:
= applyingthe SS and LS methods émbedthe sensitivity analysis of the performance of a
nuclear passive systemithin the estimation of its failure probability, whilesorting to a
reasonablylimited number of system model code evaluations: to tle¢ bethe authors’
knowledge, this is the first time that SS- and lsB4dx sensitivity analysis methods are

applied to nuclear passive systems;



= comparingthe results obtained by the following approacleesdnsitivity analysis: i) SS-
based local and global (reliability) sensitivity adyses, ii) LS-based local (reliability)
sensitivity analysis and iii) “classical” varianbased global sensitivity analysis relying on
the computation of Sobol indices;

= challengingapproaches i)-iii) mentioned above in problems nefttbe failure region of the
passive system is composedryltiple disconnectegbarts.

The reminder of the paper is organized as folldwsection 2, a snapshot on the functional failure
analysis of T-H passive systems is given. In SacBpthe SS and LS methods here employed for
efficiently embedding the sensitivity analysis loé tperformance of a nuclear passive sysigtimin

the estimation of its functional failure probabildre presented. In Sections 4 and 5, the casestud
concerning the Ishigami function and the passiwdiog of a GFR are presented, together with the

corresponding results. Finally, conclusions arevied in the last Section.

2 Functional failure analysis of T-H passive systems

The basic steps of a functional failure analysia 0fH passive system are [24]:
1. Detailed modeling of the system response by medna deterministic, best-estimate
(typically long-running) T-H code.

2. ldentification of the vectox = {x, X, ..., X, ..., X, } of parameters/variables, models and

correlations (i.e., the inputs to the T-H code) ebhcontribute to theuncertaintyin the

vectory ={ys, Y2, ..., ¥, ..., ¥, } of the outputs of the best-estimate T-H calcuias.

3. Propagation of the uncertainties associated toddratified relevant parameters, models and
correlationsx (step 2. above) through the deterministic, longaing T-H code in order to
estimate the functional failure probabil®F) of the passive system. Formally, ¥tx ) be
a scalar function indicating the performance of Tae passive system (e.g., the fuel peak
cladding temperature during an accidental transi@md oy a threshold value (imposed e.g.
by the regulatory authorities) defining the criteriof loss of system functionality. For
illustrating purposes, let us assume that the passistem fails ifY( x) > ay; equivalently,
introducing a variable called Limit State FunctikSF) or Performance Function (PF) as

9,(x) =Y(x)—aY, failure occurs ifg,(x) > 0 The probabilityP(F) of system functional

failure can then be expressed by the multidimeradionegral:

P(F)=[]..[ 1 (x)a(x)dx 1)



where q([)] is the joint Probability Density Function (PDF)presenting the uncertainty in

the parameterx, F is the failure region (wherg(:) > 0) andg(") is an indicator function
such thatg(x) = 1, if x O F andlg(x) = 0, otherwise. Notice that the evaluation oégral
(1) above entailsnultiple (e.g., many thousands) evaluations of the T-H dodelifferent
sampled combinations of system inputs.

4. Perform a sensitivity study to determine the cdwtiion of the individual uncertain

parameters = {Xg, X2, ..., X, ..., xq} (i.e., the inputs to the T-H code) to i) the urtaety
in the outputy = {ys, Y2, ..., i, ..., ¥, } of the T-H model code and ii) the functional tai

probability of the T-H passive system. As is traedncertainty propagation (step 3. above),
sensitivity analysis relies omultiple evaluations of the code for different combinatiarfs
system inputs.
The computational burden posed by the uncertairdgagation and sensitivity analysis of steps 3.
and 4. above is addressed by resorting to the S@seilation (SS) [60], [61] and Line Sampling
(LS) [62], [63] techniques, whose main conceptsgiven in the following Section.

3 Computational methods employed in this study

In this Section, the SS (Sections 3.1) and LS (&e£t3.2) methods employed in this study for
embeddingan efficient sensitivity analysis of the perforrarof a nuclear passive systavithin

the estimation of its functional failure probabildre presented.

3.1 Subset Simulation

The Subset Simulation (SS) algorithm and its usesémsitivity analysis are briefly illustrated in
Sections 3.1.1 and 3.1.2, respectively.

3.1.1 The algorithm

The idea underlying the Subset Simulation (SS) oeetis to convert the simulation of an event

(e.qg., the rare failure event) into a sequenceimiulations of intermediate conditional events

corresponding to subsets (or subregions) of themmia input parameter space: in this way, a rare

event simulation is converted into a sequencemfikEtions of more frequent events.

During simulation, the conditional samples (lyingthe intermediate subsets or subregions) are
generated by means of Markov chains; by so dohegconditional samples gradually populate the

successive intermediate subsets (or subregion®) tine target (failure) region [60], [61].



In extreme synthesis, the SS algorithm proceedsliasvs [60], [61], [66], [67]. FirstN vectors
{xo k=1, 2, ...,N} are sampled by standard MCS, i.e., from the adgiprobability density
function q(). The corresponding values of the response varigtx."): k = 1, 2, ...,N} are then
computed and the first threshold valge(identifying the first intermediate conditional eatt) is
chosen as the (1 pg)N" value in the increasing list of value¥(%): k = 1, 2, ...,N}. With this
choice ofy,, there are noygN samples amongxg: k = 1, 2, ...,N} whose respons¥(x) lies in the
intermediate subregiofr; = {x: Y(X) > yi} (these samples are at ‘Conditional level 1’ and

distributed asg((JF,) ). By so doing, the sample estimatePgF,) is equal tqu. Starting from each
one of these samples, Markov Chain Monte Carlo (M} Kimulation is used to generate (figN
additional conditional samples in the intermedmibregionF; = {x: Y(X) > yi}, so that there are a
total of N conditional samplesg®: k=1, 2, ...,N} O F1. Then, the intermediate threshold vayge
is chosen as the (1ps)N" value in the ascending list o¥fx."): k= 1, 2, ...,N} to defineF, = {x:
Y(X) > y2}. The poN samples lying inF, function as ‘seeds’ for sampling (1pg)N additional
conditional samples lying iR,, making up a total dfl conditional samplesxg k=1, 2, ....N} O
F2 (these samples are at ‘Conditional level 2’ arstritiuted asq((JF,) ). By so doing, the sample
estimate ofP(F,|F;) is still equal topy. This procedure is repeated until the sampleglymthe
intermediate subregiofini = {X: Y(X) > ym1} are generated to yielg, >y as the (1 -po)N" value
in the ascending list off(xm1): k= 1, 2, ...,N}. Then, the conditional probabilitfy, = P(Frm|Fm1)

is estimated bySm =N, /N whereNy is the number of samples amo{*rt{x,';_l) k= lZ,...,N} that
lie in the failure regiorF = F, i.e., N, = Dim{Y(xr';_l) >aY}. Finally, the failure probability?(F)
is computed as follows:

P(F)=PIR)[] PIFIF)=P(F)= e @

N

The superior efficiency of SS with respect to seaddMCS in the estimation of small failure
probabilities has been widely demonstrated in {enditerature: the interested reader may refer to
[60], [61] for mathematical details, to [67], [7R]6] for illustrative applications to high-
dimensional (i.e.n > 100) structural reliability problems and to [3%)rfan application to the

functional failure analysis of a T-H passive system

3.1.2 Sensitivity analysis by SS
Two approaches of literature are here consideregddorming sensitivity analyses by SS within
the framework of failure probability assessmeng finst one idocal and embraces the concept of

reliability sensitivity (Section 3.1.2.1); the second onegi®bal and employs the conditional
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samples generated by MCMC simulation to obtain ghgre distributionof the system failure

probability conditional on the values of the indival uncertain input parameters (Section 3.1.2.2).

3.1.2.1 Local reliability sensitivity analysis

In the framework ofreliability sensitivity the sensitivity to a given uncertain input vakéals
defined as the partial derivative of the systentufai probability with respect to the parameters
(e.g., the mean, the standard deviation, ...) ofptledability distribution of the input variable itke
[65], [70], [77]-[79].

Based on (2), the patrtial derivati\&P(F)/cMXj of the failure probabilityP(F) with respect to a

generic distribution parametqtfXj (e.q., the meary, , the standard deviationrxj, ...) of the

uncertain input variablg, j = 1, 2, ...,n;, can be expressed as

0 _ oP\F) . < oP(F. |F.) . _
:;S)_IS((I:)) ;E:_)’L; p(:(rp)i_l) P(;,XjF )j=12 .n

It can be demonstrated (through lengthy mathemaimarations here not reported for brevity sake)

3)

that the SS estimatoP(F,)/d¢, ,j =1, 2, ...n, anddP(F |F)/0g, ,j=1,2, ..n,i=1,2,

., m, for c’)P(Fl)/cwXj and oP(F, |Fi_1)/6¢Xj , respectively, are [65]:
a l 1 N F1( ) ( k)
ﬁzl{ﬁ 29, } )

S(E | E 1y ‘ aglxy,) oP | Fig
—_%Z{H(Xu{ (1k) qa(¢ )_ZA - P(§¢Xj|: )}} (5)

a\Xi-1 I=1 P(FI |F|—1)

where x§ and x, are defined in Section 3.1.1. Substituting (4) &yinto (3), the estimator
oP(F)/og, for oP(F)/ag, is readily obtained. For further mathematical dietahe interested

reader may refer to [65], from which equations (&)are taken.

3.1.2.2 Global sensitivity analysis based on conditional saples
The Markov chain samples generated by SS can be toselraw information about the most
probable configurations of uncertain input params#t@riables that will occur in the case of system

failure [66], [67]. In particular, comparing the gbability density functionq(x; |F) of the
uncertain parametes, j = 1, 2, ...,n;, conditional to the occurrence of system failkrewith the

unconditional probability density functiog(x), the importance of parametgr in determining

system failure can be inferred. Formally, for ameg value ofx the Bayes’ theorem reads



a(x; | F)
a(x;)

so thatP(F | x;) is insensitive tog when q(x; |F ) ~ q(x;), i.e. when the conditional probability

P(F |x,) = P(F),j=1,2, .0 6)

density functionq(x; | F )is similar in shape to the PItx) [60], [61], [66], [67]. Intuitively, the

sensitivity of the failure probability of the sysieto its uncertain input parameters/variables can
thus be studied by examining the change of the Eadistributionsq(x|F),j = 1, 2, ...,n;, 1 =1, 2,

..., m, at different conditional levels;, i = 1, 2, ..., m: in particular, the more significant the change

(or, in other words, the more significant the difiece between the shapes of the sample

distributionsq(x|Fi) and the shape of the original distributigfx; ), fhe larger the sensitivity of

the system performance (and of the failure proiigpilto the corresponding uncertain
parameter/variablg, j = 1, 2, ...,n;. See [34], [61], [66] and [67] for illustrative plcations of this
intuitive approach.

The information contained in the empirical condiabdistributionsy(x|Fi),j = 1, 2, ....n;, i =1, 2,
..., m, generated by MCMC simulation can then be usedefme the intuitive sensitivity
information described above by obtaining #mire distributionof the system failure probability
conditional on the values of the individual uncertaput parameters, i.€(F|[x), according to (10):
this information is relevant because it quantifiesv the failure probability?(F) of the system
would change if the value of the uncertain paramgtavere set to a given value (e.g., if its
epistemic uncertainty were reduced).

This approach can be considered global in the sehp&5] (see the Introduction) because during
the SS procedure i) thveholerange of variability of each uncertain input vatex;, j = 1, 2, ...,n;,

is “searched” through subsequent MCMC simulatiomgotoduce theentire distributionof the
system failure probability conditional on the vau# each individual uncertain input variable, i.e.
P(FIx),] = 1, 2, ...,n;; ii) the conditional samples efachuncertain input variablg, j = 1, 2, ...,n;,
distributed axy(x|F), j = 1, 2, ...,m, i = 1, 2, ...,m, are generated by MCMC whilal other

uncertain input parameters are “varying” (i.e., laeég sampled) as well.

3.2 Line Sampling

Line Sampling (LS) is a probabilistic simulation timed for efficiently computing small failure
probabilities. It was originally developed for thaiability analysis of complex structural systems
[62]. The underlying idea is to empldipes instead of randomointsin order to probe the failure
domain of the high-dimensional system under anslj@3]. The Line Sampling (LS) algorithm and

its use for sensitivity analysis are briefly illeged in Sections 3.2.1 and 3.2.2, respectively.
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3.2.1 The algorithm
In extreme synthesis, the computational stepseot. halgorithm are [63], [76]:

1. From the original multidimensional joint probabylidensity function q([)J:D” - [0,00),
sampleNy vectors{x* :k = 1,2,...,N; }, with x* ={x, x¢ ..., x¢ ..., X<}

2. Transform theNr sample vector;{x" k= lZ,...,NT} defined in the original (i.e., physical)
space intd\r sampleée" k= lZ,...,NT} defined in the standard normal space; also the PFs

g, () defined in the physical space have to be trangfdrimto g, () in the standard normal

space.
3. In the standard normal space, determine thenit important direction

a:{al,az " ,...,ani}T (hereafter also called “important unit vector” &important

direction”) pointing towards the failure domdtof interest.
4. Reduce the problem of computing the high-dimengitailure probability integral (1) to a
number of conditional one-dimensional problemsyatlalong the “important directiont

in the standard normal space: in particular, eséniNy conditional “one-dimensional”

failure probabilities{lf’(F)lD"‘ k= lZ,...,NT}, corresponding to each one of the standard
normal sample{ﬂ" k= lZ,...,NT} obtained in step 2. above (see [63], [76] for idBta
5. Compute the unbiased estimatB{F) for the failure probabilityP(F) and its variance

UZ[IS(F)J as:

B(F) =Ny (R "
o*[BE) =y, (- )3 (BF)™ - E) ®)

k=1
The LS method has been shown to significantly redhe variance (8) of the estimator (7) of the
failure probability integral (1) [35], [36], [62]63], [68]-[71], [76], [80]-[83].

It is worth noting that the LS technique outlindzb@e can be applied also to systems mithitiple
failure regionsF' ={x:g\(x)>0}={0:g}(0)>0}, 1 = 1, 2, ...,Ne. These multiple failure regions
F'={x:0\(x)>0}={0:g}(0)>0}, 1 = 1, 2, ....Ng, can be identified by i) enumeratiag (or, at

least, the moslikely andrelevan) failure modesof the systerhand ii) associatingach failure

2 To identify the relevant failure modes of the syst well-structured and commonly usgahlitative hazard analyses
may be employed, e.g., Failure Mode and Effect #sial (FMEA) and HAZard and OPerability (HAZOP) ays$
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mode with one failure region F' ={x:g!(x)>0}={6:0,(6)>0}, | = 1, 2, ...,Ne. Only for
illustration purposes, let us suppose that theesysif interest hallg = 2 failure modes, e.g., it fails
when either performance functiori(x) exceeds thresholdr, or performance functiorYz(x)
exceeds threshold, : in such a case, the corresponding failure regidrendF? can be identified

as F'={x:g}(x)>0} = {x:¥(x)-a, >0} and F?={x:g%(x)>0} = {x:Y,(x)-a, >0},
respectively. When multiple failure regions are sere, an “important direction&' has to be
identified foreachfailure regionF', | = 1, 2, ...,Ng. Then, each one of the standard normal samples
{0" k= lZ,...,NT} obtained in step 2. of the LS algorithm has t@aégociated in aniquemanner

to one of the identified directions; the method propodssdSchueller et al. (2004) [80] can be

employed to this aim: the interested reader igredeto the original reference for details.

Those samples amor{g* :k = 1,2,...,N; } that belong to thé" failure region”', 1 = 1, 2, ... N, are
then used to compute the estimét@:') of thel™ failure probability P(F') by performing steps 4.
and 5. above of the LS algorithm.

Finally, if the failure regiond, | = 1, 2, ...,Ng, aredisconnectedi.e., not overlappiny, the

estimatelf’(F) of the failure probability?(F) is simply given by the sum of the estimat%@:') of

the individual failure probabilitie®(F'), 1= 1, 2, ... N:

B(F)=Y FF'). (©)
On the contrary, if the failure regioﬁé | =1, 2, ...,Ng, areoverlapping some modifications to the

procedure here outlined are required to ensurethmbstimates!S(F'), l =1, 2, ...,Nr, do not

contain contributions from other failure domaingawéver, since the analysis of this situation goes
beyond the scopes of the present paper, mathemdétzls are not reported here for brevity: the

interested reader is referred to [70], [80].

As a final remark, notice that the efficiency ofethiS method depends on the accurate
determination of the important directien(step 3. of the algorithm above) [36], [62], [6@3]. In
this work, the method based on the normalized &reot mass” of the failure domak has been
employed [62]. In particular, A poir@° is taken in the failure domaf Subsequentlyg® is used

as the initial point of a Markov chain which liestieely in the failure domaif. For that purpose, a

[11], [13]; when possible, the qualitative infornieet provided by the hazard identification methodsntroned above
may be completed by numerical results produceduantitativetechniques, such as the optimum criterion metigdgl [
and stochastic limit analysis [70] originally demeéd within the field of structural reliability.
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Metropolis-Hastings algorithm is employed to geteia sequence s points {0” u= l2,...,NS}

lying in the failure domairr [64]. The unit vect0r39”/ 0"

U= 1, 2, ...,Ns, are then averaged in

: : : 1 &
order to obtain the LS important unit vectoraasWDZHU/ 0"
s u=l

- This direction provides a good

“map” of the failure domain and thus it providesprinciple a realistic indication of the actual

location of the failure domain and, thus, a rekadétimate for the LS important directien

3.2.2 Local reliability sensitivity analysis by LS

The important unit vectoroz:{a'l,a2 ool ,...,ani} is determined to point towards the failure
domainF of interest (Section 3.2.1). As such, the veetdells which combinations of parameter
variations contribute most to failure and thus givan idea of the relative importance of the
uncertain parametel{ﬁj N = 12,...,n} in determining the failure of the system underlysia [63].

For example, in the situation depicted in Figuréeft, the system would be driven to failure much
more effectively by an increase in Parameter 2erathan by an increase in Parameter 1; on the
contrary, in the situation represented in Figureidht, an increase in Parameter 1 would be much
more important in determining system failure thanimcrease in Parameter 2. In this view, the
sensitivityof the passive system performance to the individunaertain inputs can be studied by
comparing the magnitudes of the componenta:afee [35] for a preliminary application of this

concept to the model of a nuclear passive system.
Figure 1

This intuitive concept was put in a formal framelwan [68]-[71]: in particular, embracing the
concept of reliability sensitivity, the authors @ed formal expressions for the LS estimators
oP(F)/ou, anddP(F)/da, of the partial derivativedP(F )/du, anddP(F)/dg, of the system
failure probability P(F) with respect to the parameters (i.e., the megn and the standard
deviation Jgj) of the normal probability distributions of the aamtain input variables
{6,:i=12...n} in the standard normal space. Without going intifrematical details, it can be

demonstrated thadP(F)/du, Da; and 0P(F)/dg, O(a,f [68171], which confirms the

intuition that the sensitivity of the system fadysrobabilityP(F) to a given uncertain input variable

g; is proportionalto themagnitudeof the corresponding componenf the important vectas.
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Finally, based on (15), it is straightforward taoshthat in the case of multiple, non-overlapping

Ng A A
failure regionsF', | = 1, 2, .., Ne, oP(F)/du, = ZOP(F')/G,ugj and oP(F)/do, =
1=1

ialf’(F')/Oagj with 0P(F')/oy, Da! anddP(F')/oa, O(a}) (68]-[711.

4 Case study 1: Ishigami function

In this Section, the case study involving the vikelbwn Ishigami function [1] is illustrated: in
particular, in Section 4.1, few details about thedid are provided; in Section 4.2, the resultshef t
application of the SS and LS methods for the seitgitanalysis of the model of Section 4.1 are

illustrated.

4.1 The model

The Ishigami function (20) [1] is frequently adogtes a benchmark in sensitivity studies due to its
challenging properties, i.e., nonlinearity, non-moiamicity and presence of interactions between the
uncertain input variables [39], [41], [53], [85]:

Y(x)=Y(x,%,, %) =sin(x )+ 7sin*(x, ) + 0.1 sin(x,) (10)

wherexs, X, andxz are uncertain input variables following a unifodistribution on [z, +x].

Since the main objective of the present paper igpédorm the sensitivity analysis of the
performance (or, in other word, the functional desl probability) of a nuclear passive system, the
Ishigami functionY(x) (20) is artificially modified to this aim. In pi@cular, using the notation of
Section 2)Y(x) (20) is taken as the indicator of the performamice fictitious passive system and an
hypothetical failure thresholdy = 16.5 is correspondingly introduced: this leadsdefine the
associated Performance Function (PF) or Limit Statection (LSFQ«(X) as

a(X) = Y(X) —ay = sin(x )+ 7sin?(x,)+ 0.1x¢ sin(x ) - 165. (11)
Then, the fictitious passive system characterizethb LSF (21) is supposed to fail when its LSF
becomes larger than or equal to O, igg(x) > 0. The true (i.e., reference) probabilR{) of the

failure eventF = {gy(x) > 0} is 5.566-10, obtained by standard MCS wily = 500000 samples

drawn.

Figure 2 shows the failure regidh= {Xx: gy(x) > O} (dark areas) associated to the L&Ex) (21)

based on the Ishigami functioffx) (20) in the space of the uncertain input varialfle: | = 1, 2,

3}. It is interesting to note that the failure regiF = {X: g«(X) > 0} is composed by four
13



disconnected (i.e., not overlapping) failure regi¢R": 1 = 1, 2, 3, 4}, ie.F=F U F* U F* U
F*. The four disconnected failure regior@:{l = 1, 2, 3, 4} are defined as follows:

F*={x:x 0[11017,2.0250, x, 0[-1.9963-1.1514, x, 0[- 3.1414 - 3.0390} (12)
F2 ={x:x 0[11017,2.0250, x, 0[1.15141.9964, x, 0[- 3.1414 - 3.0390]} (13)
F* ={x:x 0[1.1017,2.0250, x, 0[1.15141.9964, x, 1[3.0390,3.1414} (14)
F* ={x:x 0[11017,2.0250, x, O[-1.9963-1.1514, x, 0[3.0390,3.1414]} (15)

Notice that (22)-(25) are characterized by impdrymmetryproperties: in particular, in failure
regionsF* andF* parametek, ranges between —1.9963 and —1.1514, whereaslimefaegions=>
and F° it symmetrically ranges between 1.1514 and 1.99@3her, in failure region&* and F
parameterx; ranges between —3.1414 and —3.0390, whereas lurefaiegionsF* and F* it
symmetrically ranges between 3.0390 and 3.1414

Figure 2

4.2 Application

In this Section, the SS and LS methods are appiied the estimation of the failure probability
P(F) (Section 4.2.1) and ii) the sensitivity analysis the performance (Section 4.2.2) of the
synthetic passive system characterized by the §8§ (21) based on the Ishigami functioix)
(20).

4.2.1 Failure probability estimation

For completeness and only for illustration purposesble 1 reports the values of the estimates
P(F) of the failure probability?(F) obtained by SS withir = 3700 samples (i.em = 4 simulation
levels, each witiN = 1000 samples) and LS witlir = 3700; for comparison purposes, the results
obtained by standard MCS with the same nuniyer 3700 of samples are also presented. In order
to evaluate theaccuracyof the estimates, a “true” value of the failurelpability P(F) is also
reported in Table 1 for reference (i.€(F) = 5.566-10); as mentioned above, this has been
obtained by standard MCS with a very large nunibefi.e., Nt = 500000) of simulations. Finally,

in order to evaluate therecisionof the estimates, the standard deviat@P(F)| of B(F) is also

computed.

% It is worth noting that due to the simplicity dfet problem failure regions/: | = 1, 2, 3, 4} (22)-(25) have been
determinechnalytically by straightforward analysis of performance funct{g0).
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Table 1

As expected, LS outperforms the other methodsrmgefaccuracy(i.e., the LS failure probability

estimateIS(F) Is closerto the true valu®(F) than those of the other methods) gmecision(i.e.,

the standard deviatios|P(F)| of P(F) is lower than those of the other methods) of the failure

probability estimates.

4.2.2 Sensitivity analysis results

ThesameNt = 3700 samples used in the previous Section #oZ2%timate the failure probability of
the synthetic passive system of Section 4.1 are berployed for studying the sensitivity of its
performance (i.e., of its failure probability) teet uncertain input variables. In Section 4.2.2hg, t
results obtained by the SS- and LS-bdsedl reliability sensitivity approaches of Sections.3.1
and 3.2.2, respectively, are shown. In Section2®2the results obtained by the SS-bagetal
approach of Section 3.1.2.2 are presented; iniaddithe sensitivity insights provided by the SS-
based method are compared to those produced by iAdes.

4.2.2.1 Local reliability sensitivity results

Since the results produced by the LS method areirsat in the standard normal space by
construction (see Sections 3.2.1 and 3.2.2 forildgt#or fair comparison with the other methods,
the uncertain input variables{j = 1, 2, 3} in (21) have been transformed inég { = 1, 2, 3} in

the standard normal space and also the systengl($H21) has been transformed irgg#) in the
standard normal space: thus, the partial derivatofehe system failure probability with respect to
the parameters of the distributions of the uncertaput variables are calculated in the standard
normal space foall the simulation methods considered.

Table 2 reports the values of the estimal®éF )/oy, and oP(F)/dg, of the partial derivatives
9P(F)/ou, andoP(F)/dg, of the failure probability’(F) with respect to the meam, and the

standard deviationojg,i of the distributions of the uncertain input paréene {¢;: | = 1, 2, 3},

computed by standard MCS, SS and LS with = 3700 samples. Notice that in the present
implementation of the LS technique we supposetti@ainalyst does not recognize the presence of
four disconnected failure regions and, consequeh#jshe identifiesne singlemportant vecto
by MCMC simulation (Section 3.2.1). In particular,pointé® is chosen in the failure domalf
subsequently, a sequenceMxf= 1000 points{ﬂ“ u= lZ,...,NS} lying in the failure domairk is

generated by MCMC; then, since by hypothesis thalyah does not realize that the points
15



{0” u= l2,...,NS} “belong” to four disconnected failure regions, diedaverageshe unit vectors

¢/

°]. “True” values of 9P(F)/ou, and 0P(F)/dg, are also reported in Table 2 for reference: as

0U

U= 1, 2, ....Ns, to obtain thainiqueimportant vectom = [0.2456, 1.994.0° —2.43410

before, these have been obtained by standard M@Sawiery large numbey (i.e., Ny = 500000)

of simulations. The ranking of the uncertain inpatameters{;: j = 1, 2, 3} based on the estimates

oP(F)/ou, anddP(F)/aa, is shown in parentheses.

Table 2

Considering, e.g., the (reference) results obtainestandard MCS withi = 500000 samples, one
would infer that:
= moving the meary, of the probability distribution ob, from its nominal value (i.e., 0)

towards positive valuaacreaseghe failure probability?(F) of the system (actually, the sign
of alf’(F)/a,ué,1 is positivg. This information iscoherentwith the “configuration” of the four
failure regions £ | = 1, 2, 3, 4} (22)-(25): actually, in case of gystfailure, parametes is
found to range between the values 1.1017 and 2.@&bich are bothlarger than the
nominal value of the mean of the probability distition ofx,, i.e., 0);

* moving the meary, (4, ) of the probability distribution of); (¢5) from its nominal value

(i.e., 0) ismuch less effectivéhan moving 4, in increasing (decreasing) the failure
probability P(F) of the system: actually, the magnitude of theohalis value ofal5(F)/6/,152

(0P(F)/au;,, ) is about one hundred times lower than thad®fF )/au;, ;

= in order to effectively drive the system to failyia, in other words, to increase its failure

probability P(F)) the meany, (4, ) of the probability distribution o6, (65) have to be
moved from its nominal value (i.e., 0) towards gigsi(negative) values: actually, the sign of
6I5(F)/6/,152 (0f’(F)/0,L193) is positive (negativg. However, this information is/rong or, at

least,not completsf referred to the “configuration” of the four fafe regions £:1=1, 2, 3,
4} (22)-(25): actually, in case of system failurar@meterx, may rangeeither between the
values 1.1514 and 1.9963 (which are batiger than the nominal value of the mean of the
probability distribution ofx,, i.e., 0)or between the values —1.9963 and —1.1514 (which
instead are botemallerthan the nominal value of the mean of the proligtdistribution of

X, I.e., 0). Similar considerations hold for paraenét.
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This latter consideration highlights the inadequatthe local reliability sensitivity approach when
applied to problems presenting multiple failure ioeg. Actually, the reason behind the
inappropriateness or incompleteness of the infdonairovided by the results in Table 2 is readily
explained by the symmetry properties characterittiegfour failure regionsR': | = 1, 2, 3, 4} (22)-
(25): actually, as already explained in Section i Failure regiond" andF* parametex, ranges
between —1.9963 and —1.1514, whereas in failuréomeg=> and F* it symmetrically ranges
between 1.1514 and 1.9963; further, in failure aegiF* and F?> parameteix; ranges between —
3.1414 and —3.0390, whereas in failure regiBhandF* it symmetrically ranges between 3.0390
and 3.1414. As a consequence, in estimad(- )/dx, andoP(F)/du, the positive and negative

contributions associated to the failure regions mtnic with respect to the origin of the input
parameter space “cancel out”: this produces esﬂeis:;rﬂal?i’(F)/6/,152 and aﬁ(F)/aue3 very close to
zero (e.g., in the present case bﬁtfl’(F)/a/,lg2 and aﬁ(F)/aue3 are approximately Idand 1C,

respectively).

This problem can be overcome by employing the LShowe with four different important
directions &': | = 1, 2, 3, 4} pointing towards the four failuregiens {F', | = 1, 2, 3, 4} (22)-(25):
in particular,a; = [0.2441, —0.2462, —0.937%}; = [0.2465, 0.2460, —0.9374}; = [0.2468, 0.2497,
0.9363] andxy = [0.2448, —0.2417, 0.9389] have been identifigdMCMC simulation withNs =

2000 samples (see Section 3.2.1). This allows tntify separatelythe contributions of the four

different failure regions, i.e{alf’(F')/a,ué,j = 12,34} and{alf’(F')/aagj = l2,3,4},j =1,2,3,to
the estimate®)P(F)/dy, and 0P(F)/do, , j = 1, 2, 3. The corresponding results are shown in

Table 3.
Table 3

It can be seen that contrary to the (erroneousications provided by the results in Table 2,

variable ;5 is themost effectivan driving the system to failure: indeed, the dbt® values of

{aﬁ(F')/a/,z53 1= 12,3,4} are about ten times larger than those{dff(F')/@,u@1 1= 12,3,4} and

{alf’(F')/a,ué,2 1= 12,34}; further, variableg); and ¢, are almostqually effectiven driving the
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system to failure: indeed, the magnitude of theokits values of{als(F')/a,ug1 1= 12,3,4} and

{0P(F')/ou,, 1 = 12,34} is about the same.

4.2.2.2 Global sensitivity results
The results obtained in the previous Section 4120¥. the local reliability sensitivity approaches

are compared here to those produced by the glddlaSed sensitivity approach of Section 3.1.2.2.

Figure 3 shows the distribution of the system failprobability conditional on the values of the
individual uncertain input parameters, i(F|x;) (top, left), P(F|x;) (top, right) andP(F|[x3)
(bottom) obtained according to (10). This inforroatiis relevant because it quantifies how the
failure probabilityP(F) of the system would change if the value of theeutain parameteg were
set to a given value (e.qg., if its uncertainty wes@uced): for example, fixing to 1.5 would result
in P(F) = 6-10°, fixing X, to —1.5 or +1.5 would result i(F) = 4-10° whereas fixings to about
—3 or +3 would result iR(F) = 8-10°.
In addition, the shape of the distributidP@|x), ] = 1, 2, 3, obviously reflects the “structure” bét
four failure regions ', | = 1, 2, 3, 4} (22)-(25): for example, the distrilmn P(F[x;) takes values
different from zero whenx; approximately ranges between +1 and +2 (see @&R):i(the
distributionP(F|[x;) takes values different from zero whenapproximately ranges between —2 and
-1 (see (22) and (25pr between +1 and +2 (see (23) and (24)); finallg, distributionP(F|xs)
takes values different from zero whepassumes values around -3 (see (22) and @3)B (see
(24) and (25)).

Figure 3

Finally, the results shown in Figure 3 can be use@nk the uncertain input variableg:{ = 1, 2,

3} according to their effectiveness in driving thgstem to failure (or, in other words, to quantify
the importance of the variability of the individuahcertain input variables in determining the
failure probability of the system). A ranking cam éstablished on the basis of the (maximum) value
assumed by the distributid?(F[x) over the range of variability of, j = 1, 2, 3: in particular, the
larger P(F|x;), the larger the contribution of the variability 5 in determining the system failure
probability. For example, ag varies in its range [& +z], P(F[xy) takes values from O (minimum)
to 6-10° (maximum); asx, varies in [+, +1], P(F|x;) takes values from 0 (minimum) to 410
(maximum); finally, asxs varies in [+, +x], P(F[xs) takes values from O (minimum) to 930
(maximum). According to this criteriomg is muchmore important than both andx,, whereasq

is slightly more important thar, in affecting the failure probability of the system
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Note that this ranking is the same as the one geavby the local reliability sensitivity approach
based on LS with four different important direcsaisee Table 3 of Section 4.2.2.1).

Finally, for completeness the sensitivity insigptevided by the SS-based global approach are also
compared to those produced by first- and totalHofdmbal) Sobol indices [45]: these indices are
frequently used in the literature to identify thecartain parameters (i.e., the uncertain inputs to
given system model) that contribute most tohsability of the model outputs Thus, first- and
total-order Sobol indices are computed to iderttifyse uncertain input parameters { = 1, 2, 3}
which contribute most to theariability of the LSFgy(x) (21) based on the Ishigami functidix)
(20).

In more detail, by definition the first-order Soks®nsitivity indexS®, j = 1, 2, 3, quantifies the
proportion of the variance of the LSi(x) (21) (i.e., the output) that can be attributedthe
variance of the uncertain input variatealone i.e., withouttaking into accouninteractionswith
other input variables; on the contrary, the totaleo Sobol sensitivity inde®, j = 1, 2, 3,
guantifies the proportion of the variance of theé-Igy(x) (21) (i.e., the output) that can be attributed
to the variance of the uncertain input variakl@aking into account thenteractions (of all the
orderg with all the other input variables [39], [44] 9}

As pointed out in [46], the sensitivity indic&’ and Sr° have the advantage of beigdpbal
because i) the effect of thentire distribution of the parameter whose uncertaintpontiance is
evaluated, is considered and ii) the importancéhsf input parameter is evaluated wéh other
input parameters varying as well; moreover, thissgwity index is also “model free” because its
computation is independent from assumptions aldmitmodel form, such as linearity, additivity
and so on. The drawback of this approach reliethén computational burden associated to its
calculation: actually, thousands or millions ofteys model evaluations are frequently required for
the evaluation of Sobol indices through Monte Gédsed techniques [39], [46].

First- and total-order Sobol indic& andS;f, j = 1, 2, 3, are computed for the L8Kx) (21)
based on the Ishigami functior(x) (20), by resorting to the algorithm proposed By]{ these
values obtained witiNr = 550000 model evaluations are reported for refarein Table 4. The

ranking of the uncertain input variables is algooréed in parentheses.

Table 4

* Notice that the SS- and Sobol-based approachebeseecompared because they are fgtbal, however, their
outcomes are conceptually quite different: thet fose identifies the most important contributorssistem failure,
whereas the second one identifies the most impoctantributors to the variability of the model outs.
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It is interesting to note that:

the contribution ofx; to the variability of the LSk(x) (21) isentirely due to interactions
with other input variables (indee8® = 0 andS3? = 0.2490): actually, in (21) variable
doesnot appeamrlone butonly multipliedby the term sing);

the contribution ofx, to the variability of the LSHEL(x) (21) isentirely due to its variation
alone and not to interactions with other input abiés (indeedS° = S = 0.4415):
actually, in (21) variable, does appeasnly alonein the term 7 sif{x,);

the contribution ok; to the variability of the LSIg«(x) (21) is duebothto its variation alone
and to interactions with other input variables éed, S, = 0.3155 andSy® = 0.5596):
actually, in (21) variable; appeardoth alonein the term sin{;) andmultiplied by x5* in the
term 0.1xs* sinfw);

the ranking of the uncertain input variables preddby Sobol sensitivity indices is
significantly differenfrom those produced by the local reliability séimgy approach (Table
3 of Section 4.2.2.1) and by the global SS-basgdoagh (Figure 3): for example, according
to Sobol indices, parameteyis theleastimportant in determining the variability of the ES
ox(X) (21), whereas, according to the SS- and LS-bapptbaches, it is thmostimportant in
affecting the system failure probability. This lead the conclusion that the most important
contributors to thevariability of the system model output(s) are not necesstrdymost
important contributors teystem failure

This may be due to the fact that the four failucendins of interestR': | = 1, 2, 3, 4} are
very smallwith respect to the entire uncertain input spau taey liefar from the regions
characterized by the most significant variabilifyttee model outpugi(x) (actually, they are
located at the “boundaries” of the uncertain inppice, as demonstrated by (22)-(25) and,
pictorially, by Figure 2): in this way, the failurdomains £: | = 1, 2, 3, 4} do not
“contribute” to the estimation of the Sobol indi&bandSy®, whereas they obviously play a
relevant role in the estimation of the quantit&EE(F)/a,u@j andP(F|x),j =1, 2, 3.

5 Case study 2: nuclear passive system

In this Section, the case study concerning a nuglassive system of literature [2] is illustrated:

Section 5.1, few details about the system modelpapgided; in Section 5.2, the results of the

application of the SS and LS methods for the sertgianalysis of the performance of the passive

system of Section 5.1 are presented.
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5.1 The model

This case study concerns the natural convectiohngpm a Gas-cooled Fast Reactor (GFR) under
a post-Loss Of Coolant Accident (LOCA) conditiohgetreactor is a 600-MW GFR cooled by
helium flowing through separate channels in aailicarbide matrix core [2].

A GFR decay heat removal configuration is shownesddtically in Figure 4; in the case of a
LOCA, the long-term heat removal is ensured by ratairculation in a given numbeMoops Of
identical and parallel loops; only one of tNgqps loops is reported for clarity of the picture: the
flow path of the cooling helium gas is indicatedtbg black arrows. The loop has been divided into
Nsections = 18 sections for numerical calculation; technicatails about the geometrical and
structural properties of these sections are nadrteg here for brevity: the interested reader may
refer to [2].

In the present analysis, the average core powdretaemoved is assumed to be 18.7 MW,
equivalent to about 3% of full reactor power (600M)M to guarantee natural circulation cooling at
this power level, a pressure of 1650 kPa in th@das required in nominal conditions. Finally, the
secondary side of the heat exchanger (i.e., itenm Egure 4) is assumed to have a nominal wall
temperature of 90 °C [2].

Figure 4

5.1.1 Uncertainties

Uncertainties affect the modeling of passive systefimere are unexpected events, e.g. the failure
of a component or the variation of the geometrdialensions and material properties, which are
random in nature. This kind of uncertainty, oftemted aleatory [86]-[90], is not considered in this
work. Additionally, there is incomplete knowledge ¢dhe properties of the system and the
conditions in which the passive phenomena develap, (natural circulation). This kind of
uncertainty, often termed epistemic, affects thedehorepresentation of the passive system
behaviour, in terms of bothmpode) uncertainty in the hypotheses assumed gratafnete)
uncertainty in the values of the parameters ohtloeel [29], [55], [57].

Only epistemic uncertainties are considered in thiskw@&pistemic parameter uncertainties are
associated to the reactor power level, the presauitee loops after the LOCA and the cooler wall
temperature; epistemic model uncertainties arecégsa to the correlations used to calculate the
Nusselt numbers and friction factors in the forcedxed and free convection regimes. The

consideration of these uncertainties leads to #fmidon of a vectox = {x; : j = 12...,9} of nine
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uncertain model inputs, assumed described by nodistibutions of known means and standard
deviations (Table 5, [2]).

Table 5

5.1.2 Failure criteria of the T-H passive system

The passive decay heat removal system of Figuralg tb provide its safety function when the
temperature of the coolant helium leaving the ddesn 4 in Figure 4) exceeds either 1200 °C in
the hot channel or 850 °C in the average chanheket values are expected to limit the fuel
temperature to levels which prevent excessive sel@d fission gases and high thermal stresses in
the cooler (item 12 in Figure 4) and in the staslsteel cross ducts connecting the reactor vessel

and the cooler (items from 6 to 11 in Figure 4). [REnoting byToTﬁfcore(x) and Toiﬁ?core(x) the
coolant outlet temperatures in the hot and avecageanels, respectively, the system failure e¥ent
can be written as follows:

F={xmre (x)>120¢ 0{x T2, (x)>850. (16)

out,core out,core

Notice that, in the notation of Section 2/ (x) = yi(x) and T2¢_ (x) = y»(x) are then, = 2

t,core out,core
outputs of the T-H model.
The failure regiorf (26) is then condensed into a single performandeatorY(x), leading to the

definition of a single-output Limit State FunctighSF) or Performance Function (P@X([)]

(Section 2). The system performance indicatfx) is defined as

v(x)=ma X{Totﬁfwe(x) Toiziore(x)} _ max{ yi(x) m} a7

1200 ' 850 1200’ 850

so that the failure regioh becomes specified as:
F={x:v(x)>1}. (18)
In the notation of Section 2, the failure threshelds then equal to one and the system LSF in (1)

is written as
9.(x) =Y(x)-a, =Y(x)-1. (19)
The probabilityP(F) of this event is 3.541-10 obtained by standard MCS witliy = 500000

samples drawn.
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5.2 Application

In this Section, the SS and LS methods are appiied the estimation of the functional failure
probability P(F) (Section 5.2.1) and ii) the sensitivity analysfshe performance of the 600-MW
GFR passive decay heat removal system in Figugedtion 5.2.2).

5.2.1 Functional failure probability estimation

For completeness and only for illustration purposesble 6 reports the values of the estimates
IS(F) of the functional failure probabiliti(F) obtained by SS withiy = 1850 samples (i.em= 4
simulation levels, each witR = 500 samples) and LS wilth- = 1850; for comparison purposes, the
results obtained by standard MCS with the same euip= 1850 of samples are also presented.
In order to evaluate theeccuracyof the SS and LS estimates, a “true” value offtimetional failure
probability P(F) is also reported in Table 6 for reference (iF) = 3.541-10); this has been
obtained by standard MCS with a very large nunibe(i.e., Nt = 500000) of simulations of the
original T-H code, which actually runs fast enoughallow repetitive calculations (one code run

lasts on average 3 seconds on a Pentium 4 CPU 3X)0Gihally, in order to evaluate the

precisionof the SS and LS estimates, the standard devid@{BF )| of B(F) is also computed.

Table 6

As before, LS significantly outperforms the othegthods in terms ddccuracy(i.e., the LS failure

probability estimateP(F) is closer to the true valud®(F) than those of the other methods) and

precision(i.e., the standard deviatia®|P(F)| of P(F) is lower than those of the other methods) of

the failure probability estimates.

5.2.2 Sensitivity analysis results

The sameNyt = 1850 samples used in the previous Section 3a2ektimate the functional failure
probability of the nuclear passive system are lisexl to analyze the sensitivity of its performance
to the uncertain input variableg{j = 1, 2, ..., 9} of Table 5. In particular, in Secti6.2.2.1, the
results obtained by the SS- and LS-bdsedl reliability sensitivity approaches of Sections.3.1
and 3.2.2, respectively, are shown. In Section2322the results obtained by the SS-bagetal
approach of Section 3.1.2.2 are presented; iniaddithe sensitivity insights provided by the SS-
based method are compared to those produced by fAdmes.
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5.2.2.1 Local reliability sensitivity results

Table 7 reports the values of the estimal®éF )/oy, and oP(F)/dg, of the partial derivatives
c’)P(F)/a,ugj and aP(F)/aagj of the functional failure probabilit{?(F) with respect to the mean
He and the standard deviaticms,j of the distributions of the uncertain input paréeng {f;: j = 1,

2, ..., 9}, computed by standard MCS, SS and LS Wth= 1850 samples. “True” values of
0P(F)/du, anddP(F)/ag, is also reported in Table 7 for reference: as feefthese have been

obtained by standard MCS with a very large nunibe(i.e., Nt = 500000) of simulations of the
original T-H code. The ranking of the uncertainuhparameters§: j = 1, 2, ..., 9} based on the

estimates)P(F )/du, anddP(F)/da, is shown in parentheses

Table 7

It can be seen that:
* aranking of the importance of the uncertain inpartables f: j = 1, 2, ..., 9} in affecting

the functional failure probability of the passiwestem can be established on the basis of the

magnitudeof the absolute values of the estimad¥F)/oy, andoP(F)/do, ,j=1,2, ...,

9: obviously, the larger the absolute valuedB(F /oy, anddP(F)/dg, , the stronger the
impact of the corresponding uncertain variable los functional failure probability of the
system. For example, referring to the results akthiby standard MCS withr = 500000
samples, the absolute values @P(F)/du, and oP(F)/do, are 1.0706 and 1.0427,
respectively, for variabl@s (i.e., the friction factor in mixed convection)ch8.1576 and

0.0257, respectively, for variable, (i.e., the reactor power): thugs is much more

important thard; in affecting the functional failure probability tfe passive system;
= thesignof the estimate:ﬁls(F)/aygj ] =1, 2, ..., 9, indicates thairection towards which
the corresponding uncertain inputs have to mowerder to drive the system to failure: for

instance, since the sign 0P(F)/du, and dP(F)/dy, is negative the failure probability

® As before, since the results produced by LS ateiméd in the standard normal space by constru¢tea Sections
3.2.1 and 3.2.2 for details), for comparison with bther methods, the uncertain input variablgs £ 1, 2, ..., 9} of
Table 5 have been transformed in@:{ = 1, 2, ..., 9} in the standard normal space andsysem performance
indicator Y(x) (27) (together with the corresponding LSJ{(x) (29)) has been transformed intg#) (and,
correspondinglygy(@)) in the standard normal space: thus, the pat@éalatives of the system failure probability with
respect to the parameters of the distributiondiefuncertain input variables are estimated in thedard normal space
for all the simulation methods considered.
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P(F) of the passive system will be increased (respgrehsed) by decreasing (resp.,

increasing) the value of the meapg and 4, of parameterg (i.e., pressure) ang (i.e.,

Nusselt number in mixed convection), respectivalyother words, the passive system will

be effectively driven to failure bgecreasingthe value of parametes and s, i.e., by
moving them towardbw values. On the contrary, since the sigrﬂé(F)/a,u@8 IS positive

the failure probabilityP(F) of the passive system will be increased (respcrehsed) by

increasing (resp., decreasing) the value of thenmea of parametets (i.e., friction factor

in mixed convection); in other words, failure oétpassive system will be easily caused by
increasingthe value of parametél, i.e., by moving it toward$igh values. It is worth
noting that these results are quite reasonable &physicalviewpoint. In fact, the pressure
of the system strongly affects the density of tbelant helium gas and thus the extent of the
buoyancy force on which the effective functionirfglee natural circulation system is based.
In particular, a decrease in the system pressadsléo a decrease in the buoyancy force
which may not succeed in balancing the pressumetoaround the natural circulation loop.
Nusselt numbers instead are directly (i.e., lingarlated to the heat transfer coefficients in
both the heater (i.e., the core, item 4 in Figuredd the cooler (i.e., the heat exchanger,
item 12 in Figure 4) and thus their variations dire impact the global heat removal
capacity of the passive system. In particular, @elese in the heat transfer coefficient in the
heat exchanger (where the wall temperature is ieghdgads to a reduction in the heat flux
and consequently to an increase in the coolantaestyre. Further, a decrease in the heat
transfer coefficient in the heater (where the Hkat is imposed as constant) causes an
increase in the coolant wall temperature. Thush Ippbcesses lead to a rapid attainment of
the coolant temperature limits. Finally, the fractifactors directly determine the extent of
the pressure losses which oppose the coolant filonatural circulation. In particular, an
increase in the friction factors determines anaase in the pressure losses along the closed
loop and consequently a reduction in the coolaw flate. The smaller the flow rate in the
decay heat removal loop, the higher the coolanipezature rise will be, leading to an
earlier attainment of the coolant temperature Bmihus worsening the safety of the
operation and of the reactor;

= the information provided byalf’(F)/aagj ,j =1, 2, ..., 9, is useful in identifying the
variables whose uncertainty (quantified in thisechy the standard deviatioagj of the

corresponding probability distribution) plays a orajole in affectingP(F): based on this
information, the analyst may focus his/her effamsincreasing the state-of-knowledge only
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on these variables and the related physical phenar{fer example, by the collection of
experimental data one may achieve an improvemerthen state-of-knowledge on the
correlations used to model the heat transfer peoiceshixed convection: this could lead to a
reduction in the uncertainty, e.g., of varialflg i.e., the Nusselt number in mixed
convection);

= LS with Ny = 1850 samples produces the same ranking of tbhertan variables as the
reference one (i.e., the one produced by standa@b Mvith Ny = 500000 samples):
however, this result is obtained at a much lower,(by a factor 270) computational effort;

= SS withNt = 1850 correctly ranks the first five uncertaimiahbles, i.e.fs, 0g, 03, 05 andés,
whereas standard MCS with the same number of samglaot even able to produce a

ranking (in fact,als(F)/a,ugj = GIS(F)/GUHj =0 forj =1, 2, ..., 9). This is explained as

follows: in the SS procedure (due to successivditomal MCMC simulations) a large
number of samples is generated in the intermediabelitional regions and in the failure

region of interest, which are used to calculd®éF )/ou, anddP(F)/da, ,j=1,2, ..., 9,

according to (8) and (9); instead, in standard M8 N = 1850 samples, on average only

NrP(F) = 18503.54110" = 0.6 (i.e., in practiceero failure samples are generated which
can be used to calcula®(F)/oy, and oP(F)/dg, ,j =1, 2, ..., 9, using an estimator

similar to (8).

A final remark is in order with respect to the etfeeness of the SS- and LS-based local
approaches to sensitivity analysis. They presemtatiivantage over other standard techniques of
sensitivity analysis of being directly “embeddedi’ the computation of the functional failure
probability: in fact, the SS and LS algorithms proe the “ingredients” used for sensitivity analysis
(i.e., the empirical conditional distributions irs &nd the random lines parallel to the important
vectore in LS) during the simulatiorthat is performed to compute the functional falprobability

of the passive system. In other wordadjile estimating the functional failure probability diet
system, sensitivity analysis results are produbati¢an be readily visualized for identificatiordan
ranking of the most important variables. This igafticular interest in practical cases in whicé th

computer codes require several hours (or even daysh a single simulation.

5.2.2.2 Global sensitivity results
The results obtained in the previous Section 512. the local reliability sensitivity approaches

are compared here to those produced by the SS-gad®al approach of Section 3.1.2.2.
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The sensitivity of the passive system performamncthé individual uncertain input parameters of
Table 5 is studied by examining the change of dmapde distributions at different conditional
levels. The histograms of the conditional samplefive uncertain parameters (i.eq, the reactor
power; X,, the pressure level established in the guard contnt after the LOCA¥s, the cooler
wall temperaturexs, the Nusselt number in mixed convectiog, the friction factor in mixed
convection) at different conditional levels fosiagle SS run are shown in Figure 5, left. It can be
seen that the performance of the passive systemstramgly sensitive to the pressure level
established in the guard containment after the LO&Aindicated by the significant leftward shift
of its empirical conditional distribution (histogns) from the unconditional one (solid lines). A
sensitivity of the passive system performance $® wisually observed with respect, e.g., to the
cooler wall temperature (rightward shift) and te ttorrelation errors in both the Nusselt number
(leftward shift) and the friction factor (rightwasthift) in mixed convection.

The “pictorial” information contained in the emil conditional distributiong(x|Fi),j = 1, 2, ...,
n,i=1,2,..m,is used as before tefinethe sensitivity information by obtaining the dilstrtion

of the system failure probability conditional onetlvalues of the individual uncertain input
parameters, i.d2(F[x), according to (10) (Figure 5, right): for examptecan be seen that fixing

to 1500 kPa would result ia(F) = 0, whereas fixing, to 1200 kPa would result (F) = 0.40.

Figure 5

The results shown in Figure 5, right, are usedatik the uncertain input variables:{j = 1, 2, ...,

9} according to their effectiveness in driving thassive system to failure (or, in other words, to
guantify the importance of the variability of thedividual uncertain input variables in determining
the failure probability of the system). As befoeeranking is established on the basis of the
maximum value assumed by the distributi®@B|x), j = 1, 2, ..., 9. For example, agvaries in its
range,P(F|x;) takes values from O to 0.45, whereax@saries in its rangeR(F|xs) takes values
from O to 0.012: thus, it can be concluded thaits muchmore important thamg in affecting the
functional failure probability of the passive systdor, in other words, in driving the system to
failure). According to this criterion the uncertamput variables X;: j = 1, 2, ..., 9} are ranked fifth,
first, third, ninth, fourth, sixth, eight, seconddaseventh, respectively; note that this rankinmis
satisfactory agreement with those provided by tBe &d LS-based local reliability sensitivity
approaches (see Table 7 of Section 5.2.2.1).

In addition, it is worth noting again that the ghblsensitivity analysis based on SS presents the

advantage over the standard sensitivity analystmigues (e.g., variance-based methods like Sobol
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indices), of being directly “embedded” in the cortgiion of the failure probability: the SS
algorithm produces the empirical conditional diattions of Figure Sluring the simulatiorthat is

performed to compute the functional failure proligbof the passive system.

Finally, for completeness the sensitivity insigptevided by the SS-based global approach are also
compared to those produced by (global) Sobol iredjdé]: in particular, for brevity only the total-

order Sobol indicess*, S and Sﬁj ] =1, 2,...,9, are calculated for the outputs ef ThRH code,

e, yi(x) = T (x) andy,(x) = T2 (x) and for the performance functioffx) (27) of the

out,core out,core
passive system, respectively. Table 8 reports ahees of S, S and Sﬁj ,1=1,2,...,9, obtained

using the algorithm proposed by [44] witk = 550000 runs of the T-H model code. The rankihg o
the uncertain parameters is also shown in paresghes

Table 8

It can be seen that:

= not surprisingly, different indices provide diffaterankings: for example, variables, xs

andxg are ranked fourth, third and second, respectighyhoth S and SE whereas they

are ranked third, second and fourth, respectiv®iys” ;
= the ranking provided by} is the same as that produced :BrYy. this leads to conclude that
the hot channel coolant outlet temperatif] ycore(x) =yi(x) is “dominant” over the average

channel coolant outlet temperaturé’® (x) = y»(X) in determining the uncertain behavior

t,core

of the passive system performance func@x) (27);
= the ranking provided bﬁﬁj is similar to that produced by the SS-based glabgloach (see

Figure 5): for example, variables, X, X; andxg are ranked fifth, first, eight and second,
respectively, by both approaches. However, a diffee is found in the ranking of variables
X3 andxs: in particular, variables is ranked fourth and third by the Sobol- and SSelda

approaches, respectively; conversely, variaglés ranked third and fourth by the Sobol-
and SS-based approaches, respectively. This canfinat in general, the most important
contributors to the variability of model output@) not necessarily coincide with the most

important contributors to system failure.
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6 Conclusions

The assessment of the functional failure probabdit T-H passive systems can be performed by
sampling the uncertainties in the system model @ardmeters, and simulating the corresponding
passive system response with T-H computer codethitthis framework, sensitivity analysis has
two objectives: i) the quantification of the impamte of the individual uncertain parameters in
affecting the performance of the passive systemifoother words, in determining the functional
failure probability of the passive system); ii) tthetermination of the contribution of the individlua
uncertain parameters (i.e., the inputs to the TeHeg¢ to the uncertainty in the outputs of the T-H
code. However, since sensitivity analysis reliesnuttiple evaluations of the T-H code for different
combinations of system inputs, the associated ctatipnal effort may be prohibitive due to the
long-running times of the T-H codes.
Thus, in this paper the advanced SS and LS methade been considered for performing an
efficient sensitivity analysis of the performanck a T-H passive systerwhile estimating its
functional failure probability by means of a reaably limited number of T-H code evaluations.
Different local and global approaches to sensiti@halysis have been considered and compared
with reference to two case studies of literatune:first one involving the Ishigami function [1h&
second one considering the natural convection rgoh a Gas-cooled Fast Reactor (GFR) after a
Loss of Coolant Accident (LOCA) [2]. On the basfdlte results obtained, the following guidelines
and recommendations can be drawn:

» with reference to objective i) above, two options suggested:

1. in those cases where the analyst is able to getnation about the “structure” of the
failure region (e.g., one/multiple overlapping/disnected failure regions, ...), the
concept of local reliability sensitivity analysiased on LS can be embraced (Section
3.2.2). Actually, as demonstrated by Case studyhé&, possibility of identifying
multiple important directions allows teeparatethe contributions of (possibly)
multiple failure regions to the reliability sensity indices (i.e., the partial derivatives
of the system failure probability with respect be tmoments of the distributions of
the uncertain input parameters): this avasisragingor (even worsegancelingthe
different contributions, which would provide err@us and misleading indications.

In addition, as demonstrated by Case studies 12andS provides much more
accurate and precise failure probability estimaked the other simulation methods
here considered for comparison (i.e., standard MQESS): this allows the analyst to

reduce the number of samples (and, thus, of T-Heiedaluations) necessary to
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obtain desired estimation accuracies and precigjionparticular, in those practical
cases where the computer codes require severa twuun a single simulation).

2. in those (more realistic) cases where the analgst o information about the
“structure” of the failure region (or, alternatiyelinformation can be obtained at
impractical computational costs), the global apphobased on SS may represent the
optimal choice (Section 3.1.2.2): indeed, as demnatexl by Case study 1, SS is able
to automatically identify multiple disconnectedi@ae regions without any input from
the analyst. In particular, SS generatelarge amount of conditional samples by
searching thewvhole uncertain input spacby means ofsequentialMarkov Chain
Monte Carlo (MCMC) simulations; by so doing, thetire distributionof the system
failure probability conditional on the values ofethndividual uncertain input
parameters is produced: the associated informasiaelevant from the sensitivity
analysis viewpoint because it quantifies how thitkufa probability of the system
would change if a given uncertain input parameterenset to a given value (e.g., if
its epistemic uncertainty were reduced).

A final remark is in order with respect to the etfeeness of the SS- and LS-based
approaches to sensitivity analysis. They presemt dldvantage over other standard
techniques of sensitivity analysis of being ding¢gmbedded” in the computation of the
system failure probability: the SS and LS algorishproduce the “ingredients” used in
sensitivity analyses (i.e., the empirical condiéibdistributions in SS and the random lines
parallel to the important vector in L8uring the simulatiorthat is performed to compute
the system failure probability. In other woredile estimating the failure probability of the
system, sensitivity analysis results are produdedt tcan be readily visualized for
identification and ranking of the most importantighles. This is of particular interest in
practical cases in which the computer codes reeéweral hours (or even days) to run a
single simulation (like in the present case of passystem reliability assessment).

with reference to objective ii) above, the use dassical” variance-based techniques (e.qg.,
those relying on the computation of first- and tataler Sobol indices, like in the present
paper) is suggested: actually, by constructionethresthods quantify the proportion of the
variance of the system model outputs that can towed to the variance of the uncertain
input variables.

However, two issues must be taken into accounthi@mpractical use of these techniques in

passive system reliability assessments:
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1. the associated computational burden may be prohebibecause thousands or
millions of system model evaluations are frequendiguired for the computation of
variance-based (Sobol) indices through Monte Clalged techniques; in addition,
these techniques cannot be embedded in the esinmattithe failure probability of
the passive system: thus, the T-H model evaluatr@tessary for performing the
sensitivity analysis have to lsdedto those carried out for estimating the failure
probability, further increasing the computationatden. To overcome this issue, the
adoption of fast-running meta-models in substitutad the original (typically long-
running) system model codes is strongly advised;

2. care should be taken in the interpretation of theeutain variable ranking provided
by these methods: as demonstrated by Case stutlg ipost important contributors
to the variability (in practice, thevariance of the systemmodel outputs are not
necessarilythe most important contributors system failure(i.e., those parameters
that influence most the passive systarure probability).
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FIGURE CAPTION PAGE

Figure 1. Examples of possible important unit vestd (left) ande? (right) pointing towards the
corresponding failure domains'fleft) and F (right) in a two-dimensional uncertain
parameter space: in the situation on the left,sixstem would be driven to failure much more
effectively by an increase in Parameter 2 rathamthy an increase in Parameter 1; in the
situation on the right, an increase in Parametexduld be much more important in

determining system failure than an increase in Paeter 2

Figure 2. Failure region F =X: g«(x) > 0} (dark areas) associated to the LSExQ (21) based on
the Ishigami function XJ (20) in the space of the uncertain input variabjg: j = 1, 2, 3}: F is
composed by four disconnected failure regiorsKg 1, 2, 3, 4}

Figure 3. Global sensitivity analysis by SS: dlmtitions of the system failure probability
conditional on the values of the individual uncerteput parameters {xj = 1, 2, 3}, i.e., P(F|x)
(top, left), P(F|%) (top, right) and P(F|¥ (bottom) for Case study 1 of Section 4.1

Figure 4. Schematic representation of one loohef@00-MW GFR passive decay heat removal
system [2]

Figure 5. Global sensitivity analysis by SS. Leftipirical conditional distributions of uncertain
input parametersx X%, X3, Xs and % at different conditional levels (histograms) comgzhto their
unconditional distributions (solid lines); rightigtribution of the system failure probability
conditional on the values of the individual uncertaput parametersx, X3, Xs and %, i.e.,
P(FIx), P(FIx), P(FPx), P(FI), P(F|x)
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TABLES

Case study 1: Ishigami function
Failure probability estimation (“True” value, P(F) = 5.566-10)
B(F) sP(F)
Standard MCS 0 3.878-1d
SS 5.060-10 1.647-1d0
LS 5.567-10 3.756-10

Table 1. Values of the failure probability estinsafe(F) and corresponding standard deviations

&[If’(F)J obtained by standard MCS, SS and LS witlk-18700 samples for Case study 1 of Section
4.1. The “true” (i.e., reference) value (i.e., P(E)5.566:10*) obtained by standard MCS with N

500000 samples is also reported
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Case study 1: Ishigami function
Local reliability sensitivity analysis

MCS, Nt = 500000 (rank)

MCSN+ = 3700 (rank)

SSN+t = 3700 (rank)

LS,Nt = 3700 (rank)

Parameters|  9P(F )/ou, oP(F)/os, | oP(F)/ou, | 0P(F)/os, | 0P(F)/om, | 0P(F)/ds, | 9P(F)/ou, | 0P(F)/os,
0.6781 (1) 0.5301 (3)] 0.5893 (3)  0.6527 (: 0.6050| 0.5375(2) | 0.5869 (1) _ 0.4008 (3
3.085010° (3) | 0.5329 (2) | -0.7678(2) 0.4105(3)  -0.2543 (2)0.5070 (3) | -0.0240 (3) _ 0.4026 (2

-9.219910° (2) | 6.1939 (1)

24670 (1)  5.0863 (1]

-0.1240

3)6.4965 (1)

0.0557 (2)]  5.8401 (1

Table 2. Values of the estima@B(F)/0y, and 0P(F)/da, of the partial derivatives

GP(F)/G/JHJ_ and GP(F)/GO'HJ_ of the failure probability P(F) with respect tostimeanys, and the

standard deviatiorUf,j of the distributions of the uncertain input paraers {f;: j = 1, 2, 3},

computed in the standard normal space by standa@&MsS and LS withrN 3700 samples for

Case study 1 of Section 4.1; the ranking of theettam input parameters is shown in parentheses
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Case study 1: Ishigami function — Local reliabiliy sensitivity analysis

Line Sampling, Nt = 3700 — Four important directions & | = 1, 2, 3, 4}

ay, F* (rank)

a,, F? (rank)

as, F2 (rank)

as, F* (rank)

Parameters aFA’(F 1)/6;40‘ aFA’(F 1)/60',,‘ aFA’(F 2)/6;4,,‘ OFA’(F Z)/ao',,‘ OFA’(F 3)/6;40‘ OFA’(F 3)/60'0‘ OFA’(F 4)/6;40‘ aFA’(F 4)/60'0‘
o 05574 (3) | 04287 (3)| 05343 (2) 04002 (3) _ 0.6@)5 | 03741(2) | 06382 (3)|  0.3967 (3
0, 05641 (2) | 0.4391(2)| 05333 (3) _ 0.3986(3) _ -0B&) | 0.3645(3) | -0.6437 (2) _ 0.4035 (2
0, 21143 (1) | 6.1695(1)| -2.0321(1) 57876 (1) _ 2B{® | 55034 (1) | -2.4525 (1)  5.8581 (1

Table 3. Values of the estima@é(F')/a/Jgj = ],2,34} and {alf’(F')/aagj = ],2,34} of the

partial derivatives{oP(F' )/, :I = 1,234} and{oP(F' )/aa, :I = 1,234} of the failure

probability P(F) with respect to the mean, and the standard deviatioagi of the distributions of

the uncertain input parameterg;{j = 1, 2, 3}, computed in the standard normal epdy LS with

Section 4.1; the ranking of the uncertain paramgisrshown in parentheses

N = 3700 samples and four separate important dimi{': | = 1, 2, 3, 4} for Case study 1 of
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Case study 1: Ishigami function
Global sensitivity analysis — Sobol indice

Uy

Parameters S? (rank) S;i? (rank)
X1 0.3155 (2) 0.5596 (1)
Xo 0.4415 (1) 0.4478 (2)
X3 0 (3) 0.2490 (3)

Table 4. First- and total-order Sobol sensitivitglices § and SP, j = 1, 2, 3, obtained with N=
500000 model evaluations for the LSExQ)(21) based on the Ishigami functiorx)¥(20) in Case
study 1 of Section 4.1. The ranking of the uncertgput parameters is reported in parentheses
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Name Mean,u | Standard deviation, s (% of u)

Power (MW),x; 18.7 1%

Parameter Pressure (kPaY, 1650 75%
uncertainty Cooler wall temperature (°Cy 90 5%
Nusselt number in forced convectiog, 1 5%

Nusselt number in mixed convectiog, 1 15%

Model Nusselt number in free convectioq, 1 7.5%
uncertainty Friction factor in forced convectiory 1 1%
Friction factor in mixed convectiong 1 10%

Friction factor in free convectiony 1 1.5%

Table 5. Epistemic uncertainties considered forag@@8-MW GFR passive decay heat removal

system of Figure 4 [2]
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Case study 2: nuclear passive system
Functional failure probability estimation (“True” v alue, P(F) = 3.541-10)
P(F) o[P(F)
Standard MCS 0 4.483-10
SS 3.720-10 1.679-10
LS 3.527-10 2.143-10

Table 6. Values of the functional failure probaiyildastimatess(F) and corresponding standard

deviations&[ls(F)J obtained by standard MCS, SS and LS witk 14850 samples for the nuclear

passive system of Section 5.1. The “true” (i.efemence) value (i.e., P(F) = 3.5410%) obtained
by standard MCS with-N= 500000 samples is also reported
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Case study 2: nuclear passive system
Local reliability sensitivity analysis
MCS, Nt = 500000 (rank) MCS Ny = 1850 (rank) SSNt = 1850 (rank) LS,Nt = 1850 (rank)
Parameters | 0P(F)/ou, | oP(F)/ds, | oP(F)/ou, | 9P(F)/ds, | oP(F)/om, | oP(F)/os, | oP(F)/om, | oP(F)/ds,
0, 0.1576 (5) 0.0257 (5) 0 0 0.7400 () 0.0213 (6) 1501 (5) 0.0229 (5)
0, -3.3242 (1) 10.285 (1) 0 0 -3.1262 (1)  8.9068 (1) -3.3176 (1) 10.233 (1)
0 0.7663 (3) 0.7218 (3) 0 0 0.8580 (3) 0.8090 (B) 7688 (3) 0.5424 (3)
04 3.0910° (9) | 1.4810°(9) 0 0 -0.6697 (6)) 0.0150 (6 -9:19° (8) | 7.8510° (8)
Os -0.6275 (4) 0.5228 (4) 0 0 -0.8259 (4)  0.3980 (4) -0.6344 (4) 0.3741 (4)
Os 0.0964 (6) 0.0105 (6) 0 0 0.0933(9) 115 (9) | 0.0966 (6) | 8.6690° (6)
0, -0.0123 (8) | 1.740°(8) 0 0 -0.6259 (7)) 0.0103 (7 -5:10° (9) | 3.0910° (9)
O 1.0706 (2) 1.0427 (2) 0 0 1.4436 (4) 2.0049 () 0781 (2) 1.0806 (2)
0o -0.0423 (7) | 5.980°(7) 0 0 -0.4669 (8)] 1.780°(8) | -0.0327 (7) | 9.910°(7)

Table 7. Values of the estima®@®(F )/du, and dP(F)/da, of the partial derivatives

oP(F)/0u, anddP(F)/da, of the functional failure probability P(F) with spect to the mean

He, and the standard deviatiO(argj of the distributions of the uncertain input paraere {f;: j = 1,

2, ..., 9}, computed in the standard normal spacstégdard MCS, SS and LS with N1850

samples for the nuclear passive system of Sectignihe ranking of the uncertain input parameters

is shown in parentheses
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Case study 2: nuclear passive system
Global sensitivity analysis — Total-order Sobol in&ces

Parameters S» (rank) S (rank) S, (rank)
X1 8.846-10 (5) 0.0121 (5) 0.0113 (5)
X2 0.8391 (1) 0.7985 (1) 0.8259 (1)
X3 0.0434 (4) 0.0682 (3) 0.0546 (4)
X4 1.908-10 (6) 3.058-10 (8) 2.226-10 (6)
Xs 0.0554 (3) 0.0833 (2) 0.0711 (3)
X 1.559.-10 (7) 3.195-10 (6) 2.217-106 (7)
X7 1.318-10 (8) 3.062-10 (7) 2.201-10 (8)
Xg 0.0832 (2) 0.0609 (4) 0.0827 (2)
Xq 1.134-10 (9) 3.053-10 (9) 2.197-10 (9)

Table 8. Values of the total-order Sobol sensitiintlicesS;;, Sz and Sﬁ] j=1,2,...,9,

obtained with N = 550000 simulations for the outputs of the T-e&a.e., y(x) =

y2(X) =

Tave

out,core

The ranking of the uncertain parameters is showparentheses

T hot

out,core

(x) and

(x), and for the performance functionxy (27) of the passive system of Section 5.1.
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Figure 2

Case study 1: Ishigami function - Failure regions
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Figure 4
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Figure 5
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Case study 2: nuclear passive system - Global sensitivity analysis by SS
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