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Abstract 
Thermal-Hydraulic (T-H) passive safety systems are potentially more reliable than active systems, 

and for this reason are expected to improve the safety of nuclear power plants. 

However, uncertainties are present in the operation and modeling of a T-H passive system and the 

system may find itself unable to accomplish its function. For the analysis of the system functional 

failures, a mechanistic code is used and the probability of failure is estimated based on a Monte 

Carlo (MC) sample of code runs which propagate the uncertainties in the model and numerical 

values of its parameters/variables. 

Within this framework, sensitivity analysis aims at determining the contribution of the individual 

uncertain parameters (i.e., the inputs to the mechanistic code) to i) the uncertainty in the outputs of 

the T-H model code and ii) the probability of functional failure of the passive system. The analysis 

requires multiple (e.g., many hundreds or thousands) evaluations of the code for different 

combinations of system inputs: this makes the associated computational effort prohibitive in those 

practical cases in which the computer code requires several hours to run a single simulation. 

To tackle the computational issue, in this work the use of the Subset Simulation (SS) and Line 

Sampling (LS) methods is investigated. The methods are tested on two case studies: the first one is 

based on the well-known Ishigami function [1]; the second one involves the natural convection 

cooling in a Gas-cooled Fast Reactor (GFR) after a Loss of Coolant Accident (LOCA) [2]. 

 

Keywords: nuclear passive system, functional failure probability, reliability sensitivity analysis, 

Subset Simulation, Line Sampling, Sobol indices. 

1 Introduction 

Modern nuclear reactor concepts make use of passive safety features, which do not need external 

input (especially energy) to operate [3] and, thus, are expected to improve the safety of nuclear 
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power plants because of simplicity and reduction of both human interactions and hardware failures 

[4]-[6]. 

However, the aleatory and epistemic uncertainties involved in the operation and modeling of 

passive systems are usually larger than for active systems [7], [8]. Due to these uncertainties, the 

physical phenomena involved in the passive system functioning (e.g., natural circulation) might 

develop in such a way to lead the system to fail its function (e.g., decay heat removal): actually, 

deviations in the natural forces and in the conditions of the underlying physical principles from the 

expected ones can impair the function of the system itself [9]-[21]. In the analysis of such 

functional failure behavior [10], the passive system is modeled by a mechanistic Thermal-Hydraulic 

(T-H) code and the probability of failing to perform the required function is estimated based on a 

Monte Carlo (MC) sample of code runs which propagate the uncertainties in the model and 

numerical values of its parameters/variables [22]-[38]. 

 

Within this framework, the objective of sensitivity analysis is twofold: i) the determination of the 

contribution of the individual uncertain parameters/variables (i.e., the inputs to the T-H code) to the 

uncertainty in the outputs of the T-H model code; ii) the quantification of the importance of the 

individual uncertain parameters/variables in affecting the performance (i.e., in practice, the 

functional failure probability) of the passive system [39]-[41]. In this view, the sensitivity analysis 

outcomes provide two important insights. On the one side, the analyst can identify those 

parameters/variables that are not important and may be excluded from the modeling and analysis; 

on the opposite side, the analyst is able to identify those parameters/variables whose epistemic 

uncertainty plays a major role in determining the functional failure of the T-H passive system: 

consequently, his/her efforts can be focused on increasing the state-of-knowledge on these 

important parameters/variables and the related physical phenomena (for example, by the collection 

of experimental data one may achieve an improvement in the state-of-knowledge on the correlations 

used to model the heat transfer process in natural convection, and a corresponding reduction in the 

uncertainty) [30], [38]. In the present context of passive system functional failure probability 

assessment the attention will be mainly focused on this latter aspect, i.e., the identification of those 

uncertain variables playing a key role in the determination of the passive system performance. 

 

In all generality, approaches to sensitivity analysis can be either local or global. As the name 

suggests, local methods consider the variation in the system model output that results from a local 

perturbation about some nominal input value. In the limit view, the sensitivity measure of the 

contribution of a generic uncertain input parameter to the uncertainty of the output is the partial 
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derivative of the output with respect to the input parameter itself calculated around the nominal 

values of the input parameters. Such measure identifies the critical parameters as those whose 

variation leads to the most variation in the output [39], [42]. On the contrary, global techniques aim 

at determining which of the uncertain input parameters influence the output the most when the 

uncertainty in the input parameters is propagated through the system model [43]. In this view, the 

term “global” has two meanings: the first one is that, for one input parameter whose uncertainty 

importance is evaluated, the effect of the entire uncertainty distribution of this parameter is 

considered; the second one is that the importance of this input parameter should be evaluated with 

all other input parameters varying as well [44]. Examples of methods for global sensitivity analysis 

include the so-called variance-based techniques (such as those relying on the computation of Sobol 

indices [1], [39], [44]-[46] or the Fourier Amplitude Sensitivity Test (FAST) [47]) and the more 

recent moment independent techniques [43], [48]-[52]. The interested reader may refer to [39], [42], 

[53]-[58] for detailed and updated surveys on sensitivity analysis methods. 

Regardless of the technique employed, sensitivity analysis relies on multiple (e.g., many hundreds 

or thousands) evaluations of the system model (code) for different combinations of system inputs. 

This makes the associated computational effort very high and at times prohibitive in practical cases 

in which the computer codes require several hours (or even days) to run a single simulation [32], 

[59]1. Further, in the present context of nuclear passive systems, the computational issue is even 

more dramatic because the estimation of the functional failure probability is also of interest besides 

the sensitivity analysis of the passive system performance: as a consequence, the (typically, 

hundreds of thousands) simulations performed for estimating the functional failure probability have 

to be added to those carried out for the sensitivity analysis. 

 

In light of the computational problem, the main objective of the present study is to show the 

possibility of efficiently embedding the sensitivity analysis of the performance of a nuclear passive 

system within the estimation of its functional failure probability, while resorting to a reasonably 

limited number of system model code evaluations. To this aim, the use of two advanced Monte 

Carlo Simulation (MCS) methods, namely Subset Simulation (SS) [60], [61] and Line Sampling 

(LS) [62], [63] is investigated. 

In the SS approach, the functional failure probability is expressed as a product of conditional 

probabilities of some chosen intermediate events. Then, the problem of evaluating the probability of 

functional failure is tackled by performing a sequence of simulations of these intermediate events in 

                                                 
1 For example, the computer code RELAP5-3D, which is used to describe the thermal-hydraulic behavior of nuclear 
systems, may take up to twenty hours per run in some applications. 
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their conditional probability spaces; the necessary conditional samples are generated through 

successive Markov Chain Monte Carlo (MCMC) simulations [64], in a way to gradually populate 

the intermediate conditional regions until the final functional failure region is reached. Two 

approaches of literature are here considered for performing the sensitivity analysis of the passive 

system performance by SS: the first one is local and embraces the so-called concept of reliability 

sensitivity, in which the sensitivity of the performance of the passive system to a given uncertain 

input variable is quantified as the partial derivative of the system failure probability with respect to 

the parameters (e.g., the mean, the variance, …) of the probability distribution of the input variable 

itself [65]; the second one is global and employs the conditional samples generated by MCMC 

simulation to obtain the entire distribution of the system failure probability conditional on the 

values of the individual uncertain input parameters/variables [66], [67]. 

In the LS method, lines, instead of random points, are used to probe the failure domain of the multi-

dimensional problem under analysis. An “important vector” is optimally determined to point 

towards the failure domain of interest and a number of conditional, one-dimensional problems are 

solved along such direction, in place of the multi-dimensional problem [62], [63]. In this approach, 

the sensitivity of the passive system performance to the uncertain system input parameters/variables 

can be studied through the examination of the elements of the LS important vector pointing to the 

failure region: a local informative measure of the relevance of a given uncertain variable in 

affecting the performance (i.e., in practice, the functional failure probability) of the passive system 

is the magnitude of the corresponding element in the LS important vector [68]-[71]. 

 

The SS- and LS-based approaches to sensitivity analysis are tested on two case studies: the first one 

is based on the highly nonlinear and non-monotonous Ishigami function [1], [39]; the second one 

involves the natural convection cooling in a Gas-cooled Fast Reactor (GFR) after a Loss of Coolant 

Accident (LOCA) [2]. The results obtained by the SS- and LS-based sensitivity analysis techniques 

are compared to those produced by global first- and total-order Sobol indices [39], [45]. 

 

In synthesis, the main contributions of the present paper are the following: 

� applying the SS and LS methods to embed the sensitivity analysis of the performance of a 

nuclear passive system within the estimation of its failure probability, while resorting to a 

reasonably limited number of system model code evaluations: to the best of the authors’ 

knowledge, this is the first time that SS- and LS-based sensitivity analysis methods are 

applied to nuclear passive systems; 
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� comparing the results obtained by the following approaches to sensitivity analysis: i) SS-

based local and global (reliability) sensitivity analyses, ii) LS-based local (reliability) 

sensitivity analysis and iii) “classical” variance-based global sensitivity analysis relying on 

the computation of Sobol indices; 

� challenging approaches i)-iii) mentioned above in problems where the failure region of the 

passive system is composed by multiple, disconnected parts. 

 

The reminder of the paper is organized as follows. In Section 2, a snapshot on the functional failure 

analysis of T-H passive systems is given. In Section 3, the SS and LS methods here employed for 

efficiently embedding the sensitivity analysis of the performance of a nuclear passive system within 

the estimation of its functional failure probability are presented. In Sections 4 and 5, the case studies 

concerning the Ishigami function and the passive cooling of a GFR are presented, together with the 

corresponding results. Finally, conclusions are provided in the last Section. 

2 Functional failure analysis of T-H passive systems 

The basic steps of a functional failure analysis of a T-H passive system are [24]: 

1. Detailed modeling of the system response by means of a deterministic, best-estimate 

(typically long-running) T-H code. 

2. Identification of the vector x  = {x1, x2, …, xj, …, 
inx } of parameters/variables, models and 

correlations (i.e., the inputs to the T-H code) which contribute to the uncertainty in the 

vector y = {y1, y2, ..., yl, ..., 
ony } of the outputs of the best-estimate T-H calculations. 

3. Propagation of the uncertainties associated to the identified relevant parameters, models and 

correlations x  (step 2. above) through the deterministic, long-running T-H code in order to 

estimate the functional failure probability P(F) of the passive system. Formally, let Y( x ) be 

a scalar function indicating the performance of the T-H passive system (e.g., the fuel peak 

cladding temperature during an accidental transient) and αY a threshold value (imposed e.g. 

by the regulatory authorities) defining the criterion of loss of system functionality. For 

illustrating purposes, let us assume that the passive system fails if Y( x ) > αY; equivalently, 

introducing a variable called Limit State Function (LSF) or Performance Function (PF) as 

( ) Yx Yg α−= xx)( , failure occurs if 0)( >xxg . The probability P(F) of system functional 

failure can then be expressed by the multidimensional integral: 

( ) ( )∫∫ ∫= xxx dqIFP F )(...  (1) 
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where ( )⋅q  is the joint Probability Density Function (PDF) representing the uncertainty in 

the parameters x , F is the failure region (where gx(·) > 0) and IF(·) is an indicator function 

such that IF(x) = 1, if x ∈  F and IF(x) = 0, otherwise. Notice that the evaluation of integral 

(1) above entails multiple (e.g., many thousands) evaluations of the T-H code for different 

sampled combinations of system inputs. 

4. Perform a sensitivity study to determine the contribution of the individual uncertain 

parameters x = {x1, x2, …, xj, …, 
inx } (i.e., the inputs to the T-H code) to i) the uncertainty 

in the outputs y = {y1, y2, ..., yl, ..., 
ony } of the T-H model code and ii) the functional failure 

probability of the T-H passive system. As is true for uncertainty propagation (step 3. above), 

sensitivity analysis relies on multiple evaluations of the code for different combinations of 

system inputs. 

The computational burden posed by the uncertainty propagation and sensitivity analysis of steps 3. 

and 4. above is addressed by resorting to the Subset Simulation (SS) [60], [61] and Line Sampling 

(LS) [62], [63] techniques, whose main concepts are given in the following Section. 

3 Computational methods employed in this study 

In this Section, the SS (Sections 3.1) and LS (Sections 3.2) methods employed in this study for 

embedding an efficient sensitivity analysis of the performance of a nuclear passive system within 

the estimation of its functional failure probability are presented. 

3.1 Subset Simulation 

The Subset Simulation (SS) algorithm and its use for sensitivity analysis are briefly illustrated in 

Sections 3.1.1 and 3.1.2, respectively. 

3.1.1 The algorithm 

The idea underlying the Subset Simulation (SS) method is to convert the simulation of an event 

(e.g., the rare failure event) into a sequence of simulations of intermediate conditional events 

corresponding to subsets (or subregions) of the uncertain input parameter space: in this way, a rare 

event simulation is converted into a sequence of simulations of more frequent events.  

 

During simulation, the conditional samples (lying in the intermediate subsets or subregions) are 

generated by means of Markov chains; by so doing, the conditional samples gradually populate the 

successive intermediate subsets (or subregions) up to the target (failure) region [60], [61]. 
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In extreme synthesis, the SS algorithm proceeds as follows [60], [61], [66], [67]. First, N vectors 

{ x0
k: k = 1, 2, …, N} are sampled by standard MCS, i.e., from the original probability density 

function q(·). The corresponding values of the response variable {Y(x0
k): k = 1, 2, …, N} are then 

computed and the first threshold value y1 (identifying the first intermediate conditional event) is 

chosen as the (1 – p0)N
th value in the increasing list of values {Y(x0

k): k = 1, 2, …, N}. With this 

choice of y1, there are now p0N samples among {x0
k: k = 1, 2, …, N} whose response Y(x) lies in the 

intermediate subregion F1 = {x: Y(x) > y1} (these samples are at ‘Conditional level 1’ and 

distributed as )|( 1Fq ⋅ ). By so doing, the sample estimate of P(F1) is equal to p0. Starting from each 

one of these samples, Markov Chain Monte Carlo (MCMC) simulation is used to generate (1 – p0)N 

additional conditional samples in the intermediate subregion F1 = {x: Y(x) > y1}, so that there are a 

total of N conditional samples {x1
k: k = 1, 2, …, N} ∈  F1. Then, the intermediate threshold value y2 

is chosen as the (1 – p0)N
th value in the ascending list of {Y(x1

k): k = 1, 2, …, N} to define F2 = {x: 

Y(x) > y2}. The p0N samples lying in F2 function as ‘seeds’ for sampling (1 – p0)N additional 

conditional samples lying in F2, making up a total of N conditional samples {x2
k: k = 1, 2, …, N} ∈  

F2 (these samples are at ‘Conditional level 2’ and distributed as )|( 2Fq ⋅ ). By so doing, the sample 

estimate of P(F2|F1) is still equal to p0. This procedure is repeated until the samples lying in the 

intermediate subregion Fm-1 = {x: Y(x) > ym-1} are generated to yield ym > y as the (1 – p0)N
th value 

in the ascending list of {Y(xm-1
k): k = 1, 2, …, N}. Then, the conditional probability Pm = P(Fm|Fm-1) 

is estimated by NNP mm /ˆ =  where Nm is the number of samples among { }NkY k
m ...,,2,1:)( 1 =−x  that 

lie in the failure region F = Fm, i.e., { }Y
k
mm YN α>= − )(Dim 1x . Finally, the failure probability P(F) 

is computed as follows: 

( ) ( ) ( ) ( )
N

N
pFPFFPFPFP mm

m

i
ii ⋅=≈= −

=
−∏ 1

0
2

11
ˆ|  (2) 

 

The superior efficiency of SS with respect to standard MCS in the estimation of small failure 

probabilities has been widely demonstrated in the open literature: the interested reader may refer to 

[60], [61] for mathematical details, to [67], [72]-[76] for illustrative applications to high-

dimensional (i.e., n ≥ 100) structural reliability problems and to [35] for an application to the 

functional failure analysis of a T-H passive system. 

3.1.2 Sensitivity analysis by SS 

Two approaches of literature are here considered for performing sensitivity analyses by SS within 

the framework of failure probability assessment: the first one is local and embraces the concept of 

reliability sensitivity (Section 3.1.2.1); the second one is global and employs the conditional 
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samples generated by MCMC simulation to obtain the entire distribution of the system failure 

probability conditional on the values of the individual uncertain input parameters (Section 3.1.2.2). 

3.1.2.1 Local reliability sensitivity analysis 

In the framework of reliability sensitivity, the sensitivity to a given uncertain input variable is 

defined as the partial derivative of the system failure probability with respect to the parameters 

(e.g., the mean, the standard deviation, …) of the probability distribution of the input variable itself 

[65], [70], [77]-[79]. 

Based on (2), the partial derivative ( )
jxFP ϕ∂∂  of the failure probability P(F) with respect to a 

generic distribution parameter 
jxϕ  (e.g., the mean 

jxµ , the standard deviation 
jxσ , …) of the 

uncertain input variable xj, j = 1, 2, …, ni, can be expressed as 

( ) ( )
( )

( ) ( )
( )

( )
∑
=

−

− ∂
∂+

∂
∂=

∂
∂ m

i x

ii

iixx jjj

FFP

FFP

FPFP

FP

FPFP

2

1

1

1

1

|

| ϕϕϕ
, j = 1, 2, …, ni. (3) 

It can be demonstrated (through lengthy mathematical operations here not reported for brevity sake) 

that the SS estimators ( )
jxFP ϕ∂∂ 1

ˆ , j = 1, 2, …, ni, and ( )
jxii FFP ϕ∂∂ −1|ˆ , j = 1, 2, …, ni, i = 1, 2, 

…, m, for ( )
jxFP ϕ∂∂ 1  and ( )

jxii FFP ϕ∂∂ −1| , respectively, are [65]: 

( ) ( )
( )

( )
∑

= 











∂
∂=

∂
∂ N

k x

k

k

k
F

x jj

q

q

I

N

FP

1

0

0

01 1
1ˆ

ϕϕ
x

x

x
 (4) 

( ) ( ) ( )
( )

( )
( )

∑ ∑
=

−

=

−

−

−

−
−

−

























∂
∂−

∂
∂=

∂
∂ N

k

i

l x

ll

llx

k
i

k
i

k
iF

x

ii

jj

i

j

FFP

FFP

q

q
I

N

FFP

1

1

1

1

1

1

1
1

1 |ˆ

|ˆ
111|ˆ

ϕϕϕ
x

x
x . (5) 

where k
0x  and k

i 1−x  are defined in Section 3.1.1. Substituting (4) and (5) into (3), the estimator 

( )
jxFP ϕ∂∂ ˆ  for ( )

jxFP ϕ∂∂  is readily obtained. For further mathematical details, the interested 

reader may refer to [65], from which equations (3)-(5) are taken. 

3.1.2.2 Global sensitivity analysis based on conditional samples 

The Markov chain samples generated by SS can be used to draw information about the most 

probable configurations of uncertain input parameters/variables that will occur in the case of system 

failure [66], [67]. In particular, comparing the probability density function )|( Fxq j  of the 

uncertain parameter xj, j = 1, 2, …, ni, conditional to the occurrence of system failure F, with the 

unconditional probability density function q(xj), the importance of parameter xj in determining 

system failure can be inferred. Formally, for any given value of xj the Bayes’ theorem reads 
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)(
)(

)|(
)|( FP

xq

Fxq
xFP

j

j
j = , j = 1, 2, …, ni (6) 

so that )|( jxFP  is insensitive to xj when )|( Fxq j  ~ )( jxq , i.e. when the conditional probability 

density function )|( Fxq j  is similar in shape to the PDF q(xj) [60], [61], [66], [67]. Intuitively, the 

sensitivity of the failure probability of the system to its uncertain input parameters/variables can 

thus be studied by examining the change of the sample distributions q(xj|Fi), j = 1, 2, …, ni, i = 1, 2, 

…, m, at different conditional levels Fi, i = 1, 2, …, m: in particular, the more significant the change 

(or, in other words, the more significant the difference between the shapes of the sample 

distributions q(xj|Fi) and the shape of the original distribution )( jxq ), the larger the sensitivity of 

the system performance (and of the failure probability) to the corresponding uncertain 

parameter/variable xj, j = 1, 2, …, ni. See [34], [61], [66] and [67] for illustrative applications of this 

intuitive approach. 

 

The information contained in the empirical conditional distributions q(xj|Fi), j = 1, 2, …, ni, i = 1, 2, 

…, m, generated by MCMC simulation can then be used to refine the intuitive sensitivity 

information described above by obtaining the entire distribution of the system failure probability 

conditional on the values of the individual uncertain input parameters, i.e. P(F|xj), according to (10): 

this information is relevant because it quantifies how the failure probability P(F) of the system 

would change if the value of the uncertain parameter xj were set to a given value (e.g., if its 

epistemic uncertainty were reduced). 

This approach can be considered global in the sense of [46] (see the Introduction) because during 

the SS procedure i) the whole range of variability of each uncertain input variable xj, j = 1, 2, …, ni, 

is “searched” through subsequent MCMC simulations to produce the entire distribution of the 

system failure probability conditional on the values of each individual uncertain input variable, i.e. 

P(F|xj), j = 1, 2, …, ni; ii) the conditional samples of each uncertain input variable xj, j = 1, 2, …, ni, 

distributed as q(xj|Fi), j = 1, 2, …, ni, i = 1, 2, …, m, are generated by MCMC while all other 

uncertain input parameters are “varying” (i.e., are being sampled) as well. 

3.2 Line Sampling 

Line Sampling (LS) is a probabilistic simulation method for efficiently computing small failure 

probabilities. It was originally developed for the reliability analysis of complex structural systems 

[62]. The underlying idea is to employ lines instead of random points in order to probe the failure 

domain of the high-dimensional system under analysis [63]. The Line Sampling (LS) algorithm and 

its use for sensitivity analysis are briefly illustrated in Sections 3.2.1 and 3.2.2, respectively. 
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3.2.1 The algorithm 

In extreme synthesis, the computational steps of the LS algorithm are [63], [76]: 

1. From the original multidimensional joint probability density function ( ) ),0[: ∞→ℜ⋅ nq , 

sample NT vectors { }T
k Nk ...,,2,1: =x , with { }k

n
k
j

kkk

i
xxxx ...,,...,,, 21=x . 

2. Transform the NT sample vectors { }T
k Nk ...,,2,1: =x  defined in the original (i.e., physical) 

space into NT samples { }T
k Nk ...,,2,1: =θ  defined in the standard normal space; also the PFs 

( )⋅xg  defined in the physical space have to be transformed into ( )⋅θg  in the standard normal 

space. 

3. In the standard normal space, determine the unit important direction 

{ }
inj αααα ...,,...,,, 21=α T (hereafter also called “important unit vector” or “important 

direction”) pointing towards the failure domain F of interest. 

4. Reduce the problem of computing the high-dimensional failure probability integral (1) to a 

number of conditional one-dimensional problems, solved along the “important direction” α 

in the standard normal space: in particular, estimate NT conditional “one-dimensional” 

failure probabilities ( ){ }T
k NkFP ...,,2,1:ˆ ,1 =D , corresponding to each one of the standard 

normal samples { }T
k Nk ...,,2,1: =θ  obtained in step 2. above (see [63], [76] for details). 

5. Compute the unbiased estimator ( )FP̂  for the failure probability ( )FP  and its variance 

( )[ ]FP̂2σ  as: 

( ) ( )∑
=

⋅=
TN

k

k
T FPNFP

1

,D1ˆ1ˆ , (7) 

( )[ ]FP̂2σ  = ( ) ( ) ( )( )∑
=

−⋅−
TN

k

kD
TT FPFPNN

1

2,1 ˆˆ11 . (8) 

The LS method has been shown to significantly reduce the variance (8) of the estimator (7) of the 

failure probability integral (1) [35], [36], [62], [63], [68]-[71], [76], [80]-[83]. 

 

It is worth noting that the LS technique outlined above can be applied also to systems with multiple 

failure regions ( ){ } ( ){ }0:0: >=>= θθxx ll
x

l ggF θ , l = 1, 2, …, NF. These multiple failure regions 

( ){ } ( ){ }0:0: >=>= θθxx ll
x

l ggF θ , l = 1, 2, …, NF, can be identified by i) enumerating all (or, at 

least, the most likely and relevant) failure modes of the system2 and ii) associating each failure 

                                                 
2 To identify the relevant failure modes of the system, well-structured and commonly used qualitative hazard analyses 
may be employed, e.g., Failure Mode and Effect Analysis (FMEA) and HAZard and OPerability (HAZOP) analysis 
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mode with one failure region ( ){ } ( ){ }0:0: >=>= θθxx ll
x

l ggF θ , l = 1, 2, …, NF. Only for 

illustration purposes, let us suppose that the system of interest has NF = 2 failure modes, e.g., it fails 

when either performance function Y1(x) exceeds threshold 
1Yα  or performance function Y2(x) 

exceeds threshold 
2Yα : in such a case, the corresponding failure regions F1 and F2 can be identified 

as ( ){ }0: 11 >= xx xgF  = ( ){ }0:
11 >− YY αxx  and ( ){ }0: 22 >= xx xgF  = ( ){ }0:

22 >− YY αxx , 

respectively. When multiple failure regions are present, an “important direction” αl has to be 

identified for each failure region Fl, l = 1, 2, …, NF. Then, each one of the standard normal samples 

{ }T
k Nk ...,,2,1: =θ  obtained in step 2. of the LS algorithm has to be associated in a unique manner 

to one of the identified directions; the method proposed by Schueller et al. (2004) [80] can be 

employed to this aim: the interested reader is referred to the original reference for details. 

Those samples among { }T
k Nk ...,,2,1: =θ  that belong to the l th failure region Fl, l = 1, 2, …, NF, are 

then used to compute the estimate ( )lFP̂  of the l th failure probability ( )lFP  by performing steps 4. 

and 5. above of the LS algorithm. 

Finally, if the failure regions Fl, l = 1, 2, …, NF, are disconnected (i.e., not overlapping), the 

estimate ( )FP̂  of the failure probability P(F) is simply given by the sum of the estimates ( )lFP̂  of 

the individual failure probabilities ( )lFP , l = 1, 2, …, NF: 

( ) ( )∑
=

=
FN

l

lFPFP
1

ˆˆ . (9) 

On the contrary, if the failure regions Fl, l = 1, 2, …, NF, are overlapping, some modifications to the 

procedure here outlined are required to ensure that the estimates ( )lFP̂ , l = 1, 2, …, NF, do not 

contain contributions from other failure domains. However, since the analysis of this situation goes 

beyond the scopes of the present paper, mathematical details are not reported here for brevity: the 

interested reader is referred to [70], [80]. 

 

As a final remark, notice that the efficiency of the LS method depends on the accurate 

determination of the important direction α (step 3. of the algorithm above) [36], [62], [63], [83]. In 

this work, the method based on the normalized “center of mass” of the failure domain F has been 

employed [62]. In particular, A point 0θ  is taken in the failure domain F. Subsequently, 0θ  is used 

as the initial point of a Markov chain which lies entirely in the failure domain F. For that purpose, a 

                                                                                                                                                                  

[11], [13]; when possible, the qualitative information provided by the hazard identification methods mentioned above 
may be completed by numerical results produced by quantitative techniques, such as the optimum criterion method [84] 
and stochastic limit analysis [70] originally developed within the field of structural reliability. 
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Metropolis-Hastings algorithm is employed to generate a sequence of Ns points { }s
u Nu ...,,2,1: =θ  

lying in the failure domain F [64]. The unit vectors 
2

uu
θθ , u = 1, 2, …, Ns, are then averaged in 

order to obtain the LS important unit vector as ∑
=

⋅=
sN

u

uu

sN 1
2

1
θθα . This direction provides a good 

“map” of the failure domain and thus it provides in principle a realistic indication of the actual 

location of the failure domain and, thus, a reliable estimate for the LS important direction α. 

3.2.2 Local reliability sensitivity analysis by LS 

The important unit vector { }
inj αααα ...,,...,,, 21=α  is determined to point towards the failure 

domain F of interest (Section 3.2.1). As such, the vector α tells which combinations of parameter 

variations contribute most to failure and thus gives an idea of the relative importance of the 

uncertain parameters { }njj ...,,2,1: =θ  in determining the failure of the system under analysis [63]. 

For example, in the situation depicted in Figure 1, left, the system would be driven to failure much 

more effectively by an increase in Parameter 2 rather than by an increase in Parameter 1; on the 

contrary, in the situation represented in Figure 1, right, an increase in Parameter 1 would be much 

more important in determining system failure than an increase in Parameter 2. In this view, the 

sensitivity of the passive system performance to the individual uncertain inputs can be studied by 

comparing the magnitudes of the components of α: see [35] for a preliminary application of this 

concept to the model of a nuclear passive system. 

 

Figure 1 

 

This intuitive concept was put in a formal framework in [68]-[71]: in particular, embracing the 

concept of reliability sensitivity, the authors derived formal expressions for the LS estimators 

( )
j

FP θµ∂∂ ˆ  and ( )
j

FP θσ∂∂ ˆ  of the partial derivatives ( )
j

FP θµ∂∂  and ( )
j

FP θσ∂∂  of the system 

failure probability P(F) with respect to the parameters (i.e., the mean 
jθµ  and the standard 

deviation 
jθσ ) of the normal probability distributions of the uncertain input variables 

{ }ij nj ...,,2,1: =θ  in the standard normal space. Without going into mathematical details, it can be 

demonstrated that ( ) jj
FP αµθ ∝∂∂ ˆ  and ( ) ( )2ˆ

jj
FP ασθ ∝∂∂  [68]-[71], which confirms the 

intuition that the sensitivity of the system failure probability P(F) to a given uncertain input variable 

θj is proportional to the magnitude of the corresponding component αj of the important vector α. 
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Finally, based on (15), it is straightforward to show that in the case of multiple, non-overlapping 

failure regions Fl, l = 1, 2, …, NF, ( )
j

FP θµ∂∂ ˆ  = ( )∑
=

∂∂
F

j

N

l

lFP
1

ˆ
θµ and ( )

j
FP θσ∂∂ ˆ  = 

( )∑
=

∂∂
F

j

N

l

lFP
1

ˆ
θσ , with ( ) l

j
l

j
FP αµθ ∝∂∂ ˆ  and ( ) ( )2ˆ l

j
l

j
FP ασθ ∝∂∂  [68]-[71]. 

4 Case study 1: Ishigami function 

In this Section, the case study involving the well-known Ishigami function [1] is illustrated: in 

particular, in Section 4.1, few details about the model are provided; in Section 4.2, the results of the 

application of the SS and LS methods for the sensitivity analysis of the model of Section 4.1 are 

illustrated. 

4.1 The model 

The Ishigami function (20) [1] is frequently adopted as a benchmark in sensitivity studies due to its 

challenging properties, i.e., nonlinearity, non-monotonicity and presence of interactions between the 

uncertain input variables [39], [41], [53], [85]: 

( ) ( ) ( ) ( ) ( )1
4
32

2
1321 sin1.0sin7sin,, xxxxxxxYY ++==x  (10) 

where x1, x2 and x3 are uncertain input variables following a uniform distribution on [-π, +π]. 

 

Since the main objective of the present paper is to perform the sensitivity analysis of the 

performance (or, in other word, the functional failure probability) of a nuclear passive system, the 

Ishigami function Y(x) (20) is artificially modified to this aim. In particular, using the notation of 

Section 2, Y(x) (20) is taken as the indicator of the performance of a fictitious passive system and an 

hypothetical failure threshold αY = 16.5 is correspondingly introduced: this leads to define the 

associated Performance Function (PF) or Limit State Function (LSF) gx(x) as 

gx(x) = Y(x) – αY = ( ) ( ) ( ) 5.16sin1.0sin7sin 1
4
32

2
1 −++ xxxx . (11) 

Then, the fictitious passive system characterized by the LSF (21) is supposed to fail when its LSF 

becomes larger than or equal to 0, i.e., gx(x) ≥ 0. The true (i.e., reference) probability P(F) of the 

failure event F = {gx(x) ≥ 0} is 5.566·10-4, obtained by standard MCS with NT = 500000 samples 

drawn. 

 

Figure 2 shows the failure region F = {x: gx(x) ≥ 0} (dark areas) associated to the LSF gx(x) (21) 

based on the Ishigami function Y(x) (20) in the space of the uncertain input variables {xj: j = 1, 2, 

3}. It is interesting to note that the failure region F = {x: gx(x) ≥ 0} is composed by four 
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disconnected (i.e., not overlapping) failure regions {Fl: l = 1, 2, 3, 4}, i.e., F = F1 ∪  F2 ∪  F3 ∪  

F4. The four disconnected failure regions {Fl: l = 1, 2, 3, 4} are defined as follows: 

[ ] [ ] [ ]{ }0390.3,1414.3,1514.1,9963.1,0250.2,1017.1: 321
1 −−∈−−∈∈= xxxF x  (12) 

[ ] [ ] [ ]{ }0390.3,1414.3,9963.1,1514.1,0250.2,1017.1: 321
2 −−∈∈∈= xxxF x  (13) 

[ ] [ ] [ ]{ }1414.3,0390.3,9963.1,1514.1,0250.2,1017.1: 321
3 ∈∈∈= xxxF x  (14) 

[ ] [ ] [ ]{ }1414.3,0390.3,1514.1,9963.1,0250.2,1017.1: 321
4 ∈−−∈∈= xxxF x  (15) 

Notice that (22)-(25) are characterized by important symmetry properties: in particular, in failure 

regions F1 and F4 parameter x2 ranges between –1.9963 and –1.1514, whereas in failure regions F2 

and F3 it symmetrically ranges between 1.1514 and 1.9963; further, in failure regions F1 and F2 

parameter x3 ranges between –3.1414 and –3.0390, whereas in failure regions F3 and F4 it 

symmetrically ranges between 3.0390 and 3.14143. 

 

Figure 2 

4.2 Application 

In this Section, the SS and LS methods are applied for i) the estimation of the failure probability 

P(F) (Section 4.2.1) and ii) the sensitivity analysis of the performance (Section 4.2.2) of the 

synthetic passive system characterized by the LSF gx(x) (21) based on the Ishigami function Y(x) 

(20). 

4.2.1 Failure probability estimation 

For completeness and only for illustration purposes, Table 1 reports the values of the estimates 

( )FP̂  of the failure probability P(F) obtained by SS with NT = 3700 samples (i.e., m = 4 simulation 

levels, each with N = 1000 samples) and LS with NT = 3700; for comparison purposes, the results 

obtained by standard MCS with the same number NT = 3700 of samples are also presented. In order 

to evaluate the accuracy of the estimates, a “true” value of the failure probability P(F) is also 

reported in Table 1 for reference (i.e., P(F) = 5.566·10-4); as mentioned above, this has been 

obtained by standard MCS with a very large number NT (i.e., NT = 500000) of simulations. Finally, 

in order to evaluate the precision of the estimates, the standard deviation ( )[ ]FP̂σ̂  of ( )FP̂  is also 

computed. 

 

                                                 
3 It is worth noting that due to the simplicity of the problem failure regions {Fl: l = 1, 2, 3, 4} (22)-(25) have been 
determined analytically by straightforward analysis of performance function (20). 
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Table 1 

 

As expected, LS outperforms the other methods in terms of accuracy (i.e., the LS failure probability 

estimate ( )FP̂  is closer to the true value P(F) than those of the other methods) and precision (i.e., 

the standard deviation ( )[ ]FP̂σ̂  of ( )FP̂  is lower than those of the other methods) of the failure 

probability estimates. 

4.2.2 Sensitivity analysis results 

The same NT = 3700 samples used in the previous Section 4.2.1 to estimate the failure probability of 

the synthetic passive system of Section 4.1 are here employed for studying the sensitivity of its 

performance (i.e., of its failure probability) to the uncertain input variables. In Section 4.2.2.1, the 

results obtained by the SS- and LS-based local reliability sensitivity approaches of Sections 3.1.2.1 

and 3.2.2, respectively, are shown. In Section 4.2.2.2, the results obtained by the SS-based global 

approach of Section 3.1.2.2 are presented; in addition, the sensitivity insights provided by the SS-

based method are compared to those produced by Sobol indices. 

4.2.2.1 Local reliability sensitivity results 

Since the results produced by the LS method are obtained in the standard normal space by 

construction (see Sections 3.2.1 and 3.2.2 for details), for fair comparison with the other methods, 

the uncertain input variables {xj: j = 1, 2, 3} in (21) have been transformed into {θj: j = 1, 2, 3} in 

the standard normal space and also the system LSF gx(x) (21) has been transformed into gθ(θ) in the 

standard normal space: thus, the partial derivatives of the system failure probability with respect to 

the parameters of the distributions of the uncertain input variables are calculated in the standard 

normal space for all the simulation methods considered. 

 

Table 2 reports the values of the estimates ( )
j

FP θµ∂∂ ˆ  and ( )
j

FP θσ∂∂ ˆ  of the partial derivatives 

( )
j

FP θµ∂∂  and ( )
j

FP θσ∂∂  of the failure probability P(F) with respect to the mean 
jθµ  and the 

standard deviation 
jθσ  of the distributions of the uncertain input parameters {θj: j = 1, 2, 3}, 

computed by standard MCS, SS and LS with NT = 3700 samples. Notice that in the present 

implementation of the LS technique we suppose that the analyst does not recognize the presence of 

four disconnected failure regions and, consequently, he/she identifies one single important vector α 

by MCMC simulation (Section 3.2.1). In particular, a point θ0 is chosen in the failure domain F; 

subsequently, a sequence of Ns = 1000 points { }s
u Nu ...,,2,1: =θ  lying in the failure domain F is 

generated by MCMC; then, since by hypothesis the analyst does not realize that the points 
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{ }s
u Nu ...,,2,1: =θ  “belong” to four disconnected failure regions, he/she averages the unit vectors 

2

uu
θθ , u = 1, 2, …, Ns, to obtain the unique important vector α = [0.2456, 1.994·10-3, –2.434·10-

5]. “True” values of ( )
j

FP θµ∂∂  and ( )
j

FP θσ∂∂  are also reported in Table 2 for reference: as 

before, these have been obtained by standard MCS with a very large number NT (i.e., NT = 500000) 

of simulations. The ranking of the uncertain input parameters {θj: j = 1, 2, 3} based on the estimates 

( )
j

FP θµ∂∂ ˆ  and ( )
j

FP θσ∂∂ ˆ  is shown in parentheses. 

 

Table 2 

 

Considering, e.g., the (reference) results obtained by standard MCS with NT = 500000 samples, one 

would infer that: 

� moving the mean 
1θµ  of the probability distribution of θ1 from its nominal value (i.e., 0) 

towards positive values increases the failure probability P(F) of the system (actually, the sign 

of ( )
1

ˆ
θµ∂∂ FP  is positive). This information is coherent with the “configuration” of the four 

failure regions {Fl: l = 1, 2, 3, 4} (22)-(25): actually, in case of system failure, parameter x1 is 

found to range between the values 1.1017 and 2.0250 (which are both larger than the 

nominal value of the mean of the probability distribution of x1, i.e., 0); 

� moving the mean 
2θµ  (

3θµ ) of the probability distribution of θ2 (θ3) from its nominal value 

(i.e., 0) is much less effective than moving 
1θµ  in increasing (decreasing) the failure 

probability P(F) of the system: actually, the magnitude of the absolute value of ( )
2

ˆ
θµ∂∂ FP  

( ( )
3

ˆ
θµ∂∂ FP ) is about one hundred times lower than that of ( )

1

ˆ
θµ∂∂ FP ; 

� in order to effectively drive the system to failure (or, in other words, to increase its failure 

probability P(F)) the mean 
2θµ  (

3θµ ) of the probability distribution of θ2 (θ3) have to be 

moved from its nominal value (i.e., 0) towards positive (negative) values: actually, the sign of 

( )
2

ˆ
θµ∂∂ FP  ( ( )

3

ˆ
θµ∂∂ FP ) is positive (negative). However, this information is wrong or, at 

least, not complete if referred to the “configuration” of the four failure regions {Fl: l = 1, 2, 3, 

4} (22)-(25): actually, in case of system failure parameter x2 may range either between the 

values 1.1514 and 1.9963 (which are both larger than the nominal value of the mean of the 

probability distribution of x2, i.e., 0) or between the values –1.9963 and –1.1514 (which 

instead are both smaller than the nominal value of the mean of the probability distribution of 

x2, i.e., 0). Similar considerations hold for parameter θ3. 
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This latter consideration highlights the inadequacy of the local reliability sensitivity approach when 

applied to problems presenting multiple failure regions. Actually, the reason behind the 

inappropriateness or incompleteness of the information provided by the results in Table 2 is readily 

explained by the symmetry properties characterizing the four failure regions {Fl: l = 1, 2, 3, 4} (22)-

(25): actually, as already explained in Section 4.1, in failure regions F1 and F4 parameter x2 ranges 

between –1.9963 and –1.1514, whereas in failure regions F2 and F3 it symmetrically ranges 

between 1.1514 and 1.9963; further, in failure regions F1 and F2 parameter x3 ranges between –

3.1414 and –3.0390, whereas in failure regions F3 and F4 it symmetrically ranges between 3.0390 

and 3.1414. As a consequence, in estimating ( )
2θµ∂∂ FP  and ( )

3θµ∂∂ FP  the positive and negative 

contributions associated to the failure regions symmetric with respect to the origin of the input 

parameter space “cancel out”: this produces estimates ( )
2

ˆ
θµ∂∂ FP  and ( )

3

ˆ
θµ∂∂ FP  very close to 

zero (e.g., in the present case both ( )
2

ˆ
θµ∂∂ FP  and ( )

3

ˆ
θµ∂∂ FP  are approximately 10-3 and 10-5, 

respectively). 

 

This problem can be overcome by employing the LS method with four different important 

directions {αl: l = 1, 2, 3, 4} pointing towards the four failure regions {Fl, l = 1, 2, 3, 4} (22)-(25): 

in particular, α1 = [0.2441, –0.2462, –0.9379], α2 = [0.2465, 0.2460, –0.9374], α3 = [0.2468, 0.2497, 

0.9363] and α4 = [0.2448, –0.2417, 0.9389] have been identified by MCMC simulation with Ns = 

2000 samples (see Section 3.2.1). This allows to quantify separately the contributions of the four 

different failure regions, i.e., ( ){ }4,3,2,1:ˆ =∂∂ lFP
j

l
θµ  and ( ){ }4,3,2,1:ˆ =∂∂ lFP

j

l
θσ , j = 1, 2, 3, to 

the estimates ( )
j

FP θµ∂∂ ˆ  and ( )
j

FP θσ∂∂ ˆ , j = 1, 2, 3. The corresponding results are shown in 

Table 3. 

 

Table 3 

 

It can be seen that contrary to the (erroneous) indications provided by the results in Table 2, 

variable θ3 is the most effective in driving the system to failure: indeed, the absolute values of 

( ){ }4,3,2,1:ˆ
3

=∂∂ lFP l
θµ  are about ten times larger than those of ( ){ }4,3,2,1:ˆ

1
=∂∂ lFP l

θµ  and 

( ){ }4,3,2,1:ˆ
2

=∂∂ lFP l
θµ ; further, variables θ1 and θ2 are almost equally effective in driving the 
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system to failure: indeed, the magnitude of the absolute values of ( ){ }4,3,2,1:ˆ
1

=∂∂ lFP l
θµ  and 

( ){ }4,3,2,1:ˆ
2

=∂∂ lFP l
θµ  is about the same. 

4.2.2.2 Global sensitivity results 

The results obtained in the previous Section 4.2.2.1 by the local reliability sensitivity approaches 

are compared here to those produced by the global SS-based sensitivity approach of Section 3.1.2.2. 

 

Figure 3 shows the distribution of the system failure probability conditional on the values of the 

individual uncertain input parameters, i.e. P(F|x1) (top, left), P(F|x2) (top, right) and P(F|x3) 

(bottom) obtained according to (10). This information is relevant because it quantifies how the 

failure probability P(F) of the system would change if the value of the uncertain parameter xj were 

set to a given value (e.g., if its uncertainty were reduced): for example, fixing x1 to 1.5 would result 

in P(F) ≈  6·10-3, fixing x2 to –1.5 or +1.5 would result in P(F) ≈  4·10-3, whereas fixing x3 to about 

–3 or +3 would result in P(F) ≈  8·10-3. 

In addition, the shape of the distributions P(F|xj), j = 1, 2, 3, obviously reflects the “structure” of the 

four failure regions {Fl, l = 1, 2, 3, 4} (22)-(25): for example, the distribution P(F|x1) takes values 

different from zero when x1 approximately ranges between +1 and +2 (see (22)-(25)); the 

distribution P(F|x2) takes values different from zero when x2 approximately ranges between –2 and 

–1 (see (22) and (25)) or between +1 and +2 (see (23) and (24)); finally, the distribution P(F|x3) 

takes values different from zero when x3 assumes values around –3 (see (22) and (23)) or +3 (see 

(24) and (25)). 

Figure 3 

 

Finally, the results shown in Figure 3 can be used to rank the uncertain input variables {xj: j = 1, 2, 

3} according to their effectiveness in driving the system to failure (or, in other words, to quantify 

the importance of the variability of the individual uncertain input variables in determining the 

failure probability of the system). A ranking can be established on the basis of the (maximum) value 

assumed by the distribution P(F|xj) over the range of variability of xj, j = 1, 2, 3: in particular, the 

larger P(F|xj), the larger the contribution of the variability of xj in determining the system failure 

probability. For example, as x1 varies in its range [–π, +π], P(F|x1) takes values from 0 (minimum) 

to 6·10-3 (maximum); as x2 varies in [–π, +π], P(F|x2) takes values from 0 (minimum) to 4·10-3 

(maximum); finally, as x3 varies in [–π, +π], P(F|x3) takes values from 0 (minimum) to 9·10-3 

(maximum). According to this criterion, x3 is much more important than both x1 and x2, whereas x1 

is slightly more important than x2 in affecting the failure probability of the system. 
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Note that this ranking is the same as the one provided by the local reliability sensitivity approach 

based on LS with four different important directions (see Table 3 of Section 4.2.2.1). 

 

Finally, for completeness the sensitivity insights provided by the SS-based global approach are also 

compared to those produced by first- and total-order (global) Sobol indices [45]: these indices are 

frequently used in the literature to identify the uncertain parameters (i.e., the uncertain inputs to a 

given system model) that contribute most to the variability of the model outputs4. Thus, first- and 

total-order Sobol indices are computed to identify those uncertain input parameters {xj: j = 1, 2, 3} 

which contribute most to the variability of the LSF gx(x) (21) based on the Ishigami function Y(x) 

(20). 

In more detail, by definition the first-order Sobol sensitivity index Sj
g, j = 1, 2, 3, quantifies the 

proportion of the variance of the LSF gx(x) (21) (i.e., the output) that can be attributed to the 

variance of the uncertain input variable xj alone, i.e., without taking into account interactions with 

other input variables; on the contrary, the total-order Sobol sensitivity index STj
g, j = 1, 2, 3, 

quantifies the proportion of the variance of the LSF gx(x) (21) (i.e., the output) that can be attributed 

to the variance of the uncertain input variable xj taking into account the interactions (of all the 

orders) with all the other input variables [39], [44], [46]. 

As pointed out in [46], the sensitivity indices Sj
g and STj

g have the advantage of being global 

because i) the effect of the entire distribution of the parameter whose uncertainty importance is 

evaluated, is considered and ii) the importance of this input parameter is evaluated with all other 

input parameters varying as well; moreover, this sensitivity index is also “model free” because its 

computation is independent from assumptions about the model form, such as linearity, additivity 

and so on. The drawback of this approach relies in the computational burden associated to its 

calculation: actually, thousands or millions of system model evaluations are frequently required for 

the evaluation of Sobol indices through Monte Carlo-based techniques [39], [46]. 

 

First- and total-order Sobol indices Sj
g and STj

g, j = 1, 2, 3, are computed for the LSF gx(x) (21) 

based on the Ishigami function Y(x) (20), by resorting to the algorithm proposed by [44]: these 

values obtained with NT = 550000 model evaluations are reported for reference in Table 4. The 

ranking of the uncertain input variables is also reported in parentheses. 

 

Table 4 
                                                 
4 Notice that the SS- and Sobol-based approaches are here compared because they are both global; however, their 
outcomes are conceptually quite different: the first one identifies the most important contributors to system failure, 
whereas the second one identifies the most important contributors to the variability of the model outputs. 
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It is interesting to note that: 

� the contribution of x3 to the variability of the LSF gx(x) (21) is entirely due to interactions 

with other input variables (indeed, S3
g = 0 and ST3

g = 0.2490): actually, in (21) variable x3 

does not appear alone, but only multiplied by the term sin(x1); 

� the contribution of x2 to the variability of the LSF gx(x) (21) is entirely due to its variation 

alone and not to interactions with other input variables (indeed, S2
g ≈  ST2

g = 0.4415): 

actually, in (21) variable x2 does appear only alone in the term 7 sin2(x2); 

� the contribution of x1 to the variability of the LSF gx(x) (21) is due both to its variation alone 

and to interactions with other input variables (indeed, S1
g = 0.3155 and ST1

g = 0.5596): 

actually, in (21) variable x1 appears both alone in the term sin(x1) and multiplied by x3
4 in the 

term 0.1 x3
4·sin(x1); 

� the ranking of the uncertain input variables provided by Sobol sensitivity indices is 

significantly different from those produced by the local reliability sensitivity approach (Table 

3 of Section 4.2.2.1) and by the global SS-based approach (Figure 3): for example, according 

to Sobol indices, parameter x3 is the least important in determining the variability of the LSF 

gx(x) (21), whereas, according to the SS- and LS-based approaches, it is the most important in 

affecting the system failure probability. This leads to the conclusion that the most important 

contributors to the variability of the system model output(s) are not necessarily the most 

important contributors to system failure. 

This may be due to the fact that the four failure domains of interest {Fl: l = 1, 2, 3, 4} are 

very small with respect to the entire uncertain input space and they lie far from the regions 

characterized by the most significant variability of the model output gx(x) (actually, they are 

located at the “boundaries” of the uncertain input space, as demonstrated by (22)-(25) and, 

pictorially, by Figure 2): in this way, the failure domains {Fl: l = 1, 2, 3, 4} do not 

“contribute” to the estimation of the Sobol indices Sj
g and STj

g, whereas they obviously play a 

relevant role in the estimation of the quantities ( )
j

FP θµ∂∂  and P(F|xj), j = 1, 2, 3. 

5 Case study 2: nuclear passive system 

In this Section, the case study concerning a nuclear passive system of literature [2] is illustrated: in 

Section 5.1, few details about the system model are provided; in Section 5.2, the results of the 

application of the SS and LS methods for the sensitivity analysis of the performance of the passive 

system of Section 5.1 are presented. 
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5.1 The model 

This case study concerns the natural convection cooling in a Gas-cooled Fast Reactor (GFR) under 

a post-Loss Of Coolant Accident (LOCA) condition; the reactor is a 600-MW GFR cooled by 

helium flowing through separate channels in a silicon carbide matrix core [2]. 

A GFR decay heat removal configuration is shown schematically in Figure 4; in the case of a 

LOCA, the long-term heat removal is ensured by natural circulation in a given number Nloops of 

identical and parallel loops; only one of the Nloops loops is reported for clarity of the picture: the 

flow path of the cooling helium gas is indicated by the black arrows. The loop has been divided into 

Nsections = 18 sections for numerical calculation; technical details about the geometrical and 

structural properties of these sections are not reported here for brevity: the interested reader may 

refer to [2]. 

 

In the present analysis, the average core power to be removed is assumed to be 18.7 MW, 

equivalent to about 3% of full reactor power (600 MW): to guarantee natural circulation cooling at 

this power level, a pressure of 1650 kPa in the loops is required in nominal conditions. Finally, the 

secondary side of the heat exchanger (i.e., item 12 in Figure 4) is assumed to have a nominal wall 

temperature of 90 °C [2]. 

Figure 4 

5.1.1 Uncertainties 

Uncertainties affect the modeling of passive systems. There are unexpected events, e.g. the failure 

of a component or the variation of the geometrical dimensions and material properties, which are 

random in nature. This kind of uncertainty, often termed aleatory [86]-[90], is not considered in this 

work. Additionally, there is incomplete knowledge on the properties of the system and the 

conditions in which the passive phenomena develop (i.e., natural circulation). This kind of 

uncertainty, often termed epistemic, affects the model representation of the passive system 

behaviour, in terms of both (model) uncertainty in the hypotheses assumed and (parameter) 

uncertainty in the values of the parameters of the model [29], [55], [57]. 

 

Only epistemic uncertainties are considered in this work. Epistemic parameter uncertainties are 

associated to the reactor power level, the pressure in the loops after the LOCA and the cooler wall 

temperature; epistemic model uncertainties are associated to the correlations used to calculate the 

Nusselt numbers and friction factors in the forced, mixed and free convection regimes. The 

consideration of these uncertainties leads to the definition of a vector x = { }9...,,2,1: =jx j  of nine 
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uncertain model inputs, assumed described by normal distributions of known means and standard 

deviations (Table 5, [2]). 

 

Table 5 

5.1.2 Failure criteria of the T-H passive system 

The passive decay heat removal system of Figure 4 fails to provide its safety function when the 

temperature of the coolant helium leaving the core (item 4 in Figure 4) exceeds either 1200 °C in 

the hot channel or 850 °C in the average channel: these values are expected to limit the fuel 

temperature to levels which prevent excessive release of fission gases and high thermal stresses in 

the cooler (item 12 in Figure 4) and in the stainless steel cross ducts connecting the reactor vessel 

and the cooler (items from 6 to 11 in Figure 4) [2]. Denoting by ( )xhot
coreoutT ,  and ( )xavg

coreoutT ,  the 

coolant outlet temperatures in the hot and average channels, respectively, the system failure event F 

can be written as follows: 

( ){ } ( ){ }850:1200: ,, >∪>= xxxx avg
coreout

hot
coreout TTF . (16) 

Notice that, in the notation of Section 2, ( )xhot
coreoutT ,  = y1(x) and ( )xavg

coreoutT ,  = y2(x) are the no = 2 

outputs of the T-H model. 

The failure region F (26) is then condensed into a single performance indicator Y(x), leading to the 

definition of a single-output Limit State Function (LSF) or Performance Function (PF) ( )⋅xg  

(Section 2). The system performance indicator ( )xY  is defined as 

( ) ( ) ( ) ( ) ( )






=









=
850

,
1200850

,
1200

21,, xxxx
x

yy
max

TT
maxY

avg
coreout

hot
coreout  (17) 

so that the failure region F becomes specified as: 

( ){ }1: >= xx YF . (18) 

In the notation of Section 2, the failure threshold αY is then equal to one and the system LSF in (1) 

is written as  

( ) ( ) 1)( −=−= xxx YYg Yx α . (19) 

The probability P(F) of this event is 3.541·10-4, obtained by standard MCS with NT = 500000 

samples drawn. 



 23

5.2 Application 

In this Section, the SS and LS methods are applied for i) the estimation of the functional failure 

probability P(F) (Section 5.2.1) and ii) the sensitivity analysis of the performance of the 600-MW 

GFR passive decay heat removal system in Figure 4 (Section 5.2.2). 

5.2.1 Functional failure probability estimation 

For completeness and only for illustration purposes, Table 6 reports the values of the estimates 

( )FP̂  of the functional failure probability P(F) obtained by SS with NT = 1850 samples (i.e., m = 4 

simulation levels, each with N = 500 samples) and LS with NT = 1850; for comparison purposes, the 

results obtained by standard MCS with the same number NT = 1850 of samples are also presented. 

In order to evaluate the accuracy of the SS and LS estimates, a “true” value of the functional failure 

probability P(F) is also reported in Table 6 for reference (i.e., P(F) = 3.541·10-4); this has been 

obtained by standard MCS with a very large number NT (i.e., NT = 500000) of simulations of the 

original T-H code, which actually runs fast enough to allow repetitive calculations (one code run 

lasts on average 3 seconds on a Pentium 4 CPU 3.00GHz). Finally, in order to evaluate the 

precision of the SS and LS estimates, the standard deviation ( )[ ]FP̂σ̂  of ( )FP̂  is also computed. 

 

Table 6 

 

As before, LS significantly outperforms the other methods in terms of accuracy (i.e., the LS failure 

probability estimate ( )FP̂  is closer to the true value P(F) than those of the other methods) and 

precision (i.e., the standard deviation ( )[ ]FP̂σ̂  of ( )FP̂  is lower than those of the other methods) of 

the failure probability estimates. 

5.2.2 Sensitivity analysis results 

The same NT = 1850 samples used in the previous Section 5.2.1 to estimate the functional failure 

probability of the nuclear passive system are here used to analyze the sensitivity of its performance 

to the uncertain input variables {xj: j = 1, 2, …, 9} of Table 5. In particular, in Section 5.2.2.1, the 

results obtained by the SS- and LS-based local reliability sensitivity approaches of Sections 3.1.2.1 

and 3.2.2, respectively, are shown. In Section 5.2.2.2, the results obtained by the SS-based global 

approach of Section 3.1.2.2 are presented; in addition, the sensitivity insights provided by the SS-

based method are compared to those produced by Sobol indices. 
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5.2.2.1 Local reliability sensitivity results 

Table 7 reports the values of the estimates ( )
j

FP θµ∂∂ ˆ  and ( )
j

FP θσ∂∂ ˆ  of the partial derivatives 

( )
j

FP θµ∂∂  and ( )
j

FP θσ∂∂  of the functional failure probability P(F) with respect to the mean 

jθµ  and the standard deviation 
jθσ  of the distributions of the uncertain input parameters {θj: j = 1, 

2, …, 9}, computed by standard MCS, SS and LS with NT = 1850 samples. “True” values of 

( )
j

FP θµ∂∂  and ( )
j

FP θσ∂∂  is also reported in Table 7 for reference: as before, these have been 

obtained by standard MCS with a very large number NT (i.e., NT = 500000) of simulations of the 

original T-H code. The ranking of the uncertain input parameters {θj: j = 1, 2, …, 9} based on the 

estimates ( )
j

FP θµ∂∂ ˆ  and ( )
j

FP θσ∂∂ ˆ  is shown in parentheses5. 

 

Table 7 

 

It can be seen that: 

� a ranking of the importance of the uncertain input variables {θj: j = 1, 2, …, 9} in affecting 

the functional failure probability of the passive system can be established on the basis of the 

magnitude of the absolute values of the estimates ( )
j

FP θµ∂∂ ˆ  and ( )
j

FP θσ∂∂ ˆ , j = 1, 2, …, 

9: obviously, the larger the absolute values of ( )
j

FP θµ∂∂ ˆ  and ( )
j

FP θσ∂∂ ˆ , the stronger the 

impact of the corresponding uncertain variable on the functional failure probability of the 

system. For example, referring to the results obtained by standard MCS with NT = 500000 

samples, the absolute values of ( )
j

FP θµ∂∂ ˆ  and ( )
j

FP θσ∂∂ ˆ  are 1.0706 and 1.0427, 

respectively, for variable θ8 (i.e., the friction factor in mixed convection) and 0.1576 and 

0.0257, respectively, for variable θ1 (i.e., the reactor power): thus, θ8 is much more 

important than θ1 in affecting the functional failure probability of the passive system; 

� the sign of the estimates ( )
j

FP θµ∂∂ ˆ , j = 1, 2, …, 9, indicates the direction towards which 

the corresponding uncertain inputs have to move in order to drive the system to failure: for 

instance, since the sign of ( )
2

ˆ
θµ∂∂ FP  and ( )

5

ˆ
θµ∂∂ FP  is negative, the failure probability 

                                                 
5 As before, since the results produced by LS are obtained in the standard normal space by construction (see Sections 
3.2.1 and 3.2.2 for details), for comparison with the other methods, the uncertain input variables {xj: j = 1, 2, …, 9} of 
Table 5 have been transformed into {θj: j = 1, 2, …, 9} in the standard normal space and the system performance 
indicator Y(x) (27) (together with the corresponding LSF gx(x) (29)) has been transformed into Y(θ) (and, 
correspondingly, gθ(θ)) in the standard normal space: thus, the partial derivatives of the system failure probability with 
respect to the parameters of the distributions of the uncertain input variables are estimated in the standard normal space 
for all the simulation methods considered. 
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P(F) of the passive system will be increased (resp., decreased) by decreasing (resp., 

increasing) the value of the means 
2θµ  and 

5θµ  of parameters θ2 (i.e., pressure) and θ5 (i.e., 

Nusselt number in mixed convection), respectively; in other words, the passive system will 

be effectively driven to failure by decreasing the value of parameters θ2 and θ5, i.e., by 

moving them towards low values. On the contrary, since the sign of ( )
8

ˆ
θµ∂∂ FP  is positive, 

the failure probability P(F) of the passive system will be increased (resp., decreased) by 

increasing (resp., decreasing) the value of the mean 
8θµ  of parameter θ8 (i.e., friction factor 

in mixed convection); in other words, failure of the passive system will be easily caused by 

increasing the value of parameter θ8, i.e., by moving it towards high values. It is worth 

noting that these results are quite reasonable from a physical viewpoint. In fact, the pressure 

of the system strongly affects the density of the coolant helium gas and thus the extent of the 

buoyancy force on which the effective functioning of the natural circulation system is based. 

In particular, a decrease in the system pressure leads to a decrease in the buoyancy force 

which may not succeed in balancing the pressure losses around the natural circulation loop. 

Nusselt numbers instead are directly (i.e., linearly) related to the heat transfer coefficients in 

both the heater (i.e., the core, item 4 in Figure 4) and the cooler (i.e., the heat exchanger, 

item 12 in Figure 4) and thus their variations directly impact the global heat removal 

capacity of the passive system. In particular, a decrease in the heat transfer coefficient in the 

heat exchanger (where the wall temperature is imposed) leads to a reduction in the heat flux 

and consequently to an increase in the coolant temperature. Further, a decrease in the heat 

transfer coefficient in the heater (where the heat flux is imposed as constant) causes an 

increase in the coolant wall temperature. Thus, both processes lead to a rapid attainment of 

the coolant temperature limits. Finally, the friction factors directly determine the extent of 

the pressure losses which oppose the coolant flow in natural circulation. In particular, an 

increase in the friction factors determines an increase in the pressure losses along the closed 

loop and consequently a reduction in the coolant flow rate. The smaller the flow rate in the 

decay heat removal loop, the higher the coolant temperature rise will be, leading to an 

earlier attainment of the coolant temperature limits, thus worsening the safety of the 

operation and of the reactor; 

� the information provided by ( )
j

FP θσ∂∂ ˆ , j = 1, 2, …, 9, is useful in identifying the 

variables whose uncertainty (quantified in this case by the standard deviation 
jθσ  of the 

corresponding probability distribution) plays a major role in affecting P(F): based on this 

information, the analyst may focus his/her efforts on increasing the state-of-knowledge only 
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on these variables and the related physical phenomena (for example, by the collection of 

experimental data one may achieve an improvement in the state-of-knowledge on the 

correlations used to model the heat transfer process in mixed convection: this could lead to a 

reduction in the uncertainty, e.g., of variable θ5, i.e., the Nusselt number in mixed 

convection); 

� LS with NT = 1850 samples produces the same ranking of the uncertain variables as the 

reference one (i.e., the one produced by standard MCS with NT = 500000 samples): 

however, this result is obtained at a much lower (i.e., by a factor 270) computational effort; 

� SS with NT = 1850 correctly ranks the first five uncertain variables, i.e., θ2, θ8, θ3, θ5 and θ1, 

whereas standard MCS with the same number of samples is not even able to produce a 

ranking (in fact, ( )
j

FP θµ∂∂ ˆ  = ( )
j

FP θσ∂∂ ˆ  = 0 for j = 1, 2, …, 9). This is explained as 

follows: in the SS procedure (due to successive conditional MCMC simulations) a large 

number of samples is generated in the intermediate conditional regions and in the failure 

region of interest, which are used to calculate ( )
j

FP θµ∂∂ ˆ  and ( )
j

FP θσ∂∂ ˆ , j = 1, 2, …, 9, 

according to (8) and (9); instead, in standard MCS with NT = 1850 samples, on average only 

NT·P(F) = 1850·3.541·10-4 ≈  0.6 (i.e., in practice zero) failure samples are generated which 

can be used to calculate ( )
j

FP θµ∂∂ ˆ  and ( )
j

FP θσ∂∂ ˆ , j = 1, 2, …, 9, using an estimator 

similar to (8). 

 

A final remark is in order with respect to the effectiveness of the SS- and LS-based local 

approaches to sensitivity analysis. They present the advantage over other standard techniques of 

sensitivity analysis of being directly “embedded” in the computation of the functional failure 

probability: in fact, the SS and LS algorithms produce the “ingredients” used for sensitivity analysis 

(i.e., the empirical conditional distributions in SS and the random lines parallel to the important 

vector α in LS) during the simulation that is performed to compute the functional failure probability 

of the passive system. In other words, while estimating the functional failure probability of the 

system, sensitivity analysis results are produced that can be readily visualized for identification and 

ranking of the most important variables. This is of particular interest in practical cases in which the 

computer codes require several hours (or even days) to run a single simulation. 

5.2.2.2 Global sensitivity results 

The results obtained in the previous Section 5.2.2.1 by the local reliability sensitivity approaches 

are compared here to those produced by the SS-based global approach of Section 3.1.2.2. 
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The sensitivity of the passive system performance to the individual uncertain input parameters of 

Table 5 is studied by examining the change of the sample distributions at different conditional 

levels. The histograms of the conditional samples of five uncertain parameters (i.e., x1, the reactor 

power; x2, the pressure level established in the guard containment after the LOCA; x3, the cooler 

wall temperature; x5, the Nusselt number in mixed convection; x8, the friction factor in mixed 

convection) at different conditional levels for a single SS run are shown in Figure 5, left. It can be 

seen that the performance of the passive system is strongly sensitive to the pressure level 

established in the guard containment after the LOCA, as indicated by the significant leftward shift 

of its empirical conditional distribution (histograms) from the unconditional one (solid lines). A 

sensitivity of the passive system performance is also visually observed with respect, e.g., to the 

cooler wall temperature (rightward shift) and to the correlation errors in both the Nusselt number 

(leftward shift) and the friction factor (rightward shift) in mixed convection. 

The “pictorial” information contained in the empirical conditional distributions q(xj|Fi), j = 1, 2, …, 

ni, i = 1, 2, …, m, is used as before to refine the sensitivity information by obtaining the distribution 

of the system failure probability conditional on the values of the individual uncertain input 

parameters, i.e. P(F|xj), according to (10) (Figure 5, right): for example, it can be seen that fixing x2 

to 1500 kPa would result in P(F) = 0, whereas fixing x2 to 1200 kPa would result in P(F) ≈  0.40. 

 

Figure 5 

 

The results shown in Figure 5, right, are used to rank the uncertain input variables {xj: j = 1, 2, …, 

9} according to their effectiveness in driving the passive system to failure (or, in other words, to 

quantify the importance of the variability of the individual uncertain input variables in determining 

the failure probability of the system). As before, a ranking is established on the basis of the 

maximum value assumed by the distributions P(F|xj), j = 1, 2, …, 9. For example, as x2 varies in its 

range, P(F|x2) takes values from 0 to 0.45, whereas as x8 varies in its range, P(F|x8) takes values 

from 0 to 0.012: thus, it can be concluded that x2 is much more important than x8 in affecting the 

functional failure probability of the passive system (or, in other words, in driving the system to 

failure). According to this criterion the uncertain input variables {xj: j = 1, 2, …, 9} are ranked fifth, 

first, third, ninth, fourth, sixth, eight, second and seventh, respectively; note that this ranking is in 

satisfactory agreement with those provided by the SS- and LS-based local reliability sensitivity 

approaches (see Table 7 of Section 5.2.2.1). 

In addition, it is worth noting again that the global sensitivity analysis based on SS presents the 

advantage over the standard sensitivity analysis techniques (e.g., variance-based methods like Sobol 
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indices), of being directly “embedded” in the computation of the failure probability: the SS 

algorithm produces the empirical conditional distributions of Figure 5 during the simulation that is 

performed to compute the functional failure probability of the passive system. 

 

Finally, for completeness the sensitivity insights provided by the SS-based global approach are also 

compared to those produced by (global) Sobol indices [45]: in particular, for brevity only the total-

order Sobol indices 1y
TjS , 2y

TjS  and Y
TjS , j = 1, 2, …, 9, are calculated for the outputs of the T-H code, 

i.e., y1(x) = ( )xhot
coreoutT ,  and y2(x) = ( )xavg

coreoutT , , and for the performance function Y(x) (27) of the 

passive system, respectively. Table 8 reports the values of 1y
TjS , 2y

TjS  and Y
TjS , j = 1, 2, …, 9, obtained 

using the algorithm proposed by [44] with NT = 550000 runs of the T-H model code. The ranking of 

the uncertain parameters is also shown in parentheses. 

 

Table 8 

 

It can be seen that: 

� not surprisingly, different indices provide different rankings: for example, variables x3, x5 

and x8 are ranked fourth, third and second, respectively, by both 1y
TjS  and Y

TjS , whereas they 

are ranked third, second and fourth, respectively, by 2y
TjS ; 

� the ranking provided by 1y
TjS  is the same as that produced by Y

TjS : this leads to conclude that 

the hot channel coolant outlet temperature ( )xhot
coreoutT ,  = y1(x) is “dominant” over the average 

channel coolant outlet temperature ( )xavg
coreoutT ,  = y2(x) in determining the uncertain behavior 

of the passive system performance function Y(x) (27); 

� the ranking provided by YTjS  is similar to that produced by the SS-based global approach (see 

Figure 5): for example, variables x1, x2, x7 and x8 are ranked fifth, first, eight and second, 

respectively, by both approaches. However, a difference is found in the ranking of variables 

x3 and x5: in particular, variable x3 is ranked fourth and third by the Sobol- and SS-based 

approaches, respectively; conversely, variable x5 is ranked third and fourth by the Sobol- 

and SS-based approaches, respectively. This confirms that in general, the most important 

contributors to the variability of model output(s) do not necessarily coincide with the most 

important contributors to system failure. 
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6 Conclusions 

The assessment of the functional failure probability of T-H passive systems can be performed by 

sampling the uncertainties in the system model and parameters, and simulating the corresponding 

passive system response with T-H computer codes. Within this framework, sensitivity analysis has 

two objectives: i) the quantification of the importance of the individual uncertain parameters in 

affecting the performance of the passive system (or, in other words, in determining the functional 

failure probability of the passive system); ii) the determination of the contribution of the individual 

uncertain parameters (i.e., the inputs to the T-H code) to the uncertainty in the outputs of the T-H 

code. However, since sensitivity analysis relies on multiple evaluations of the T-H code for different 

combinations of system inputs, the associated computational effort may be prohibitive due to the 

long-running times of the T-H codes. 

Thus, in this paper the advanced SS and LS methods have been considered for performing an 

efficient sensitivity analysis of the performance of a T-H passive system while estimating its 

functional failure probability by means of a reasonably limited number of T-H code evaluations. 

Different local and global approaches to sensitivity analysis have been considered and compared 

with reference to two case studies of literature: the first one involving the Ishigami function [1]; the 

second one considering the natural convection cooling in a Gas-cooled Fast Reactor (GFR) after a 

Loss of Coolant Accident (LOCA) [2]. On the basis of the results obtained, the following guidelines 

and recommendations can be drawn: 

•  with reference to objective i) above, two options are suggested: 

1. in those cases where the analyst is able to get information about the “structure” of the 

failure region (e.g., one/multiple overlapping/disconnected failure regions, …), the 

concept of local reliability sensitivity analysis based on LS can be embraced (Section 

3.2.2). Actually, as demonstrated by Case study 1, the possibility of identifying 

multiple important directions allows to separate the contributions of (possibly) 

multiple failure regions to the reliability sensitivity indices (i.e., the partial derivatives 

of the system failure probability with respect to the moments of the distributions of 

the uncertain input parameters): this avoids averaging or (even worse) canceling the 

different contributions, which would provide erroneous and misleading indications. 

In addition, as demonstrated by Case studies 1 and 2, LS provides much more 

accurate and precise failure probability estimates that the other simulation methods 

here considered for comparison (i.e., standard MCS and SS): this allows the analyst to 

reduce the number of samples (and, thus, of T-H model evaluations) necessary to 
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obtain desired estimation accuracies and precisions (in particular, in those practical 

cases where the computer codes require several hours to run a single simulation). 

2. in those (more realistic) cases where the analyst has no information about the 

“structure” of the failure region (or, alternatively, information can be obtained at 

impractical computational costs), the global approach based on SS may represent the 

optimal choice (Section 3.1.2.2): indeed, as demonstrated by Case study 1, SS is able 

to automatically identify multiple disconnected failure regions without any input from 

the analyst. In particular, SS generates a large amount of conditional samples by 

searching the whole uncertain input space by means of sequential Markov Chain 

Monte Carlo (MCMC) simulations; by so doing, the entire distribution of the system 

failure probability conditional on the values of the individual uncertain input 

parameters is produced: the associated information is relevant from the sensitivity 

analysis viewpoint because it quantifies how the failure probability of the system 

would change if a given uncertain input parameter were set to a given value (e.g., if 

its epistemic uncertainty were reduced). 

A final remark is in order with respect to the effectiveness of the SS- and LS-based 

approaches to sensitivity analysis. They present the advantage over other standard 

techniques of sensitivity analysis of being directly “embedded” in the computation of the 

system failure probability: the SS and LS algorithms produce the “ingredients” used in 

sensitivity analyses (i.e., the empirical conditional distributions in SS and the random lines 

parallel to the important vector in LS) during the simulation that is performed to compute 

the system failure probability. In other words, while estimating the failure probability of the 

system, sensitivity analysis results are produced that can be readily visualized for 

identification and ranking of the most important variables. This is of particular interest in 

practical cases in which the computer codes require several hours (or even days) to run a 

single simulation (like in the present case of passive system reliability assessment). 

•  with reference to objective ii) above, the use of “classical” variance-based techniques (e.g., 

those relying on the computation of first- and total-order Sobol indices, like in the present 

paper) is suggested: actually, by construction these methods quantify the proportion of the 

variance of the system model outputs that can be attributed to the variance of the uncertain 

input variables. 

However, two issues must be taken into account for the practical use of these techniques in 

passive system reliability assessments: 
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1. the associated computational burden may be prohibitive because thousands or 

millions of system model evaluations are frequently required for the computation of 

variance-based (Sobol) indices through Monte Carlo-based techniques; in addition, 

these techniques cannot be embedded in the estimation of the failure probability of 

the passive system: thus, the T-H model evaluations necessary for performing the 

sensitivity analysis have to be added to those carried out for estimating the failure 

probability, further increasing the computational burden. To overcome this issue, the 

adoption of fast-running meta-models in substitution of the original (typically long-

running) system model codes is strongly advised; 

2. care should be taken in the interpretation of the uncertain variable ranking provided 

by these methods: as demonstrated by Case study 1, the most important contributors 

to the variability (in practice, the variance) of the system model outputs are not 

necessarily the most important contributors to system failure (i.e., those parameters 

that influence most the passive system failure probability). 
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FIGURE CAPTION PAGE 
 
 
 
 

Figure 1. Examples of possible important unit vectors α1 (left) and α2 (right) pointing towards the 

corresponding failure domains F1 (left) and F2 (right) in a two-dimensional uncertain 

parameter space: in the situation on the left, the system would be driven to failure much more 

effectively by an increase in Parameter 2 rather than by an increase in Parameter 1; in the 

situation on the right, an increase in Parameter 1 would be much more important in 

determining system failure than an increase in Parameter 2 

 
 
 

Figure 2. Failure region F = {x: gx(x) ≥ 0} (dark areas) associated to the LSF gx(x) (21) based on 

the Ishigami function Y(x) (20) in the space of the uncertain input variables {xj: j = 1, 2, 3}: F is 

composed by four disconnected failure regions {Fl: l = 1, 2, 3, 4} 

 
 
 

Figure 3. Global sensitivity analysis by SS: distributions of the system failure probability 

conditional on the values of the individual uncertain input parameters {xj: j = 1, 2, 3}, i.e., P(F|x1) 

(top, left), P(F|x2) (top, right) and P(F|x3) (bottom) for Case study 1 of Section 4.1 

 
 
 

Figure 4. Schematic representation of one loop of the 600-MW GFR passive decay heat removal 

system [2] 

 
 
 

Figure 5. Global sensitivity analysis by SS. Left: empirical conditional distributions of uncertain 

input parameters x1, x2, x3, x5 and x8 at different conditional levels (histograms) compared to their 

unconditional distributions (solid lines); right: distribution of the system failure probability 

conditional on the values of the individual uncertain input parameters x1, x2, x3, x5 and x8, i.e., 

P(F|x1), P(F|x2), P(F|x3), P(F|x5), P(F|x8) 
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TABLES 
 

 

Case study 1: Ishigami function 
Failure probability estimation (“True” value, P(F) = 5.566·10-4) 

 ( )FP̂  ( )[ ]FPσ ˆˆ  
Standard MCS 0 3.878·10-4 

SS 5.060·10-4 1.647·10-4 
LS 5.567·10-4 3.756·10-5 

Table 1. Values of the failure probability estimates ( )FP̂  and corresponding standard deviations 

( )[ ]FP̂σ̂  obtained by standard MCS, SS and LS with NT = 3700 samples for Case study 1 of Section 

4.1. The “true” (i.e., reference) value (i.e., P(F) = 5.566·10-4) obtained by standard MCS with NT = 

500000 samples is also reported 
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Case study 1: Ishigami function 

Local reliability sensitivity analysis 
MCS, NT = 500000 (rank) MCS, NT = 3700 (rank) SS, NT = 3700 (rank) LS, NT = 3700 (rank) 

Parameters ( )
jθ

µFP ∂∂ ˆ  ( )
jθ

σFP ∂∂ ˆ  ( )
jθ

µFP ∂∂ ˆ  ( )
jθ

σFP ∂∂ ˆ  ( )
jθ

µFP ∂∂ ˆ  ( )
jθ

σFP ∂∂ ˆ  ( )
jθ

µFP ∂∂ ˆ  ( )
jθ

σFP ∂∂ ˆ  

θ1 0.6781 (1) 0.5301 (3) 0.5893 (3) 0.6527 (2) 0.6750 (1) 0.5375 (2) 0.5869 (1) 0.4008 (3) 
θ2 3.0850·10-3 (3) 0.5329 (2) -0.7678 (2) 0.4105 (3) -0.2543 (2) 0.5070 (3) -0.0240 (3) 0.4026 (2) 
θ3 -9.2199·10-3 (2) 6.1939 (1) -2.4670 (1) 5.0863 (1) -0.1240 (3) 6.4965 (1) 0.0557 (2) 5.8401 (1) 

Table 2. Values of the estimates ( )
j

FP θµ∂∂ ˆ  and ( )
j

FP θσ∂∂ ˆ  of the partial derivatives 

( )
j

FP θµ∂∂  and ( )
j

FP θσ∂∂  of the failure probability P(F) with respect to the mean 
jθµ  and the 

standard deviation 
jθσ  of the distributions of the uncertain input parameters {θj: j = 1, 2, 3}, 

computed in the standard normal space by standard MCS, SS and LS with NT = 3700 samples for 

Case study 1 of Section 4.1; the ranking of the uncertain input parameters is shown in parentheses 
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 Case study 1: Ishigami function – Local reliability sensitivity analysis 
 Line Sampling, NT = 3700 – Four important directions {αl: l = 1, 2, 3, 4} 
 α1, F

1 (rank) α2, F
2 (rank) α3, F

3 (rank) α4, F
4 (rank) 

Parameters ( )
jθ

1
µFP ∂∂ ˆ  ( )

jθ

1
σFP ∂∂ ˆ  ( )

jθ

2
µFP ∂∂ ˆ  ( )

jθ

2
σFP ∂∂ ˆ  ( )

jθ

3
µFP ∂∂ ˆ  ( )

jθ

3
σFP ∂∂ ˆ  ( )

jθ

4
µFP ∂∂ ˆ  ( )

jθ

4
σFP ∂∂ ˆ  

θ1 0.5574 (3) 0.4287 (3) 0.5343 (2) 0.4002 (2) 0.6215 (2) 0.3741 (2) 0.6382 (3) 0.3967 (3) 
θ2 0.5641 (2) 0.4391 (2) 0.5333 (3) 0.3986 (3) -0.6205 (3) 0.3645 (3) -0.6437 (2) 0.4035 (2) 
θ3 2.1143 (1) 6.1695 (1) -2.0321 (1) 5.7876 (1) 2.3799 (1) 5.5034 (1) -2.4525 (1) 5.8581 (1) 

Table 3. Values of the estimates ( ){ }4,3,2,1:ˆ =∂∂ lFP
j

l
θµ  and ( ){ }4,3,2,1:ˆ =∂∂ lFP

j

l
θσ  of the 

partial derivatives ( ){ }4,3,2,1: =∂∂ lFP
j

l
θµ  and ( ){ }4,3,2,1: =∂∂ lFP

j

l
θσ  of the failure 

probability P(F) with respect to the mean 
jθµ  and the standard deviation 

jθσ  of the distributions of 

the uncertain input parameters {θj: j = 1, 2, 3}, computed in the standard normal space by LS with 

NT = 3700 samples and four separate important directions {αl: l = 1, 2, 3, 4} for Case study 1 of 

Section 4.1; the ranking of the uncertain parameters is shown in parentheses 
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Case study 1: Ishigami function 

Global sensitivity analysis – Sobol indices 
Parameters Sj

g (rank) STj
g (rank) 

x1 0.3155 (2) 0.5596 (1) 
x2 0.4415 (1) 0.4478 (2) 
x3 0 (3) 0.2490 (3) 

Table 4. First- and total-order Sobol sensitivity indices Sj
g and STj

g, j = 1, 2, 3, obtained with NT = 

500000 model evaluations for the LSF gx(x) (21) based on the Ishigami function Y(x) (20) in Case 

study 1 of Section 4.1. The ranking of the uncertain input parameters is reported in parentheses 
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 Name Mean, µ Standard deviation, σ (% of µ) 

Parameter 
uncertainty 

Power (MW), x1 18.7 1% 
Pressure (kPa), x2 1650 7.5% 

Cooler wall temperature (°C), x3 90 5% 

Model 
uncertainty 

Nusselt number in forced convection, x4 1 5% 
Nusselt number in mixed convection, x5 1 15% 
Nusselt number in free convection, x6 1 7.5% 
Friction factor in forced convection, x7 1 1% 
Friction factor in mixed convection, x8 1 10% 
Friction factor in free convection, x9 1 1.5% 

Table 5. Epistemic uncertainties considered for the 600-MW GFR passive decay heat removal 

system of Figure 4 [2] 
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Case study 2: nuclear passive system 
Functional failure probability estimation (“True” v alue, P(F) = 3.541·10-4) 

 ( )FP̂  ( )[ ]FPσ ˆˆ  
Standard MCS 0 4.483·10-4 

SS 3.720·10-4 1.679·10-4 
LS 3.527·10-4 2.143·10-6 

Table 6. Values of the functional failure probability estimates ( )FP̂  and corresponding standard 

deviations ( )[ ]FP̂σ̂  obtained by standard MCS, SS and LS with NT = 1850 samples for the nuclear 

passive system of Section 5.1. The “true” (i.e., reference) value (i.e., P(F) = 3.541·10-4) obtained 

by standard MCS with NT = 500000 samples is also reported 
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Case study 2: nuclear passive system 
Local reliability sensitivity analysis 

 MCS, NT = 500000 (rank) MCS, NT = 1850 (rank) SS, NT = 1850 (rank) LS, NT = 1850 (rank) 

Parameters ( )
jθ

µFP ∂∂ ˆ  ( )
jθ

σFP ∂∂ ˆ  ( )
jθ

µFP ∂∂ ˆ  ( )
jθ

σFP ∂∂ ˆ  ( )
jθ

µFP ∂∂ ˆ  ( )
jθ

σFP ∂∂ ˆ  ( )
jθ

µFP ∂∂ ˆ  ( )
jθ

σFP ∂∂ ˆ  

θ1 0.1576 (5) 0.0257 (5) 0 0 0.7400 (5) 0.0213 (5) 0.1571 (5) 0.0229 (5) 
θ2 -3.3242 (1) 10.285 (1) 0 0 -3.1262 (1) 8.9068 (1) -3.3176 (1) 10.233 (1) 
θ3 0.7663 (3) 0.7218 (3) 0 0 0.8580 (3) 0.8090 (3) 0.7638 (3) 0.5424 (3) 
θ4 3.09·10-3 (9) 1.48·10-3 (9) 0 0 -0.6697 (6) 0.0150 (6) -9.19·10-3 (8) 7.85·10-5 (8) 
θ5 -0.6275 (4) 0.5228 (4) 0 0 -0.8259 (4) 0.3980 (4) -0.6344 (4) 0.3741 (4) 
θ6 0.0964 (6) 0.0105 (6)  0 0 0.0933 (9) 1.05·10-3 (9) 0.0966 (6) 8.669·10-3 (6) 
θ7 -0.0123 (8) 1.78·10-3 (8) 0 0 -0.6259 (7) 0.0103 (7) -5.77·10-3 (9) 3.09·10-5 (9) 
θ8 1.0706 (2) 1.0427 (2) 0 0 1.4436 (2) 2.0049 (2) 1.0781 (2) 1.0806 (2) 
θ9 -0.0423 (7) 5.95·10-3 (7)  0 0 -0.4669 (8) 1.78·10-3 (8) -0.0327 (7) 9.97·10-3 (7) 

Table 7. Values of the estimates ( )
j

FP θµ∂∂ ˆ  and ( )
j

FP θσ∂∂ ˆ  of the partial derivatives 

( )
j

FP θµ∂∂  and ( )
j

FP θσ∂∂  of the functional failure probability P(F) with respect to the mean 

jθµ  and the standard deviation 
jθσ  of the distributions of the uncertain input parameters {θj: j = 1, 

2, …, 9}, computed in the standard normal space by standard MCS, SS and LS with NT = 1850 

samples for the nuclear passive system of Section 5.1; the ranking of the uncertain input parameters 

is shown in parentheses 
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Case study 2: nuclear passive system 
Global sensitivity analysis – Total-order Sobol indices 

Parameters 1y
TjS  (rank) 2y

TjS  (rank) Y
TjS  (rank) 

x1 8.846·10-3 (5) 0.0121 (5) 0.0113 (5) 
x2 0.8391 (1) 0.7985 (1) 0.8259 (1) 
x3 0.0434 (4) 0.0682 (3) 0.0546 (4) 
x4 1.908·10-4 (6) 3.058·10-3 (8) 2.226·10-3 (6) 
x5 0.0554 (3) 0.0833 (2) 0.0711 (3) 
x6 1.559·10-4 (7) 3.195·10-3 (6) 2.217·10-3 (7) 
x7 1.318·10-4 (8) 3.062·10-3 (7) 2.201·10-3 (8) 
x8 0.0832 (2) 0.0609 (4) 0.0827 (2) 
x9 1.134·10-4 (9) 3.053·10-3 (9) 2.197·10-3 (9) 

Table 8. Values of the total-order Sobol sensitivity indices 1y
TjS , 2y

TjS  and Y
TjS , j = 1, 2, …, 9, 

obtained with NT = 550000 simulations for the outputs of the T-H code, i.e., y1(x) = ( )xhot
coreoutT ,  and 

y2(x) = ( )xavg
coreoutT , , and for the performance function Y(x) (27) of the passive system of Section 5.1. 

The ranking of the uncertain parameters is shown in parentheses 
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Figure 2 
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Figure 3 
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Figure 5 
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