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Abstract

Centrifugal slurry pumps are widely used in the oil sand industry, mining,
ore processing, waste treatment, cement production, and other industries to
move mixtures of solids and liquids. Wear of slurry pump components,
caused by abrasive and erosive solid particles, is one of the main causes of
reduction in the efficiency and useful life of these pumps. This leads to
unscheduled outages that cost companies millions of dollars each year.
Traditional maintenance strategies can be applied, but they provide
insufficient warning of impending failures. On the other hand, condition
monitoring and on-line assessment of the wear status of wetted components
in slurry pumps are expected to improve maintenance management and
generate significant cost savings for pump operators. In this context, the
objective of the present work is to develop and compare two unsupervised
clustering ensemble methods, i.e., fuzzy C-means and hierarchical trees, for
the assessment and measurement of the wear status of slurry pumps when
available data is extremely limited. The idea is to combine predictions of
multiple classifiers to reduce the variance of the results so that they are less
dependent on the specifics of a single classifier. This will also reduce the
variance of the bias, because a combination of multiple classifiers may

learn a more expressive concept class than a single classifier.

Keywords: Degradation, Fault detection, Fuzzy C-means, IHibreal Tree,

Ensembles of classifiers, Slurry pumps.



1. Introduction

Detection of anomalies and faults in hydraulic psnig an important task with
implications for the safe, economical, and effitieperation of hydraulic systems. These
systems are often embedded in hazardous plantsarenthus expected to operate with
high levels of reliability, availability, and sajetalthough they run in adverse
environment that may lead to sudden break downta@xcessive wear. For this reason,
both equipment manufacturers and owners investfgignt resources in maintenance
programs designed to ensure that the required bldraystem performance is
maintained at maximum efficiency. In particular,ugoment owners strive to avoid
unplanned machine downtimes and costly compon@fgements and repairs that result
from unexpected premature failures or gradual perdmce degradation caused by
system wear [Mitchell, 1999; Hancock et al., 2006].

This work evolved from a particular need in indydts monitor the health of a
machine prone to sporadic catastrophic breakdoRmrexious maintenance and condition
monitoring schemes provided insufficient warningtleé impending failure. A system
that could distinguish between normal machine dmeraand an impending mechanical
failure was needed, i.e., a fault classifier haeé@ut in operation.

In general terms, fault classification methods bandivided into two categories
[Venkatasubramanian et al., 2003]: model-basedpattérn recognition techniques. In
model-based methods, faults can be detected byorpgrfg some mathematical
calculations. For example, in the case of intenese, the state-of-the-practice entails oil
pump failures being diagnosed by expert analysishef parameter values measured
during the monitoring time and their comparisonhvtlte nominal power curve of every
oil pump: drawing the actual power curve accordimghe measured parameters values,
i.e., by manual analysis, allows the analyst taidie whether any fault exists. Indeed,
failed pumps often show hollow pumping action amirgy waste. Because of the
nonlinearity of the wear behavior and the sizehaf input data and their uncertainties,
this way of proceeding requires significant humamgterial, and financial resources
while not guaranteeing the timely detection of fauthus seriously affecting production
[Tian et al., 2007]. On the other hand, pattermgaition methods offer a framework that



can satisfy a number of basic requirements, sudhad calculation time, high accuracy,
and capability of dealing with large data sets espntative of nonlinear wear behaviors
[Zio, 2007]. Specially, soft computing approachegy, Artificial Neural Networks and
Fuzzy Logic systems) have shown superior robustsgeed, and accuracy compared to
model-based methods [Shahrtash et al., 2008].

In pattern recognition methods, the conceptualsbfmsi the detection of failure
onset is that different system faults initiate eliéfint patterns of evolution of the interested
variables, as measured by properly placed sengmsf al., 2006]. Pattern recognition
methods entail three different stages: feature aettm, feature selection, and
classification [Sheng et al., 2004]. A number oft@a recognition methods have been
proposed that differ in the classification stagg,,ehierarchical trees (H-trees) [Breiman
et al.,, 1984; Ripley, 1996; Loh et al.,, 1997], faal neural networks (ANNS)
[Rumelhart et al., 1986; Ripley, 1996; Zhang, 200&d fuzzy logic (FL) systems
[Zadeh, 1965; Klir et al, 1995; Zio et al., 2006akyg et al., 2006; Wang et al., 2007].

H-trees evaluate the contribution of input featunesdetermining the output
classes of similarity. Generally, the most effeetfeature is selected as the first node of
the tree, and its border value is used to creabedifferent branches. Then, by the same
criterion, the next most effective feature is fouimd each branch. This process is
continued until the final nodes (leaves of the t@gtained in all of the branches contain
only the output classes. After creating the tregruming process is performed to remove
unnecessary nodes and decrease the size of th&itmakty, within a supervised scheme,
different sets of input features, obtained fromiamas simulations, are fed to the tree in
the test stage, and the outputs are compared wihknown classes of each set to
determine the accuracy of the tree. It is worth teaing that there are different
procedures for creating an H-tree. Different prared may be applied to search for the
best tree to solve a given problem, and then teedree can be selected by comparing the
accuracy of the results and the time requiredeaterthe tree [Shahrtash et al., 2008].

ANNSs are computing devices inspired by the functtbmerve cells in the human
brain and provide a powerful way to empirically rebdnd forecast nonlinear systems
based on data representative of their behavior pRuant et al., 1986]. They are

composed of many interconnected computing uniteh gaerforming a few simple



operations and communicating the results to itghi®ring units. ANNs can learn to
perform the mapping of the input-output relatiopshiinderpinning system behavior by a
process of training on many different examplesnplut and corresponding output states
[Hancock et al., 2006]. A main limitation of ANNs that the results they deliver are
difficult to interpret physically, and thus the wmtying model remains cryptic.

FL modeling is designed to handle imprecise lintiwiisoncepts, such as “small”,
“big”, “young”, and “low”, and deal with uncertailes [Zadeh, 1965; Zio et al., 2006].
FL exhibits an inherent flexibility and has provenbe a successful modeling framework
in a variety of industrial applications and patteecognition tasks [Wang et al., 2006;
Wang et al., 2007]. One of the main strengths afyulogic modeling compared with
other schemes is its capability of dealing with iegise data [Marseguerra et al., 2004].
As for the limitations of fuzzy logic, the main fidulties stand in the fuzzy partitioning
of the input and output spaces and in the estabbsh of the fuzzy rules that are at the
basis of the classification phase and may requirgm&-consuming, trial-and-error
process. Moreover, the elicitation of rules frommaun experts can be an expensive,
error-prone procedure.

H-trees, ANNs, and FL have already been appliegab classification problems
in a supervised scheme that entails, first, thesdfier to be trained on data from known
faults and then to be used to classify new datathk present work, supervised
classification schemes were precluded due to thevailability of a comprehensive
database of failure data, which is necessary ferrdfining stage. Thus, as we shall see,
the approaches adopted for detection do not requaing. In other words, the
classifiers are implemented for fault detectionam unsupervised manner, where the
training and test phases collapse into the sanstering phase, and the class assignment
is automated from available data of unknown classesparticular, the adopted
unsupervised FL approach, i.e. fuzzy clusteringl@is the advantages of automated
generation of fuzzy rules, low computational burdand benefits from the high-level,
human-like rule representation typical of fuzzy teyss, which offer an appealingly
powerful framework for tackling practical classdton problems.

Moreover, because of the shortage of data, thestobss of the classification

approaches is augmented by combining multiple iflass so as to improve upon the



performance of individual classifiers. The idedascombine the predictions of multiple
classifiers (for more details on the methodologfer to Section 3.3) to reduce the
variance of the results and the bias.

The paper is organized as follows. Section 2 ptssarcase study. The first part
of Section 3 presents the procedures developethéfeature selection phase and the
method with which the fuzzy rules are generatethftbe data set (Sections 3.2 and 3.3),
respectively. The second part introduces an appréacfault detection based on binary
h-Tree (Section 3.4). Section 4 reports the apidingo the classification of the oil pump
into failed or safe status, based on the availatiieation data. The motivation for this
application comes from the interest of a produdenib extracted from oil sands in
developing a proper monitoring scheme to detectpdaiures in a system aimed at
moving large amounts of raw oil sand. The reasoriHfe failures is not exactly known,
although it has been conjectured that the mainritotion to pump wear is the large
flow of oil into the vanes and the presence of $ipaitticle of dirt and sand in the sucked
fluid [LaBour, 1995; Frith et al., 1996]. The mamihg scheme is expected to provide
advance warning and lead time to prepare the apptepcorrective actions. Finally, a
comparison of the two classification approachepgsed is provided, highlighting the

advantages and limitations of the proposed metlooes.

2. TheCase Study

In this research, experimental data were collefrtma a number of slurry pumps
that are used to deliver a mixture of bitumen, sand small pieces of rock from one site
to another. For each pump, vibration is monitoredaasymptom of system health.
Vibration signals have been collected at the ialed outlet of slurry pumps operating in
an oil sand mine. The pump vibration data wereectdld by the mine staff and one of the
authors using the Smart Asset Management SysterM§Aand then further analyzed
using the proposed classification methods. SAM& RC-based virtual instrument used
to perform machine health monitoring [Tse, 2008.reasurement platform provides a
Graphical User Interface that allows the user t@wosk from different diagnostic
techniques (e.g., higher order statistical analga$ orbit analysis) to conduct machinery

fault diagnosis. It can be installed in a noteb®&ak or desktop computer for portable or



continuous machine health monitoring. SAMS alsovjgies an easy-to-use interface for
data management, report generation, trend anabtsis,to help the maintenance staff in
the recording and planning of maintenance actwitie

The data acquisition equipment (DAQ) consist of atidhal Instrument (NI)
cDAQ 9172 and a DAQ module NI 9234. Their specitfaas are listed in Table 1.

Table 1: Measurement Equipment

Equipment Model Specification
DAQ Device NI cDAQ 9172 Max. support module =8
DAQ Module NI 9234 Resolution = 24 bit

Input range = +/- 5V
Sampling rate = up to 51.2 kHz per channel

3 | Smart Asset Maintenance Version 2.3.8
System (SAMS)

4 | Notebook Computer IBM T60 Intel Core Duo procesk66 GHz
Windows XP Professional

5 | Accelerometer PCB 352A60 Mounted on positions Gakimwer and Casing Discharge
Sensitivity = 10.2 mV/g
6 | Accelerometer PCB 352C18 Mounted on positions 8ndipe and Discharge Pipe

Sensitivity = 9.7 mV/g

Vibrations were measured by four accelerometers nteol in four different
positions so that there were a total of four déférvibration signals captured. They are
denoted as S1, S2, S3, and S4. As shown in Figuaecklerometers S1 and S2 were
PCB 352A60 accelerometers (see Table 1) that wenentad on the case of the pump
and denoted as ‘Casing Lower’ and ‘Casing DiscHargspectively. Accelerometers S3
and S4 were PCB 352C18 accelerometers (see Tabieodhted on the suction and
discharge pipes, respectively. All four acceler@rgetaptured the vibration signals from
four different positions at a similar sampling foeqcy rate of 50 kHz.

In Figure 2, the layout of the oil extraction siéerepresented. It consists of two
parallel lines, L1 and L2, each composed of fodfiecent pumps. The pumps located in
L1 are called G1, G2, G3, and G5, whereas G1, G2a6d G4 are those located in L2.
Each pump is different in type, size, and workingndition, i.e., ground elevation,

process fluid, history, and wear.
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Figure 1. Samples of the measurement locations of a surry pump.
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Figure2: Theoil extraction lines layout.

Only 11 batches of 4 sensory vibration signals aeilable in total. These
degradation patterns are representative of differstages of progressive pump

deterioration. The number of patterns for each pigtigted in Table 2.



Table 2: List of Available Degradation Patternsfor Each Pump in L1 and L2. NA=Not Available

L1 | Available degradation patterns | L2 | Available degradation patterns
Gl 1 G1 2

G2 1 G2 3

G3 2 G3 NA

G5 1 G4 1

Each degradation pattern is composed of 30 intemfaiecords, each one lasting

1.3 [s], with pauses of 2 [s] in between (Figure 3)
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Figure 3: Sketch of the degradation pattern structure.

A preliminary analysis of the data showed that stm@md gradual degradation of
the pump performance occurred (except for catasitcdjilures), such that there was no
significant deviation of the signal along the to4@l seconds of records. Thus, to lighten
the computational burden of the data treatmenthaee concentrated our analysis only
on the records from the first 1.3 [s] (65000 pointsscarding the remaining 29 intervals,
assuming that the pump is either failed or headthtyme O [s].

3. Methods

As mentioned in the Introduction, pattern recogmtmethods entail three different

stages: feature extraction, feature selection,céeskification [Sheng et al., 2004]. In the



following, these procedural steps are detailed wefierence to the particular case study
introduced in Section 2.

3.1. Feature extraction
Ten features were selected and extracted fromadtehés of vibration data collected
by the accelerometers. For each of the 11 degoadatatterns, the following1=10
indexes were evaluatel (s equal to 65000 sampling points):

(1) Peak valuemax=maxn,
i=1,...N

N
(2) Mean:u :%Zn

i
=1

N
(3) Standard deviatiomz\/ﬁZ(ni -u)?
“14

N
(4) Root mean squard®MS = /% (n,)?
i=1

Z(nj —U)3
(5) SkewnessK =12
(N-1)o

N
Z(nj —U)4
(6) KurtosisKU =12

(N-Do*
_max|nj|
(7) Crest indicatorCl =%
1
_ (n_)Z
max|n|
(8) Clearance indicatoCL| :11-1N—N
(N 2V 17

1 N
NZ(”])Z
(9) Shape indicato8 S B bR

1 N
—>In|
NE=1



max |n |

(20) Impulse indicatoMl = 1
7Z|nj |
N <=

3.2. Feature selection

The objective of feature selection is three-fold: to iowerthe performance of the
classifier, provide faster and more cost-effective clasdibo, and provide a better
understanding of the underlying process that genetthiedlata [Guyon et al., 2003].
Depending on the nature of the regression techniquepitbgence of irrelevant or
redundant features can cause the system to focusamngi@n on the idiosyncrasies of the
individual samples while losing sight of the broad relationalupécthat is essential for
generalization beyond the training set. This problem is camged when the number of
observations is also relatively small. If the number aialdes is comparable to the
number of training patterns (as in our case study),pdr@meters of the model may
become unstable and are unlikely to be replicated if thdysivere to be repeated.
Feature selection seeks to remedy this situation by idergifyismall subset of relevant
features and using only them to construct the actual myd#iis work, the selection of
the most relevant features to be used in the classificaliase is based on two standard

approaches based on commonly used statistical todiexiplots and 2) correlation plots.

3.2.1. Feature selection based on box plots analysis

Box plots provide an excellent visual summary of many mam aspects of a
distribution and are useful for identifying its outliers [Massat al., 2005]. The
conceptual basis for using box plots in distinguishing riest relevant features for
classification is that things can be distinguished from edtlerobased on their
inconsistency [Hsiao et al., 2009]. Outliers can in facuded as a primary method for
pattern classification: the more outliers a parameter disiibthas, the more that
parameter will be useful in defining clusters in the featspace defined by the
considered parameter while avoiding cluster overlapping.

There are several steps in constructing a box ploe fitst relies on the
evaluation of the 25th, 50th, and 75th percentiles in tbiilsution of the 11 patterns.
Figures 4-7 show how these three statistics are used itasa study: for each extracted

feature, we draw a box extending from the 25th pereetdi the 75th percentile. The

10



50th percentile is drawn inside the box. We alsb“pidniskers” above and below each
box to give additional information about the spreddiata. Whiskers are vertical lines
that end in a horizontal. They are drawn from th&dst and upper hinges to the lowest
datum still within 1.5 Inter Quartile Range (IQR) tbe lower quartile, and the highest
datum still within 1.5 IQR of the upper quartileespectively [Massart et al., 2005].
Finally, we represent outliers in our box plots dgding additional crosses beyond the

whiskers.
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Figure 4: Box plots of the distributions of the 10 extracted featuresfrom sensor S1.
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Sensor 3: suction pipe
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Figure 6: Box plots of the distributions of the 10 extracted featuresfrom sensor S3.

Sensor 4: discharge pipe
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Figure 7: Box plots of the distributions of the 10 extracted features from sensor 4.

From the analysis of Figures 4—7, the relevanurestfor each sensor were:
- S1: skewness and kurtosis
- S2: skewness
- S3: mean, standard deviation, kurtosis, clearamtieator, shape indicator
and impulse indicator
- S4: skewness
Most of the four signal box plots highlight skewseand kurtosis spread
distributions. Thus, these two features were cansidl to be key features on which the

classification of the degradation patterns wouldbased.
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S1: casing lower

3.2.2. Feature selection based on correlation plots analysis
Correlation plots are suitable tools for featurkection, because it is well known

that good feature subsets contain features unetecelvith each other [NIST, 2010]. The

S1: standard deviation and skewness
- S3: root mean square and skewness
S4: skewness and clearance indicator

- S2: mean and root mean square

number of correlation coefficients to be evaluaded compared was equal to 45, which
follows from the definition ok combinations from a given set bf elements, wherein
our caseM is equal to 10 (i.e., the number of extracteduiess) andk is equal to 2.

The relevant features for each sensor are those th# smallest value of
correlation among the 45 combinations. From théyaisaof Figures 8—11, it can be seen
that, for each sensor, the selected features agalifihted in the Figures with dotted

A comparison of the different features suggestedétection by the two different
approaches (box plots and correlation plots) revded substantial qualitative agreement
on the importance of skewness values in determirtimg cluster boundaries.
conclusion, both analyses, e.g., box and correlaptots, seem to be useful tools
applicable to systematically provide informationtbe relevant parameters to be selected

for optimal performance of the successive clasHifn tasks.
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S2: casing discharge
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Figure 11: Correlation coefficientsfor 45 combinations of the 10 features relative to sensor $4.
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3.3. Classification

Fault detection may pose difficulties, becausenthiés the implementation of a
classifier for labeling the component status adthgar failed. In our application, the
shortage of data forces us to resort to a comionadif classifiers in an attempt to
improve the detection-classification performances{fad et al., 1996; Schapire, 1999;
Friedman, 2000]. Figure 12 illustrates the basamiework for the ensemble scheme
adopted and that was applied with two differenssification approaches (Sections 3.3.1
and 3.3.2). The key step was the formation of aerle of diverse classifiers from a
single data set. In this work, four different cifisss were fed with different inputs taken
from different sensors (S1, S2, S3 and S4), but#dtive to the same degradation pattern.
The single classifier results were then combined tp different methodologies
[Friedman et al., 2000]:

- Majority voting
» Each ensemble member votes for one of the classes.
* Predicts the class with the highest number of vote.
* In case of equal number of votes, the class idddes uncertain.

- Weighted voting
* Make a weighted sum of the votes of the ensemblabees.
* Weights depend on the performance of each indepé¢tissifier.

Data fromS1 Data from S Data fromSz Data fromS4
Classifier 1 Classifier 2 Classifier 3 Classifier4
Classification results Classification results Classification results Classification results

<

Combined
classification results

Figure 12: Scheme of combination of different classifiers.
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We proceeded to generate results using the twerdiit approaches. We varied
the type of single classifier implemented and comgatheir performances. In this
Section, we focus on the two unsupervised clasgifin approaches employed for fault
detection: 1) unsupervised Fuzzy C-Means (FCM)rélym and 2) Binary Hierarchical
Clustering Tree (H-Tree).

3.3.1. The Unsupervised Fuzzy C-Means algorithm
Fuzzy C-Means (FCM) is one of the most popular yuzustering methods
[Bezdek, 1981; Leguizamon et al., 1996; Alata et2008]. The FCM method originated
from hard C-Means clustering, allowing data poititsbelong to two or more clusters
[Klir et al., 1995]. The clusters emerged from thimimization of the following objective
function:

C

J(N,C):ZZm:’dj(x,cj) (1)

where J(N,C) is the sum of the square errors of the distanceach individual data

point x, i=1,2,...N, to the center,, j=1,2,...C, of the given cluster (clas$) The
minimization is done with respect to the memberatnifpand the centers; . More
specifically, df()gycj) is the square of the distance betwegmndc;, Whereasmf is the

degree of membership af to clusterj. The valuep is any real number greater than 1,
and it modulates the fuzziness of the clusters.

Fuzzy partitioning is carried out through an itemtoptimization ofJ(N,C),
with the update of membershipsf and the cluster centecs by:

g2~
m=—r (2)

ij c
Z d2¢n
=

n

2 m'x
C, = (3)

n

2.

i=1

For further details, the interested reader may tef§Bezdek, 1981].
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3.3.2. Binary Hierarchical Tree

Hierarchical clustering groups data over a varigtgcales by creating a cluster
tree, also called a dendrogram. The binary hiereghtree is not a single set of clusters,
but rather a multilevel hierarchy where crisp ctustat one level are joined as crisp
clusters at the next level, i.e., the pattern bgdaio one and only one cluster. This allows
us to decide the level or scale of clustering thahost appropriate for the application of
interest. Although many other clustering methodistekierarchical clustering is one of
the most commonly used methods in crisp clustdingiman et al., 1984; Ripley, 1996;
Loh et al., 1997].

A hierarchical clustering algorithm initially placeach data point in a cluster by
itself, and then it recursively and merges the telssthat are closest to each other

according to some distance or similarity critenoniil a single dendrogram is created.
4. Results

The classification systems introduced in SectiomeBe developed using some of the
data from a database of 11 degradation patternsilofane pumps, as described in
Section 2. These degradation patterns are repegsendf different stages of progressive
pump deterioration. Moreover, they refer to pumipast tare different in type, size and
working conditions i.e., ground elevation, proc#sgl, history, and wear. Thus, in order
to analyze only pumps subjected to similar workeunditions, we only selected the
degradation patterns relative to G1 and G2 fromeslihl and L2. Finally, the total
number of available degradation patterns to besiflad is 7. The real health status of the
pumps relative to the 7 degradation patterns isdign Table 3. This list is only used at
the end of the unsupervised fault detection prodessomparison with the obtained

results and performance evaluation of the classifie

Table 3: Actual Health Status of the Pumps Relative to the 7 Degradation Patterns Considered
(H=healthy, F=failed)

Degradation pattern 1 2 3 4 5 6 7
Actual health statL H H F H H H H
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The attributes for the pump vibrational data werraeted from the current signals,
as introduced in Section 3.1. A total of four featsets, each composed of 7x10 values,
were collected. Then, among these features, thé impsrtant were identified according
to box plots and correlation plots. Finally, thasdification tools of FMC and H-tree
were fed with the values of selected features toldimg the clusters in an unsupervised
manner.

In what follows, the results for all the considersmmbinations of approaches for

feature selection and classification are reported.

Method I:
Feature Salection: Box Plot Analysis
Classifier: Fuzzy C-Means

The features to be fed to the FCM classificatiaggpathm were selected by box
plot analysis. In Section 3.2.1 we justified theoick of skewness and kurtosis as
important features. The classification phase idiedti2 clusters that can be useful for
labeling the degradation patterns as relative eitbiéailed or to healthy pumps. In this
case, the classification results are shown in Eidi8. By analyzing the skewness and
kurtosis values of the considered degradation petgelotted on the scatter plot of Figure
12, it turns out that the main differences betwientwo identified clusters (represented
by circles and crosses) are:

- Circles have skewness values close to zero and kuvtosis values.

- Crosses have skewness values far from zero andrightosis values.

Based on this consideration we have decided that:

- Degradation patterns with skewness values clozenm, i.e., vibrational data
normally distributed, are relative to healthy puniihe flow of abrasive and
erosive particles can only generate white noisthermeasurements).

- Degradation patterns with skewness values far fzerp, i.e., vibrational data
not normally distributed, are working in anomalogsnditions (failed
components highly deform the parameter distribjon

Thus, hereafter, circles are labels of degradagiaiterns for safe pumps, whereas

crosses indicate the class of failed pumps.
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Kurtosis

Kurtosis

Method I1:
Feature Sdlection: Box Plot Analysis
Classifier: Hierarchical Clustering Tree

In this application, the same features selectethéyox plot approach and used
in Method | have been fed into the h-Tree algoritfiime classification results are shown
in Figure 14.
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Figure 13: Classification results using box plots and an unsupervised FCM classifier algorithm:
circlesare healthy pumps; crosses arefailed pumps; dots are clusters centers.
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Figure 14: Classification results using box plotsand h-Tree classifier algorithm: circles are healthy
pumps, wher eas crosses ar e failed pumps.

To compare the effectiveness of Method | and Methatie classification results
based on the batch of four sensors, S1, S2, S3Sanfrom the 7 degradation patterns
have been listed in Table 4. Based on the FCM iflasalgorithm, when using majority
voting, the correctness of the classification w&868 with an uncertain assignment
percentage equal to 14%; whereas, using weightdohgvothe correctness of the
estimations reached 100%. Resorting to h-Tree, &iB6 of the data was classified
correctly and 43% was uncertain, when using mgjovitting; the weighted voting
approach raised the correct estimation percentagg6%, but 15% of the data were
misclassified.
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Table 4: The Comparative Classification Results Using Unsupervised FCM and H-tree, with Box
Plots as Selecting M ethods for the I nput Features (H=healthy, F=failed, ?=uncertain)

Degradation pattern 1 2 3 4 5 6 7 Correct Uncertain
FCM (majority voting) H 2 F H H H H 86% 14%

FCM (weightecsum’ H HF H H H H 100% 0%
h-Tree majorityvotingg ? H 2?2 H 7 H H 57% 43%
h-Tree weightecsum H HF H F H H 86% 0%

The analysis of Table 4 highlights that:

- Fault detection based on FCM performed better tharee in all cases
because it allowed building clusters with uncertaiboundaries
accommodating for different pump locations andetéght pump types and
sizes.

- Cluster centers identified only by the FCM turned aseful during on-line
fault detection for classifying a new developinggdalation pattern into
healthy/failed clusters according to the distarafebe feature values from the

centers.

Method I11:

Feature Selection: Correlation Coefficients

Classifier: Fuzzy C-means

The features to be fed into the single FCM alganithave been selected by correlation
plot analysis. In Section 3.2.2 we justified theick of different input features for each

single classifier. Classification results are shawkigure 15 and summarized in Table 5.
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Figure 15: Classification resultsusing correlation plots and unsupervised FCM classifier
algorithm: circlesare healthy pumps, crosses ar e failed pumps, and dots are cluster centers.

Method IV:
Feature selection: Correlation coefficients
Classifier: Hierarchical Clustering Tree

The features to be fed to the single FCM algorithave been selected by
correlation plot analysis. The classification résubre shown in Figure 16 and
summarized in Table 5, together with those obtaw&dg Method Ill. By comparison
with Table 4, it can be seen that:

- When relying on FCM, correct assignment performaiscalmost constant,

irrespective of the feature selection approach used
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- When relying on FCM, the percentage of uncertaitimagions increases
when the combination of single classifier resudtsnade by a majority voting
strategy.

- In general, fewer degradation patterns are assiggnéte wrong class.

In conclusion, FCM performed better than H-treeardtess of which features
were used as input for the single classifiers, beeaf the higher percentage of correct
class assignment for all the classification metheayzed. Indeed, h-Trees are not very
accurate because they can only ideally deal withenfiect data, outliers, different scales,
and irrelevant attributes [Friedman, 2000].

Table5: The Compar ative Classification Results Using Unsupervised FCM and PC+HT, with

Correlation Plotsasthe Selecting M ethods for the Input Feature Variables (H=healthy,
F=failed, ?=uncertain)

Degradation pattern 1 2 3 4 5 6 7 Correct Uncertain

FCM (majority voting) ? HF H H ? H 71% 29%
FCM (weightecsum H HF H H H H 100% 0%
HT (majority voting) H H F H ? H H 86% 14%
HT (weightecsum’ H HF H F H H 86% 0%
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Figure 16 Results using correlation plotsand H-tree: circles are healthy pumps, and crosses are
failed pumps.

5. Estimation of the Pump Wear Function (PWF)

When components are well-maintained, it allows dowea to be reduced for the
sake of plant safety and overall performance efficy. Since machines often go through
degradation before failure, monitoring and predigtthe trend of their degradation and
condition may allow for correction before failurendeed, when the conditions of a
component or structure can be monitored, maintenaran be planned dynamically
[Williams et al., 1994; Marseguerra et al., 20@].predicting the future evolution of the
degradation state of a component or structures passible to verify whether it can
continue performing the required function. In pieetthe estimate of the system state in

terms of wear function may be difficult to obtaiadause the degradation state may not
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be directly observable and/or the measurements imayaffected by noise and
disturbances.

In this Section, a method for constructing dynamic et®dor system wear
estimation is proposed. Instead of assumengstructure for the wear model and
identifying its parametergnly an approximate linear model is used. This Itesn a
simple model that can be used as a monitoring fabnline application. Addition of
noise,g, during statestimation is used to reflect inherent processabdiiy. According
to verified superior classification performance gudeed by the features skewness (S)
and kurtosis (K) (Section 4), these two featurdatinee to the same 7 degradation
patterns under analysis are considered as inputhddeling the Pump Wear Function
PWEF. Their values have been fitted to a linear rtmteestimating PWF, whose function

turns out to be equal to:
PWF(S,K)=- 0.9+ 5.6S+ 0.08K — 0.0085 xK +¢ 4)

The fitted plot is shown in Figure 17. As expect#ug larger the value of
skewness, the larger the pump wear; similarly)dahger the kurtosis value, the larger the
pump wear. This confirms the adopted hypothesetbmling the classified degradation
patterns as either healthy or failed.

However, it has to be pointed out that at this aede stage the estimated PWF
(Eq. 4) can only be considered as a trial approtonaof the real PWF. Additional
vibrational data coming from the same type and sfzeumps will confirm the accuracy
of the PWF estimation ofvear. Finally, experimental implementation of the wear
monitoring system will be necessary to license piheposed monitoring scheme for

tracking oil pump wear.
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Figure 17: Pump wear function.

5. Conclusions

For effective maintenance, industry needs to mortite health of a machine
prone to degradation and sporadic catastrophickdosens. To achieve this aim, a
system is needed that can distinguish between nomaehine operation and an
impending mechanical failure, i.e., a fault classif

In this application, the focus is on the wear of it pump components, caused by
abrasive and erosive solid particles. Unschedulathges of pumps cost oil sand
companies millions of dollars each year. Traditlonaintenance strategies provide
insufficient warning of an impending failure.

In this work, we have presented two unsupervisedteting ensemble methods
(h-Tree and FCM) and compared their performandfdénassessment of the wear status
of pumps when available data is extremely limited.

In particular, the adopted unsupervised FCM apgr@aploits the advantages of
the automated generation of fuzzy rules, low comfpenal burden, and the high-level,
humanlike thinking and reasoning of fuzzy systewtsich offer an appealingly powerful
framework for tackling practical classification ptems.

Finally, for prognostics, the future evolution dfet degradation state of the
component or structure is predicted by a simpleadyn model forsystem wear

estimation to verify whether it can continue pemfarg the required function.
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