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Bit Error Probability of Space Modulation over Nakagami–m
Fading – Asymptotic Analysis

Marco Di Renzo Member, IEEE, and Harald Haas, Member, IEEE

Abstract— Recently, the Average Bit Error Probability (ABEP)
of Space Shift Keying (SSK) and Spatial Modulation (SM) over
Nakagami–m fading has been computed as a single integral
involving the Meijer–G function. Even though the frameworks
are very accurate, the use of special functions hides some
fundamental properties of the aforementioned new modulation
schemes, e.g., coding and diversity gains. In this Letter, we exploit
a notable limit involving the Meijer–G function near the singular
point −1, and provide a simple, closed–form, and asymptotically
tight upper–bound of the ABEP. The result is applicable to SM
and SSK modulation, to correlated Nakagami–m fading, and to
general Multiple–Input Multiple–Output (MIMO) wireless sys-
tems. As a case study, numerical examples showing the accuracy
for SSK modulation are given, and it is proved that, unlike
conventional modulations, the diversity gain is independent of
the fading severity m.

Index Terms— Spatial modulation, space shift keying mod-
ulation, Nakagami–m fading, Meijer–G function, asymptotic
analysis, diversity gain, coding gain.

I. INTRODUCTION

SPACE modulation is a digital modulation concept for

Multiple–Input Multiple–Output (MIMO) wireless sys-

tems [1]–[3]. Recent results have shown that it can outper-

form many state–of–the–art transmission technologies [1]–[9].

The fundamental innovation is the introduction of the so–

called spatial constellation diagram, which is used for data

modulation. More specifically, improved performance is not

achieved through the simultaneous transmission of multiple

data streams, but by encoding the information bits onto the

spatial positions of the antennas at the transmitter [3].

Two basic space modulation concepts exist in the liter-

ature. 1) Space Shift Keying (SSK) modulation [4], where

the incoming bitstream is used to identify a single antenna

of the antenna–array that is switched on for transmission.

The information bits are mapped onto the channel impulse

responses of the end–to–end wireless links. The main benefit

of SSK modulation is a low implementation complexity. 2)

Spatial Modulation (SM) [3], which is a hybrid modulation

scheme combining Phase Shift Keying (PSK) or Quadrature

Amplitude Modulation (QAM) with SSK modulation. In SM,

each block of information bits is transmitted through two

information–carrying units: some bits are modulated using

either PSK or QAM, while the others using SSK modulation.
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The main benefit of SM is a multiplexing gain, which is

obtained with only a single active antenna.
Recently, the Average Bit Error Probability (ABEP) of space

modulation over fading channels has been extensively studied

[4], [10]–[13]. In particular, special attention has been given

to compute the ABEP over Nakagami–m fading, because of

the generality of this distribution and its excellent agreement

with measurements. To date, very accurate frameworks have

been proposed for arbitrary correlated Nakagami–m fading and

MIMO setups, which are useful for SSK modulation [11] and

SM [10]. In spite of being very accurate, these frameworks

need the computation of a single integral involving the Meijer–

G function [14], which hides important properties of the

system, such as the diversity and coding gains. For example,

numerical results in [11] have shown that, unlike PSK/QAM

[15], the diversity gain of SSK modulation is independent of

the fading severity m. However, this finding cannot be captured

through direct inspection of the Meijer–G function.
To have a deeper understanding of the performance of space

modulation, in this Letter we propose a simple yet asymp-

totically tight upper–bound of the ABEP over Nakagami–

m fading, which is insightful enough to show diversity and

coding gains. The framework is in closed–form, is applicable

to SM and SSK modulation, and avoids special functions.
This Letter is organized as follows. In Section II and Section

III, the problem is introduced and the main result is given,

respectively. In Section IV, diversity and coding gains of

SSK modulation are studied. In Section V, some numerical

examples are shown. Finally, Section VI concludes this Letter.

II. PROBLEM STATEMENT

From [10] and [11], it follows that the computation of the

ABEP of SM and SSK modulation requires the solution of:
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where SNR denotes the Signal–to–Noise–Ratio (SNR), and

Fl (·) is defined as (l = 1, 2, . . . , L):
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and: i) X1,l, X1,l, and Kl are positive real numbers; ii) ω1,l

and ω2,l are real numbers; iii) s is a complex number; and iv)

Gm,n
p,q

„
·| (ap)

(bq)

«
is the Meijer–G function defined in [14].

In [10] and [11], no closed–form solution of the integral

in (1) is given, and numerical integration is used. Although

the computational complexity is low and the final result is

very accurate, the major limitation of (1) is the difficulty of

estimating diversity and coding gains [16], which are useful

performance metrics to understand the role of fading severity.
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III. MAIN RESULT

To avoid the limitations in Section II, Proposition 1 provides

a closed–form solution of (1) for high SNR, i.e., SNR � 1.

Proposition 1: The integral in (1) can be computed as:
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Proof : I in (3) can be obtained by using [16, Prop. 3] with:
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where b =
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l=1 dl, and:
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The parameters bl and dl in (6) can be computed through

some algebraic manipulations, and a notable limit involving

the Meijer–G function, Gm,n
p,q

„
z| (ap)
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«
, for z → −1 and

p = q. First of all, let us multiply and divide Fl (·) in (2) by[
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By studying (7) and (8) for |s| → ∞, we obtain:
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where (9) arises from the notable limit in [14, Eq. (8.2.2.59)]1,

and (10) follows after some algebraic manipulations.

By comparing (6) with (9) and (10), we get bl in (4), dl = 1,

and d =
∑L

l=1 dl = L. Finally, the application of [16, Prop.

3] and [16, Eq. (1)] leads to (3). This concludes the proof. �

IV. APPLICATION TO SSK MODULATION

As an example, let us consider the application of Proposi-
tion 1 to the computation of ABEP, diversity gain, and coding

gain of SSK modulation. Two case studies are considered: i)

independent fading at both transmitter and receiver (case study
1); and ii) correlated fading at the transmitter and independent

fading at the receiver (case study 2).

1If |s| → ∞, then z = −s2
`
s + X1,l

´−1 `
s + X2,l

´−1 → −1.

The ABEP of SSK modulation can be tightly upper–

bounded as follows [11, Eq. (35)]:

ABEP ≤ 1

Nt log2 (Nt)
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where Nt are the antennas at the transmitter, NH (t1, t2) is

the Hamming distance between the antenna–indexes t1 and t2,

and PEP (t1 → t2) is the Pairwise Error Probability (PEP) of

antenna–indexes t1 and t2, which is defined as:
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where Nr are the antennas at the receiver, and Em/N0 is the

symbol–energy–to–noise–spectral–density ratio.

In case study 1, M(r)
t1,t2 (·) is given in (2), where (mt,r,Ωt,r)

are the parameters of the Nakagami–m fading on the wire-

less link from the t–th transmit antenna to the r–th re-

ceive antenna, and [11, Sec. III–B]: Kl �→ K(r)
t1,t2 =(

m
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mt2,r
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(r)
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1, 2, . . . , Nt and r = 1, 2, . . . , Nr.

In case study 2, M(r)
t1,t2 (·) is given by [11, Sec. III–C]:
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where (·!) denotes factorial; mt,r = mr for t = 1, 2, . . . , Nt;

ρt1,t2,r is the correlation coefficient between the

wireless link from the t1–th transmit antenna to the

r–th receive antenna and the wireless link from the

t2–th transmit antenna to the r–th receive antenna;

Ct1,t2,r =
(
2mr

√
ρt1,t2,r

)/[√
Ωt1,rΩt2,r (1 − ρt1,t2,r)

]
;

and Ψ(k)
t1,t2,r (·) is given in (2) with: Kl �→ K(r)
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Accordingly, from Proposition 1, the PEP in (12) can be

written as shown in (14) and (15) on top of the next page for

case study 1 and case study 2, respectively. As far as case study
2 is concerned, bkr

for r = 1, 2, . . . , Nr are defined in (4) with

the fading parameters summarized in (13). From (14) and (15),

coding and diversity gains can be obtained in closed–form

from [16, Eq. (1)]. In particular, the diversity gain is Gd = Nr,

which is independent of the fading severity mt,r. This result is

substantially different with respect to conventional modulation

schemes, where, for Nakagami–m fading, Gd depends on both

mt,r and Nr [15, Sec. 9.6.4].

V. FRAMEWORK VALIDATION

In this section, we study the accuracy of Proposition 1,

and, in particular, the tightness of (14) and (15) for SSK

modulation. Without loss of generality, we consider an identi-

cally distributed (and correlated) fading scenario in which the

fading parameters are all the same, i.e., (mt.r,Ωt,r, ρt1,t2,r) =
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(m0, Ω0, ρ0) for t, t1, t2 = 1, 2, . . . , Nt and r = 1, 2, . . . , Nr.

In this case, the ABEP in (11) simplifies as ABEP ≤
(Nt/2)PEP (t1 → t2) = (Nt/2)PEP0, where PEP0 =
PEP (t1 → t2) is given in (14) and (15), and it is the

same for any pair (t1, t2). Also, we have used the identity∑Nt

t1=1

∑Nt

t2=1 NH (t1, t2) =
(
N2

t

/
2
)
log2 (Nt). The compari-

son among Monte Carlo simulations, the numerical integration

of (1), and the high SNR framework in (14) and (15) is shown

in Fig. 1. The curves confirm the tightness of our framework

and the correctness of our analytical derivation.

VI. CONCLUDING REMARKS

In this Letter, we have introduced a new framework to

compute the ABEP of space modulation over correlated

Nakagami–m fading. The framework enables a simple com-

putation of coding and diversity gains. We have proved that

the diversity gain of SSK modulation is independent of the

fading severity. By using [10], the framework is applicable to

generic SM–MIMO as well. In particular, from [10] we know

that the ABEP of SM is the linear combination of the ABEP

of conventional PSK/QAM and SSK modulation. Thus, from

Proposition 1 we conclude that the diversity gain of SM is

the minimum between the diversity gains of PSK/QAM and

SSK modulation. Finally, we note that if space modulation

is enhanced with transmit–diversity capabilities [7]–[9], [13],

coding and diversity gains can be computed by using standard

analytical frameworks, e.g., [15], [16]. This follows directly

from [13, Eq. (24)]. Furthermore, in this case the fading

severity m will affect the diversity gain as in conventional

PSK/QAM modulation.

ACKNOWLEDGMENT

We gratefully acknowledge support from the European

Union (PITN–GA–2010–264759, GREENET project) for this

work. M. Di Renzo acknowledges support of the Laboratory

of Signals and Systems (L2S) under the research project

“Jeunes Chercheurs”. H. Haas acknowledges the EPSRC

(EP/G011788/1) and the Scottish Funding Council support

of his position within the Edinburgh Research Partnership in

Engineering and Mathematics.

REFERENCES

[1] Y. Chau and S.–H. Yu, “Space modulation on wireless fading channels”,
IEEE Veh. Technol. Conf. – Fall, vol. 3, pp. 1668–1671, Oct. 2001.

[2] Y. Yang and B. Jiao, “Information–guided channel–hopping for high
data rate wireless communication”, IEEE Commun. Lett., vol. 12, pp.
225–227, Apr. 2008.

0 5 10 15 20 25 30 35 40
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

A
B

E
P

Em/N0 [dB]

Nr=2, ρ0=0.0

Nr=3, ρ0=0.0

Nr=2, ρ0=0.5

Nr=3, ρ0=0.5

Fig. 1. Setup: Nt = 8, Ω0 = 1, and m0 = 2.5. Markers: Monte Carlo
simulation. Solid lines: numerical integration in (1). Dashed lines: high SNR
framework in (14) and (15).

[3] R. Y. Mesleh et al., “Spatial modulation”, IEEE Trans. Veh. Technol.,
vol. 57, pp. 2228–2241, July 2008.

[4] J. Jeganathan et al., “Space shift keying modulation for MIMO chan-
nels”, IEEE Trans. Wireless Commun., vol. 8, pp. 3692–3703, July 2009.

[5] M. Di Renzo and H. Haas, “Improving the performance of space shift
keying (SSK) modulation via opportunistic power allocation”, IEEE
Commun. Lett., vol. 14, pp. 500–502, June 2010.

[6] R. Y. Mesleh et al., “Trellis coded spatial modulation”, IEEE Trans.
Wireless Commun., vol. 9, pp. 2349–2361, July 2010.

[7] S. Sugiura, S. Chen, and L. Hanzo, “Coherent and differential space–
time shift keying: A dispersion matrix approach”, IEEE Trans. Commun.,
vol. 11, pp. 3219–3230, Nov. 2010.

[8] E. Basar et al., “Space–time block coded spatial modulation”, IEEE
Trans. Commun., vol. 59, pp. 823–832, Mar. 2011.

[9] S. Sugiura, S. Chen, L. Hanzo, “Generalized space–time shift keying de-
signed for flexible diversity–, multiplexing– and complexity–tradeoffs”,
IEEE Trans. Wireless Commun., vol. 11, pp. 1144–1153, Apr. 2011.

[10] M. Di Renzo and H. Haas, “Performance analysis of spatial modulation”,
IEEE Int. Conf. Commun. Netw. in China, pp. 1–7, Aug. 2010.

[11] —, “A general framework for performance analysis of space shift keying
(SSK) modulation for MISO correlated Nakagami–m fading channels”,
IEEE Trans. Commun., vol. 58, pp. 2590–2603, Sep. 2010.

[12] —, “Space shift keying (SSK) modulation with partial channel state
information: Optimal detector and performance analysis over fading
channels”, IEEE Trans. Commun., vol. 58, pp. 3196–3210, Nov. 2010.

[13] —, “Space shift keying (SSK–) MIMO over correlated Rician fad-
ing channels: Performance analysis and a new method for transmit–
diversity”, IEEE Trans. Commun., vol. 59, pp. 116–129, Jan. 2011.

[14] A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integrals and
Series. Vol. 3: More Special Functions, 2003.

[15] M. K. Simon and M.–S. Alouini, Digital Communication over Fading
Channels, John Wiley & Sons, Inc., 1st ed., 2000.

[16] Z. Wang and G. B. Giannakis, “A simple and general parameterization
quantifying performance in fading channels”, IEEE Trans. Commun.,
vol. 51, pp. 1389–1398, Aug. 2003.


