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Abstract:  
 
A framework to qualitatively assess the performance of maintenance policies in 
electrical production plants is presented. A Monte Carlo simulation scheme is 
combined with fuzzy logic for modelling the component degradation. The novelty of 
the work consists in the modelling of the influence of the actual living conditions on 
the degradation of the specific component under analysis; this is done by using 
linguistic fuzzy rules which formalize the expert knowledge on the degradation 
process. An example of application regarding a water-feeding turbo pump is 
presented to illustrate the potential of the proposed approach. 
 
 
1. Introduction 

 
Since the opening of the electricity market, utilities have been forced to be more 
competitive by reacting promptly and reliably to the demand/offer dynamics. This 
entails efficient component maintenance policies, including ordinary maintenance, 
unexpected maintenance and restoration, which have a large impact on the plant 
performance and production costs. The establishment of a maintenance policy 
requires that various options be considered, of the type of maintenance plan 
(corrective, preventive, opportunistic, etc.), the type and timing of the maintenance 
tasks (overhaul, monitoring, scheduled replacement, etc.), the maintenance echelon 
(repair on site or in workshop), etc. The decisions on the maintenance policy must be 
taken considering various and typically conflicting criteria, e.g., availability, safety 
and costs. Given the dimension and complexity of the problem, maintenance policy 
decision making must be supported by system modelling and optimization.  
 
In spite of the many efforts in this direction, it seems fair to say that in many practical 
maintenance decision making cases the situation is not so brilliant: maintenance 
policies are in many instances still based on the maintenance schedules 
recommended by the vendor, which are usually conservative or are only based on 
qualitative information driven by experience and engineering rationale (Zio, 2009); on 
the other hand, for their practical use maintenance optimization models should avoid 
excessive details and strive for a balance with the data available for the estimation of 
their parameters (van Rijn, 2007). 
 
A common approach for defining maintenance policy is based on the use of 
stochastic models of the degradation, failure and repair processes; (Valdez-Flores & 
Feldman, 1989), (Singpurwalla, 1995), (van Noortwijk, 2009) provide detailed 
surveys on the stochastic models that have been successfully used for maintenance 
modelling in different domains (e.g., hydraulic structures, dikes (van Noortwijk, 
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2009), pipelines (Hong, 1999), cutting tools (Jeang, 1999), etc.). These models can 
be grouped into two main categories: 
 

 Stochastic models describing the behaviour of the degradation process affecting a 
given component. It is assumed that failure occurs either when a critical 
parameter reaches a fixed or random threshold or when a traumatic event occurs 
(e.g., a random shock). Some examples of models of stochastic degradation 
processes belonging to this category can be found in (Barata, Guedes Soares, 
Marseguerra, & Zio, 2002), (Zille, Bérenguer, Grall, Despujols, & Lonchampt, 
2007), (Saassouh, Dieulle, & Grall, 2007), (Deloux, Castanier, & Bérenguer, 
2009). 

 

 Stochastic models describing the evolution of the values of the components 
failure rates. In particular, stochastic processes like the doubly stochastic Poisson 
processes, shot noise, etc. (Singpurwalla, 1995) and (Cox, 1980), can be used for 
modelling directly the evolution of the failure rate of a component due to the 
influence of the dynamic environment. However, the failure rate of a component is 
an unobservable entity; thus, it is conceptually more direct to consider stochastic 
processes of covariates (which are observable and, often, measurable variables) 
for modelling the impact of the living conditions in which a component works on its 
failure behaviour. In this case, an hazard rate stochastic process is induced via 
stochastic processes of covariates (Singpurwalla, 1995). 

 
An alternative and pragmatic approach, proposed in (MIL-HDBK-217F, 1995) 
suggests to multiply the base value of the component failure rate by empirical factors 
to account for the specific living conditions (e.g., environment, working cycles, etc.). 
Despite its pragmatism, the approach is not directly applicable in support to 
maintenance decision making, which would require also the knowledge (even 
qualitative) of the component degradation level in order to model the effects of the 
maintenance actions. 
 
To address this problem, (Zille, Bérenguer, Grall, Despujols, & Lonchampt, 2007) 
have proposed a framework for modelling the degradation of a component as a 
discrete stochastic process using parametric probability density functions (pdfs) to 
characterize the transition times among the degradation states and accounting for 
the influence of the component actual living conditions by modulating the pdfs 
parameters. This approach can effectively model the process of component 
degradation allowing the assessment of a maintenance policy, but relies on a large 
number of statistical parameters which may be difficult to estimate in real 
applications due to lack of experimental data. 
 
Indeed, in practice expert judgement is often the main source of information on the 
degradation behaviour of components. To effectively deal with such type of 
information, a fuzzy approach to the estimation of the component degradation state 
is proposed in this work. Linguistic fuzzy rules elicited from experts are used to 
describe the influence of the living conditions on the component degradation 
process. From the knowledge of the degradation state of the component, its failure 
and repair rates are then determined and used within a Monte Carlo simulation 
scheme for computing system availability and costs. 
 
The present paper is structured as follows: in Section 2 the simulation framework is 
presented; Section 3 describes the proposed degradation model; in Section 4 a case 
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study is presented and the results are commented. Finally, come conclusions are 
proposed in the last Section. 
 
 
2. Assessment of Maintenance Policy Performance 
 
The assessment of the performance of a maintenance policy is usually based on the 
computation of the system availability and costs. When dealing with complicated 
systems, the use of Monte Carlo simulation is preferable, in order to avoid the 
introduction of excessively simplifying hypotheses in the representation of the 
system behaviour (Marseguerra & Zio, 2002). 
 
In the proposed approach, the rates characterizing the failure processes are not 
fixed a priori, but depend on the component degradation state, which evolves during 
the stochastic life of the system. To follow the time-dependence of the failure rates, 
which emerges from the degradation process, the time domain is discretized by 
dividing the mission time into bins of fixed duration 𝐷𝑡; at the beginning of each time 
bin, all the Monte Carlo simulation model parameters are updated and kept constant 
through the bin. 
 
A key issue in this computational framework is the estimation of the Monte Carlo 
parameters (i.e., failure rates and repair rates) which depend on the degradation 
state of the components. 
 
In all generality, let us consider a system made up of 𝐶 components. The 𝑖-th 
component is affected by 𝑀𝑖  degradation processes, which may be influenced by the 

failure/degradation behaviour of the other 𝐶 − 1 components of the system. The 

generic 𝑗-th degradation process impacts on a number 𝑁𝑗
𝑖  of failure modes whose 

stochastic occurrence in time is described by 𝑁𝑗
𝑖  different failure rates 𝜆𝑗 ,𝑘

𝑖 , 𝑘 =

1,2, … , 𝑁𝑗
𝑖. 

 
A macro-state of availability 𝜉𝑖  is assigned to the generic 𝑖-th component; it can take 
two mutually exclusive values: 
 

 „ON‟ which indicates that the component is working. 

 „OFF‟ which indicates that the component is not working. 
 
Assuming independence between the degradation mechanisms, the value of the 
failure rate of the generic 𝑖-th component, whose macro-state is „ON‟, is: 
 

𝜆𝑖 =   𝜆𝑗 ,𝑘
𝑖

𝑁𝑗
𝑖

𝑘=1

𝑀𝑖

𝑗 =1

 

 
The case of dependence between the degradation mechanisms is not addressed in 
this work; however, it seems important to remark that unjustifiably ignoring 
dependence may result in an underestimation of the system reliability (Wang & Coit, 
2004). 
 
The macro-state „OFF‟ has a number of possible sub-states that specify the 
condition of the component while not working (e.g., under corrective maintenance, 
under preventive maintenance, waiting for the availability of the repair team, etc.). A 
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repair state 𝜇𝑖  is associated to the generic component 𝑖, whose macro-state is „OFF‟; 
the value is assumed to be dependent directly on the type of the maintenance action, 
the influencing factors (IFs) of the actual living conditions and the degradation state 
of the component. 
 
 
3. Estimation of the Parameters of the Monte Carlo Simulation Model 

 
This section is dedicated to the description of the approach for the estimation of the 
values of the parameters needed in the Monte Carlo simulation modelling framework 
(i.e., failure and repair rates) taking into account the influencing factors of the actual 
living conditions. 
 
3.1 Degradation and Failure Processes 

 
The macro-state „ON‟ of the component 𝑖 can be further specified by a vector 
 

𝑫𝑖 = (𝐷1
𝑖 , 𝐷2

𝑖 , … , 𝐷𝑀𝑖

𝑖 ) 

 
whose elements are the states of the 𝑀𝑖  degradation processes affecting the 

component. The generic degradation mechanism, 𝐷𝑗
𝑖, can take a set of 𝑆𝑗

𝑖  discrete 

values, i.e., the degradation process is modelled as a discrete-state process. Such 
assumption reflects the operator direct experience on the degradation process, 
which is described in terms of states identified by symptoms and corresponding to 
maintenance actions. In this respect, it has been assumed that two degradation 
states are distinct if they differ at least for one of the following characteristics: 
 

 Symptoms: two degradation states are distinct if they have different 
symptoms or different symptom intensities. 

 Maintenance decision after a control: two degradation states are distinct if the 
operator, after a control in which the degradation mechanism is checked, 
takes different maintenance decisions (no action, partial repair, substitution, 
etc.). 

 Failure rates: two degradation states are distinct if the expert associates 
different failure rates to them. 

 

To each degradation state of each degradation mechanism, 𝐷𝑗
𝑖, the vector 𝝀𝑗

𝑖 =

(𝜆𝑗 ,1
𝑖 , 𝜆𝑗 ,2

𝑖 , … , 𝜆
𝑗 ,𝑁𝑗

𝑖
𝑖 ) of the failure rates related to the 𝑁𝑗

𝑖  failure modes influenced by the 

𝑗-th degradation process is univocally associated. 
 
The modelling framework proposed appears quite flexible and detailed in the 
representation of the component degradation and failure behaviour. As such, it offers 
a general modelling power, which however must be carefully tailored in light of the 
data and information available for estimating the model parameters. Thus, it is 
expected that its use in practice be made in a form which is balanced (i.e., more or 
less detailed) with the robustness of the parameters estimation allowed by the 
particular case considered. 
 
3.2 Fuzzy Parameter Estimation (FPE) model 
 
The FPE model has the goal of estimating the values of the parameters needed by 
the Monte Carlo simulation model (i.e., failure and repair rates), taking into account 
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the influencing factors of the actual living conditions. The FPE model interacts with 
the Monte Carlo simulation model whenever an estimation of the parameters is 
needed (i.e., at the begin of each time bin, when a failure occurs, when a 
maintenance action is performed). 
 
The degradation process is modelled as a discrete-state process and a failure rate is 
associated to each degradation state; the problem is then that of linking the living 
conditions experienced by the component to its degradation state. Unfortunately, the 
relationships between the IFs and the degradation states are not completely known. 
To handle the associated uncertainties, in this work a fuzzy logic approach is 
proposed, in which the link between the IFs and the degradation states is described 
by means of Fuzzy Rule Bases (FRBs). 
 
Failure Rate Estimation 
 
The first aim of the FPE model is to estimate the degradation state of the 
components taking into account the living conditions in which they work. In this 
respect, three issues have to be addressed: the identification of the IFs, their model 
description and the evaluation of their effects on each degradation mechanism. 
Three modules are proposed to tackle these issues: 
 

 Central Module (CM); 

 Backward Module (BM); 

 Forward Module (FM). 
 
Central Module 
The Central Module is intended to identify the IFs that actually influence the 
considered degradation mechanism; both expert opinion and physical models from 
literature can constitute the knowledge base to support this phase. To aid this task, 
five general Influencing Factors (IFs) are introduced, divided into two groups. The 
first group includes the re-configurable IFs: 
 

 IF1: Environment. It includes the environmental variables (temperature, humidity, 
vibration, etc.) which are expected to influence the degradation and failure 
behaviour of the component. It is considered re-configurable because some 
interventions can be done in order to modify its value; for example, the external 
temperature or humidity can be controlled, if possible, by setting up heating or air 
conditioning systems, the vibration level can be reduced by performing 
maintenance actions to eliminate the cause of vibration, etc. 

 IF2: Operational Mode. The set of variables which influence the stress conditions 
of the component (e.g. duty cycle, frequency of stops/re-starts, etc.); they can be 
changed during the life time of the component, depending on the demands and 
opportunities of operation. 

 IF3: Maintenance Policy. It contains all the variables related to the maintenance 
characteristics (corrective, preventive, opportunistic, frequency of inspection, 
etc.). Changes from periodic to condition-based maintenance or changes of the 
periods between two successive inspections may be economically profitable in 
different phases of the component life, so that the maintenance policy is often 
dynamically re-calibrated during the components mission time. 

 
The second group contains the fixed, not re-configurable IFs: 
 

 IF4: Age. 
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 IF5: Quality (e.g., of design, materials, manufacturing, etc.). 
 
Backward Module 
The Backward Module relates the selected IFs with measurable variables which 
describe the living conditions, by means of fuzzy logic-based models. The motivation 
for adopting a fuzzy logic modelling framework is due to the fact that most of the IFs 
are expected to be more easily represented and assessed by the experts using 
linguistic statements rather than numeric variables; for example, “the environment is 
favourable” or “the maintenance is efficient” are clear expert statements of qualitative 
nature, whereas it could be difficult to establish a numerical scale representing the 
environment or the maintenance. 
 

The construction of the fuzzy logic model for the assessment of the generic 𝑖-th IF, 
IFi, is based on the following steps: 
 

 Define the linguistic terms qualitatively representing the levels of the IFi (e.g., 
Environment = IF1 ≡ (Soft, Medium, Heavy)). 

 Set the range of variability (Universe of Discourse, UoD in fuzzy arithmetic 
terminology) of the IFi and partition it into the fuzzy sets representative of the 
defined linguistic terms, with their ambiguity. 

 Identify the measurable physical variables that define the IF i (e.g., IF1; 
measurable variables: „Temperature‟, „Humidity‟, „Width of the temperature range 
in a day‟, „Wind‟, etc.). 

 Define the linguistic terms qualitatively representing the values that each 
measurable variable can take (e.g., Temperature  ≡ (Low, Medium, High)). 

 Partition the physical measurement ranges of the input physical variables into 
fuzzy sets representative of the linguistic terms (e.g., Temperature ≡ Low; support 
of the fuzzy set:  −5, 20  °𝐶). 

 Define the set of fuzzy inference rules (Fuzzy Rule Base, FRB), which relate the 
linguistic terms (fuzzy sets) of the input physical variables to those of the output 
level of the IFi (e.g., if „Temperature‟ is „High‟ and „Humidity‟ is „High‟ then 
„Environment‟ is „Heavy‟) and then the fuzzy inference engine to be used. In this 
work, a Mamdani-like fuzzy system has been employed (Babuska, 1998). 

 
Once the model has been developed, it can be used for the assessment of the IF i 
level. Notice that the output of the model is a fuzzy value which accounts for the 
ambiguity inherent in the assessment. 
 
Forward Module 
The Forward Module establishes the functional relationship between the level of the 
IFs and the failure rates, taking into account the influence of the living conditions on 
the degradation process. The objective of the FM is to provide a description, in terms 
of fuzzy rules, of how the IFs impact on the evolution of the degradation process. In 
particular, given the relationship between the degradation states and the failure 
rates, the FM is put into practice by assessing the vector of the degradation state, 
𝑫𝑖 , for those components whose macro-state is „ON‟. This assessment is performed 
by fuzzy logic models (one for each degradation mechanism of each component) 
built on FRBs which link the IFs to the vectors 𝑫𝑖 (Baraldi, Zio, Compare, Rossetti & 
Despujol 2009). 
 



264 
 

Once the generic 𝑗-th degradation mechanism of the 𝑖-th component has been 

estimated, the vector 𝝀𝑗
𝑖  of the failure rates towards the component failure modes is 

univocally associated. The numerical values of such failure rates can be obtained 
either from historical data or from expert opinion. 
 
Obviously, there is no universal method for defining the FRB which models the 
relations of interest: the knowledge of the physical problem (e.g., literature models, 
expert judgement and historical data) needs to be formalized for expressing the role 
played by the various elements affecting the dynamics of the degradation process. 
 
Repair Rate Estimation 
 
The repair rates, 𝜇𝑖 , of the components under maintenance, i.e. for which 𝜉𝑖 = „OFF‟, 
generally depend on their living conditions and on the type of the maintenance 
action. The estimation of the repair rates is based on: 
 

 The current time instant, 𝑡, provided by the system clock time. 

 The vectors 𝑫𝑖 , 𝑖 = 1,2, … , 𝐶, of the components degradation states. The 
maintenance actions, in practice, may depend on the values of these vectors, e.g. 
a repair action is foreseen if the state achieved by the 𝑗-th degradation 

mechanism, 𝐷𝑗
𝑖, is greater than a threshold 𝑑𝑗

𝑖 . The repair rates also depend on 

the values of the vectors 𝑫𝑖, e.g., the Mean Time To Repair (MTTR) of the 
degradation process 𝑗 may be different from that of the degradation process 𝑘. 

 
The knowledge base of this module is the maintenance manager, which univocally 
associates a maintenance action to a certain component state (i.e., defines the 
maintenance policy). In the particular case when the maintenance actions have a 
fixed duration, the MC module is provided directly with the value of duration of such 
actions. 
 
 
4. Case Study 
 
4.1 Introduction 

 
In order to illustrate the application of the proposed methodology, an example 
concerning a Water-Feeding Turbo Pump (WFTP) of a steam generator of a nuclear 
power plant has been considered. A team of experts has identified the degradation 
processes affecting the components of the WFTP and the associated IFs and 
symptoms. A risk-importance analysis has been carried out to identify the 
components and their degradation processes, whose detailed modelling would 
improve the accuracy in the representation of the system failure behaviour. Following 
the obtained results, the case study for the present work has been focused on the 
contact fatigue degradation mechanism of the seals of the WFTP. No consideration 
has been given to other components and their degradation processes, although 
some may lead to an acceleration of the degradation process under consideration. 
 
The degradation of the seals of the WFTP due to contact fatigue is caused by the 
development of cracks that affect the ability of the seals to avoid leaks. The creation 
and propagation of these cracks is a complex physical phenomenon, which has been 
modelled in a number of different ways (Marquis & Solin, 1999), (Shigley, Mischke, & 
Brown, 2004). According to these models, the degradation is mainly influenced by 
the loads applied on the component, its constitutive materials and production 
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process and some geometrical factors characterizing the crack such as its size, 
notch radius, position with respect to the direction of the loads, etc. 
 
The model presented in this work is based on the assumption that the length of the 
most critical crack of the component defines its degradation level. Moreover, it is 
assumed that the length of the crack can only increase in time and preventive 
maintenance on the component has the effect of decreasing the speed of 
propagation of the crack (e.g., reducing the fatigue strength by increasing the notch 
radius of the most critical crack (Marquis & Solin, 1999)), but cannot reduce its 
length. In the modelling, the following three degradation states are considered: 
 
1. „Good‟: the component is as new or almost new; no maintenance actions are 

foreseen if the component is in this state; the failure rate is 𝜆 = 10−5 ℎ−1. 
2. „Medium‟: the seals of the WFTP in this state need some actions aimed at 

decreasing the crack growth rapidity; the failure rate in this state is 𝜆 =
5 ∙ 10−4 ℎ−1. 

3. „Bad‟: if the component is in this degradation state it is convenient to replace it; 

the failure rate in this state is 𝜆 = 10−3 ℎ−1. 
 

Notice that the superscripts and subscripts of the failure rate, 𝜆𝑗 ,𝑘
𝑖 , previously 

introduced have been omitted since only one component with one degradation 
mechanism and one failure mode is considered. 
 
In this case study, the following maintenance actions are assumed to be performed 
on the component: 
 

 Control: periodic overhaul check of the component. It is assumed that the 
degradation state is easily visible and to be detected it does not need a laboratory 
test or disassembling of the component. This action is considered to be of 
negligible duration. Furthermore, this is the only scheduled action. 

 Preventive maintenance: maintenance action conditioned by the result of a 
control. The preventive maintenance action is dependent on the result of a control 
action. If the component is found to be in state „Good‟, no action is performed. If 
the degradation state is „Medium‟, the component undergoes a repairing action 

aiming at slowing down the degradation process: this action has a duration of 2 ℎ. 
Finally, if the component is in state „Bad‟, it is replaced: this action takes 20 ℎ of 
time. 

 Corrective maintenance: maintenance action following a failure of the component. 
The corrective action is assumed to be the replacement of the component. Due to 
the fact that this event is unscheduled, this action brings an additional duration of 

10 ℎ, with respect to the replacement after a control, leading to a total duration of 
30 ℎ. In particular, the additional time may be caused by the supplementary time 
needed for performing the procedure of replacement after failure or to the time 
elapsed between the occurrence of the failure and the start of the replacement 
actions. 

 
Since in this case study all the considered actions have deterministic duration, it is 
not necessary to estimate the repair rates. 
 
The values of the parameters characterizing the system are reported in  

Table 1 
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Table 1. These have been set with arbitrary engineering rationale. 
 

Parameter Value 

Mission time 105ℎ  

Control Period 7000 ℎ  

Duration of a repair action 2 ℎ  

Duration of a replacement action 20 ℎ  

Additional time related to a failure 10 ℎ  

Cost of a control action 5 $  

Cost of a repair action 10 $  

Cost of a replacement action 1000 $  

Additional cost related to a failure 1000 $  
 

Table 1. Values of the parameters characterizing the system. 

 
The final objective of this case study is the identification of the optimal control period 
(i.e., the time interval which leads to the best performance in terms of availability and 
costs). 
 
4.2 Fuzzy Parameter Estimation 

 
Failure Rate Estimation 

 
In this Section, the three modules described in Section 3.2.1 are put to work for 
estimating the failure rates in the considered case study. 
 
Central Module 
The definition of the model of the degradation process requires the identification of 
the IFs influencing the degradation state evolution of the component. In the present 
case study, this has been done by resorting to a FMECA analysis performed by 
safety analysts. The identified IFs are the following: 
 

 IF1: Environment. It is assumed that the influence of the environment on the 
considered degradation mechanism is mainly caused by the vibrations in the 
location at which the component works. In particular, the measurable variables on 
which the IF1 depends are the mean values of the frequency and of the amplitude 
of the vibration fundamental wave in the time elapsed since the component has 
started to work. The Universe of Discourse (UoD) of this IF, arbitrarily scaled on 
[0,1], is partitioned into three Fuzzy Sets: „Soft‟, „Medium‟ and „Heavy‟. 

 IF3: Maintenance. The component is periodically inspected by operators to control 
its degradation level. The maintenance policy, a priori established, requires that 
no maintenance action is performed if the degradation state is found „Good‟ at 
control whereas a corrective maintenance action is performed if the component is 
found in state „Medium‟ and a replacement action is carried out when the 
component is in degradation state „Bad‟. A variation of the period between two 
successive controls causes a modification of the degradation process; in 
particular, the more frequent are the controls the less is the time in which the 
degradation advances without any action for reducing its speed. To describe this 
IF, the three Fuzzy Sets „Frequent‟, „Medium‟ and „Rare‟ are identified by the 

expert on the UoD  0, 2 ∙ 104  ℎ of the control period variable. 

 IF4: Age. This IF measures the time since the component has been working. The 

UoD of this IF is the interval [0, 𝑇𝑀𝑖𝑠𝑠 ], with mission time 𝑇𝑀𝑖𝑠𝑠 =  105 ℎ; on this 
interval, three Fuzzy Sets „Young‟, „Medium‟ and „Old‟ are defined by the expert 
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by means of triangular membership functions. In general, the older the component 
the higher its degradation level. 

 
The membership functions defining the fuzzy sets of the IFs are defined by experts 
on the basis of their knowledge and engineering sense of practice (Figure 1Figure 
1). 
 

 
Figure 1. Fuzzy sets partitioning the degradation state (a), the IF 'Environment' (b), the IF 

„Maintenance‟ (c) and the IF „Age‟ (d). 

 
Backward Module 
The tailoring of the BM to the considered case study consists in identifying the 
physical variables on which the IF1 depends (the IF3 and the IF4 are already directly 
described by the variables control period and time, respectively). The vibration level, 
whose range of variability has been arbitrarily set to [0, 1], adequately characterizes 
the defined IF1 and its value is computed starting from the values of two physical 
variables measured by means of sensors (e.g., strain gauges): amplitude and 
frequency of the vibration fundamental wave. In particular, the mean values of these 
variables in the time elapsed since the system has started to work are given in input 
to the BM, which links them to the IF1 by means of a FRB. 
 
Figure 2Figure 2 shows the fuzzy sets, defined by means of triangular membership 
functions, partitioning the variables in input to the BM: 
 
1. „Low‟, „Medium‟ and „High‟ are the fuzzy sets defined on the UoD [0, 5] 𝑚𝑚 

describing the mean value of the amplitude of the fundamental wave; 
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2. „Low‟, „Medium‟ and „High‟ are the fuzzy sets defined on the UoD [0, 200] 𝐻𝑧 
describing the mean value of the frequency of the fundamental wave. 

 
 

Table 2 
Table 2 shows the rules that model the influence of the mean values of the 
Amplitude and the Frequency on the IF1. For example, the bottom-right element of 
Table 1 represents the rule: if Amplitude is Low and Frequency is Low then IF1 is 
Soft. 
 

 
Figure 2. Fuzzy sets of the variables in input to the Backward Module. 

 

 

Mean frequency of the fundamental 
wave 

High Medium Low 

Mean amplitude 
of the 
fundamental 
wave 

High Heavy Heavy Medium 

Medium Medium Medium Soft 

Low Medium Soft Soft 
 

Table 2. Fuzzy rules defining the relationship between the inputs and the outputs of the BM 
tailored to the IF1. 
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Generally speaking, the vibration in the location in which the system of interest works 
is caused by other components either because they are degrading (e.g., the increase 
of the eccentricity of the centre of gravity in rotating machines) or because they have 
been designed in such a way that a periodic load is applied on the other coupled 
components (e.g., alternating machines discharging loads on the same basement of 
the system of interest). Since, in general, the behaviour of both the components 
producing the vibration and the other components of the overall system (which 
modify the vibration wave) is stochastic, the vibration profile suffered by the 
components is also stochastic. 
 
For simplicity, but without loss of generality, in the present case study, an arbitrarily 
chosen vibration profile is assumed in input to the BM, in terms of the mean 
amplitude and the mean frequency of the fundamental wave (Figure 3Figure 3).  
 
Such profile “lived” by the component influences its degradation behaviour; the 

intensity of such influence is assessed by means of the dedicated fuzzy logic model 

built. Figure 4Figure 4 shows the activation profile in time of the fuzzy sets Low, 

Medium and High, representative of the vibration conditions in terms of mean 

amplitude (top Figure) and frequency (bottom Figure) of the fundamental wave. The 

combination of these activations by the FRB of  
Table 2 
Table 2 within a Mamdani inference system results in the time profile of the degrees 
of activation of the Soft, Medium and Heavy levels of IF1 reported in Figure 5Figure 
5. The Medium level is the most activated for large part of the mission time; Soft and 
Heavy levels are less activated, and in a similar way. In the first part of the mission 
time, the rule „if Amplitude is High and Frequency is Low then Environment is 
Medium‟ has the largest activation degree whereas the rules „if Amplitude is High 
and Frequency is Medium then Environment is Heavy‟ and „if Amplitude is Medium 
and Frequency is Low then Environment is Soft‟ are those with largest activation 
degrees among those with „Heavy‟ and „Soft‟ consequents, respectively. With the 
vibration profile of Figure 3Figure 3, the two latter rules increase their activation 
degrees up to the central part of the mission time as the activation degree of the first 
rule becomes smaller; this leads to the three levels having almost the same degree 

of activation of about 0.5 at 𝑡 = 5.5 ∙ 104 ℎ: at this time, there is complete uncertainty 
on the influence of the IF1 on the degradation level of the component; then, in the 
central part of the mission time, the activation degree of the set „Medium‟ starts again 
to increase because the activation degree of the rule „if Amplitude is Medium and 
Frequency is Medium then Environment is Medium‟ becomes larger whereas the 
degrees of activation of the rules with consequents „Heavy‟ and „Low‟ begin to 
decrease. 
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Figure 3. Vibration profile applied to the component, in terms of mean amplitude (to the left) 

and mean frequency (to the right). 

 

 
Figure 4. Degrees of activation of the fuzzy sets partitioning the variables in input to the 

Backward Module for the given vibration profile. 
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Figure 5. Degrees of activation of the fuzzy sets partitioning the IF1, for the given vibration 

profile. 

Forward Module 
The objective of the Forward Module is to provide a description, in terms of fuzzy 
rules, of how the IFs impact on the evolution of the degradation process. In other 
words, a FRB is built which links the identified IFs with the component degradation 
state and thus its failure rate.  
 
In the considered case study, the Forward Module consists in identifying the failure 
rate of the seals of the WFTP. More precisely, a fuzzy model has been built based 
on rules as, for example: „if Environment is Soft and Maintenance is Frequent and 
Age is Young and Previous Degradation State is Good then Degradation State is 
Good‟. As before, the rules defining the FRB are obtained from expert knowledge. 
The antecedent „Previous Degradation State‟ has been introduced in order to ensure 
that the degradation state does not decrease as the age of the component 
increases. 
 
The output fuzzy set „Degradation State‟ is eventually defuzzyfied to limit the 
propagation of the uncertainty. Defuzzyfication is done by simply selecting the 
degradation state with the highest degree of activation. 
 
Figure 6Figure 6 shows the application of the proposed model on the component 
which lives in the environment previously introduced and inspected every 7000 ℎ, 
with no failures during the mission time. 
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Figure 6. Activation degree of the IFs fuzzy sets and of the degradation state, failure rate 
value and defuzzyfied degradation state considering a control period of 7000 h when no 

failure occurs. 

 
The evolution of IF1 (Figure 6Figure 6(a)) and IF4 (Figure 6Figure 6(c)) is 

straightforward until the time instant 𝑡 = 6.3 ∙ 104ℎ, when the component is found to 
be in the degradation state “Bad” and it is replaced by a new one, whose age is zero 
and with no accumulated vibration. From that time on, the IF1 is computed taking into 
account the vibration suffered by the newly installed component and the IF4 evolves 
naturally as its age. The IF3 (Figure 6Figure 6(b)) is constant, regardless the 
replacement of the component, since the maintenance policy is the same throughout 
the mission time. 
 
Figure 6Figure 6(e) shows the defuzzyfied degradation state of the component, 
which directly determines the failure rate value (Figure 6Figure 6(d)). 
 
4.3 Maintenance policy assessment 

 
In the present Section, the results of the Monte Carlo unavailability estimation of the 
component presented in Section 4.1 are reported and discussed. The computational 
model has been developed in Fortran. Table 3Table 3 shows the values of the 
parameters used in the case study: 
 

Parameter Value 

𝐷𝑡  100 ℎ  

Number of MC trials 10000  

CPU time (Intel Pentium, 1.6 GHz) 56 𝑠𝑒𝑐  
Table 3. Monte Carlo parameters. 
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The instantaneous unavailability of the component with the related 68.3% confidence 
interval (i.e., plus and minus one standard deviation) is shown in Figure 7Figure 7. 
 

 
Figure 7. Instantaneous component unavailability and its standard deviation. 

 
Two large peaks appear in the first part of the component mission time. The first, at 

𝑡 = 1.26 ∙ 104 ℎ, corresponds to the time instant in which the degradation process 
has a transition from degradation state 1 to 2, with the failure rate of the component 

worsening from 10−5 ℎ−1 to 5 ∙ 10−5 ℎ−1. After 𝑡 = 1.26 ∙ 104 ℎ two different conflicting 
trends are observed: 
 

 an increase in the unavailability due to the contribution of those simulated 

components which have had a failure before 𝑡 = 1.26 ∙ 104 ℎ and thus reach the 
degradation state 2 with a delay; 

 a decrease of the unavailability due to the reduced failure rate (10−5 ℎ−1) of those 
simulated components that have undertaken corrective maintenance. 

 
The second effect is prevalent and thus the unavailability decreases. The second 

peak occurs at 𝑡 = 1.40 ∙ 104 ℎ, when the first control occurs after the component has 
entered in degradation state 2 and thus all the simulated components that did not 
have a failure before are now unavailable, due to the downtime associated to the 
preventive maintenance action. 
 
Notice that in the considered case study it is extremely unlikely to achieve the 
degradation state 3: with a failure rate associated to the degradation state 2 equal to 

5 ∙ 10−4 ℎ−1 and a time interval of 4.98 ∙ 104 ℎ between the achievement of the 
degradation states 2 and 3, the probability of encountering a system in a degradation 

state 3 is smaller than 𝑒−5∙10−4 ∙4.98∙104
= 1.39 ∙ 10−11. This is the reason of  the non-

appearance of a peak of unavailability at 𝑡 = 6.3 ∙ 104 ℎ, at which the component 
would reach the degradation state 3 (Figure 6Figure 6). 
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4.4 Maintenance Policy Optimization 
 
The proposed framework has been used to optimize the maintenance policy 
described in Section 4; in particular, the optimization has been performed with 
respect to the Control Period. 
 
 

Figure 8 
Figure 8 and Figure 9Figure 9 show the mean unavailability of the component and 
related 68.3% confidence interval and the maintenance costs for varying values of 
the Control Period. 
 

 
 

Figure 8. Estimated mean unavailability varying the Control Period, with related 68.3% 
confidence interval. 
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Figure 9. Estimated maintenance costs varying the Control Period, with related 68.3% 

confidence interval. 

 
The mean unavailability shows an initially decreasing trend, with a first minimum in 

correspondence of a Control Period equal to 5000 ℎ and another, deeper one in 
correspondence of a Control Period of 10000 ℎ, after which the trend starts 
increasing. The maintenance cost has a similar trend, but with only the minimum in 
correspondence of a Control Period of 10000 ℎ. 
 
One may then conclude that under the considered maintenance policy, the best 
Control Period is 10000 ℎ, with respect to both availability and costs. On the other 
hand, the relative flatness of the minimum is such that there is a wide interval of 
Control Period values in which both the mean unavailability and the maintenance 
cost are small and with little variations, which gives a margin of operational flexibility 
for choosing the Control Period value also accounting for other criteria (e.g., 
opportunistic maintenance). 
 
 
5. Conclusions 
 
A novel modelling framework has been proposed for assessing the impact of the 
adopted maintenance policy and of the specific conditions in which a component 
works on the performance of the overall system of which the component is part. 
 
Given the lack of experimental evidence on the influence of the living conditions of a 
component on its degradation, expert judgment is often used. This has suggested 
the use of a fuzzy approach for representing the expert knowledge in the 
degradation model. Then, Monte Carlo simulation is used to assess the goodness of 
the maintenance policy in terms of system availability. 
 
To illustrate the approach, the modelling framework has been applied to the seals of 
the WFTP and their degradation due to contact fatigue. The proposed modelling 
approach has allowed the optimization of the control period, within the considered 
maintenance policy. The example has shown the potential of the approach but some 
issues remain open: 
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 The the validation on a multi-component system; 

 The the definition of the maintenance policy is done only in terms of the control 
period and in terms of definition of the thresholds between the degradation levels. 
It does not account for the effectiveness of the maintenance tasks, the 
dependence of the effect of the maintenance action on some other factors (e.g., 
the number of maintenance interventions occurred in the past or the time since 
the last maintenance), the human errors that can happen when a maintenance 
action is performed, etc. Inclusion of these aspects could be needed when 
performing the comparison of different maintenance policies; 

 The the operation of defuzzyfication performed on the output of the Forward 
Module, does not propagate the uncertainties affecting the degradation state 
reached by the component. This leads to MC simulations which sample from 
exponential distributions without considering the uncertainty of the parameters of 
those distributions.; 

 The the Mamdani inference limits the activation degrees of the degradation states 
to values smaller than 1, i.e., it is not guaranteed that the maximum of the 
activation degree of the degradation state is equal to 1. This problem, which leads 
to a smaller confidence on the degradation state, may be overcome by 
considering more sophisticated inference systems. 

 
As concluding remark, it seems important to stress one more time that the practical 
exploitation of the flexibility offered by the modelling framework proposed needs to 
be carefully managed with respect to the data available for the estimation of the 
many model parameters involved; this is fundamental in order to avoid over-
parameterization of the model. 
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