N
N

N

HAL

open science

Probability Distributions of Local Modal-Density
Fluctuations in an Electromagnetic Cavity

Andrea Cozza

» To cite this version:

Andrea Cozza. Probability Distributions of Local Modal-Density Fluctuations in an Electromag-
netic Cavity. IEEE Transactions on Electromagnetic Compatibility, 2012, 54 (5), pp.954-967.
10.1109/TEMC.2012.2190987 . hal-00673686

HAL Id: hal-00673686
https://centralesupelec.hal.science/hal-00673686
Submitted on 24 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://centralesupelec.hal.science/hal-00673686
https://hal.archives-ouvertes.fr

Probability Distributions of Local Modal-Density
Fluctuations in an Electromagnetic Cavity

Andrea CozzaMember, |IEEE

Abstract—Results from random-matrix theory are applied reproducibility of tests carried out in them and in partasuthe
to the modeling of random fluctuations in the modal density need to ensure that the fields generated by any MSRC belong
observed in an electrically large cavity. By starting from results to the same type of probability law. The current understagdi
describing the probability distribution of the modal spacing - . . . .
between adjacent frequencies of resonance, or nearest-ghbor of MSR_CS_'S that at suitably high freque_rnues the electri¢ an
Spacing, we introduce a Simp|e procedure a”owing to pass(bn] magnetIC fields can be aCCUrater described as Comple)ed'alu
the modal spacing to the local modal density as measured over (circular) Gaussian random variables.
a finite bandwidth. This local definition of the modal density is Such a probability law is typically assumed as a reasonable
more consistent with the physics of reverberation chamberssince choice due to the (expected) availability of a large number o
it has been recently shown that the deviation from asymptot . .
statistics of field samples is dependent on the number of moge normal modes at high frequencies [1], [2]’_ [3], as opposed t(_)
overlapping within a modal bandwidth. It is shown that as What are regarded as undermoded scenarios, where akernati
opposed to current interpretation, the number of overlapping reference probability laws have been proposed [4], [5], [6]
modes is a strongly fluctuating quantity, and that estimatiry it Still, as recalled in [7], the Gaussian hypothesis is only
by taking the frequency derivative of Weyl's formula can lea but an approximate model and it is incapable to explain
to non-negligible errors and misunderstandings. Regardig these . . . .
fluctuations as second-order effects is therefore not sounfiom the appearanc_e of frequenf:les at which the field Stat'SF'CS
a physical point of view, since the existence of modal depld Proves to deviate substantially from those of a Gaussian
scenarios can easily explain the appearance of local anones in  random variable. Excluding the existence of unconventiona
the field statistics, particularly, but not exclusively, in the lower setup configurations where the excitation source is styongl
frequency range of operation of reverberation chambers. coupled to the equipment under test (EUT) [8], experimental

Index Terms—Cavities, mode-stirred reverberation chambers, observations of local anomalies in field statistics, appear
stochastic ﬁe'ds, test .faCi”tieS, field Statistics, rando-matrix as g”tches’ have been reported in several papers [9]’ [10]’
theory, random fluctuations. [11]: these phenomena, though partially tolerated in theeci

operation of MSRC [12], have not yet received a satisfying

GLOSSARY physical explanation. Anomalies of this kind usually imply
N(f) Cumulative number of modes up to the fre-statistical dispersions higher than expected for a diffiield
quencyf. (perfect reverberation), taking the form of local deviago
Nw(f)  Weyl's smooth approximation oV (f). rather than systematic ones over a bandwidth: these aréyusua
Ne(f) Residual fluctuationsV(f) — Nw(f) not ac- referred to as outliers [2], i.e., as samples not belongirte
counted for by Weyl's approximation. reference law and suspected to indicate a problem of some
mw (f)  First derivative ofNw (f), used as an estimate sort in the setup.
of the modal density. A rather different explanation can be proposed as soon as we
Mw(f) Average number of modes overlapping in aremember that modal representations of the electromamgneti
bandwidthB, estimated ad3 mw (f). field generated within a MSRC are accurately reproduced by
Moe(f) Actual number of modes overlapping in aconsidering a finite number of modes, and in particular the
bandwidthB. average number of modéd,,. overlapping within the-3 dB
mioc(f) Homogenized  local ~ modal  density bandwidth of a mode [13]. Theoretical and experimental
Moc(f)/B. results presented in [13] proved thak,. can be quite low (a
spy(f)  Normalized variances®/u” of the electric- few units) even at frequencies where a MSRC is regarded as
energy densityV. fully functional: as a result, the hypothesis of a Gaussian-
distributed field is no longer justified, and its use should
|. INTRODUCTION be limited to an educated guess for approximate predictive

HE prediction of the performance of mode-stirred (omodels.

tuned) reverberation chambers (MSRCs) as generatorur previous work in [13] proved that the standardized
of random electromagnetic test scenarios is a fundamer{@ normalized) variance, or variability for simplicityf ¢the
topic both from a theoretical and practical point of view irglectric-energy density, can be predicted on the basis of
the operation of these facilities. The main issue here is thefew macroscopic parameters, such as the frequency, the

) geometrical dimensions of the cavity and an estimate of its
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fact already recognized [12], [6], without having been more Il. PRELIMINARY DISCUSSIONS

deeply explored. Our analysis takes its start from results already available

The accuracy of the modal density estimated from Weylt§€ literature: on the one hand the link between the vaitgbil
formula is often taken for granted. In fact, as shown in thi@f the energy density and the average number of overlapped
paper, this is not a sound approach, as the modal denditgdes observed at the working frequency, and on the other the
should rather be treated as a random quantity, subjecfégtistics of modal-related quantities derived in the exhbf
to non-negligible random fluctuations. The apparent lack &MT. The purpose of this Section is to briefly recall thesdsoo
any available model capable of predicting the likeliness #fhile emphasizing some physical concepts and limitatibas t
observing a strong reduction (or increase) in the local rhodd@y @ fundamental role in the subsequent derivations.
density makes any prediction of the probability of obsegvin
these phenomena practically impossible. A. Local modal density and overlapping

It is the aim of this paper to introduce the probability lavis o When thinking about the modal density, one intuitively
the modal density as observitally, over a finite bandwidth, associates it to a certain number of modes resonating around
an approach that is better matched to the concept of motlz¢ working frequency. The modal density can therefore be
overlapping. The average number of modes and ultimatélg¢fined as the average numbkfz of modes found in a
the local modal density are considered as random quantitiegndwidthB,
according to the concepts of random-matrix theory (RMT) M (f)

[14], [15]. Our results are completely general and indepaind mp(f) = 37, Q)

from the details of implementation of the MSRC, as they are . B )

based on universality classes, as defined in the context at RMNd is therefore dependent éhitself. As long asB is large
Interestingly, the probability law of the local modal degss €nough to encompass several modes, then (1) is an average
entirely characterized by the average modal density prediic that can be expected to converge to a single value3ftarge

by Weyl's formula and the class of statistics of the MSRC. &nough, predicted by Weyl's approximation [16]

priori knowledge of the average quality factor, the volunfie o
. . .. 8TV 2 87TV/\
the cavity and the frequency of operation are thus sufficient mw(f) = T o(f) = 7 +o(f), 2
to derive a complete description of the statistics of thealloc 0
modal density. with V' the volume of the cavity¢y the speed of light in

) ) the filling medium andV, the volume measured in cubic
The interest of these models is not merely relegated \R%velengths.

a better physical understanding of MSRCs, but also has arpe gefinition (1) provides a more general framework than
direct impact on their practical use. The results here psedoqsz), since the modal density is considered in a local setting

can be invoked when studying how likely it is that the fielg, this reason, it will be referred to as the local modal digns
statistics in a reverberation chamber deviates from thelide,sociated to a specific bandwidth.
case usually taken as a reference, by means of the procedufig i often practical to associate a specific value to the

intrpduced in [1.3]: clearly, the model h_gre proposed being,qal densitym(f), e.g., by taking the limit forB — 0:
derived on physical grounds, the probability of appearaice o giscrete nature of the set of frequencigis} at which a

anomalous field statistics can be predicted without recgrio cavity resonates implies that in practiog(f) can only take
B values, i.e., zero if no mode resonates at the working

phenomenological approaches, such as those based onahe
Iof flttiﬁ] empirical field distributions to general theoosti frequency/ or infinity otherwise [14], i.e.,
aws .

The paper is organized as follows: Section Il discusses m(f) = lim mp(f) = 3 5(f = fi). (3)
various definitions of modal density and overlapping, while ) B—0 5 ; (

summarizing some major results derived in the context ﬂﬂs outcome is inevitable as the distribution of the normal

_random-matrlx the_ory at the bas'? of the denvatlon_ premimtmodes cannot approach the completeness of real numbess, thu
in the rest of this paper. Sections Il and IV 'ntmduc?eaving inevitable “gaps” between them
auxiliary results later used in Section V in the derivatidn o The estimatemyy (f) is in general diff'erent fromm ()

the probability distributions of the local modal densityn A\Zecause it is not derived as in (3), but in a less direct manner

empty (.:UbOid cavit_y _is used as a test case in Section I\yfirst introducing the functionV(f) describing the overall
supporting our predictions of a strongly fluctuating localdal nymber of modes of a cavity up to the frequency
density. Some considerations about the practical impact ol# )

these results are presented in Section VII, with an emplasis _ Ly
the concept of outliers and local anomalous field statisTibe N =#fis fo< ) “)
Appendix presents a detailed general calculation of thebmrmwith # the cardinality of a set. This function can be repre-
of overlapping modes that should be expected in a cavigented as the sum of a smooth approximatidg (/) and a
supporting our claim that weak modal overlapping should néitictuating functionN¢(f) with zero average value

be expected only in the lower frequency range, but even in

what is usually expected to be the overmoded region. N(f) = Nw(f)+ Ne(f). (5)



This smooth approximation was first derived by Weyl andount the number of modes overlapping o¥&y;, rather than
was intended to provide an approximate solution asymptogiassing through (8), since it requires an estimate of thal loc
cally exact at infinite frequency [16]. The fact that the gty modal densityng,, (f), as defined in (1). This subtle distinc-
of the residual fluctuations grows less quickly thsli (f) as tion makes all the difference and should not be underestidnat

f — oo, thus ensuring it could seem more natural to assume,, (f) ~ mw (f) and
derive My..(f) from (8), but in this way we would implicitly
lim Ni(f) ‘ - (6) accept the notion of a deterministic and smoothly incregsin
f=oo | Nw(f) ’ modal density, with no random fluctuations, withay () not

should not be mistaken for an indication that modal density cdepending onB;;. On the other hand, it is tempting to just

be defined as often done, by taking the derivative\gf (f) consider the average modal density (and overlapping)esimc

at the working frequency, leading to the approximation  practice the ensemble-averagerof;,, (f) can be quite close
tomw (f); as discussed in Section VII, such an approximation

m(f) = lim Mg dNw(f) = mw(f). (7) directly leads to a fundamental misunderstanding about the
B—0 B df origin of statistical anomalies, or outliers, originateddirong
As a matter of fact, the residuak,,(f) = |mw(f) — random fluctuations in the modal density expected for single

Mp/B| does not converge to zero, sindg(f) takes on the realizations of the cavity.

discrete nature ofV(f), thus preserving the results in (3). When directly considering the number of modes overlapping
It could be expected that the accuracy of the approximationer By, the corresponding modal density should rather be
(7) improves as the frequency, and thdgf), increases, defined as in (1), with an implicit local definition depending
hence leading to modes getting close enough to provideom Bj,. In practice, (1) is an average modal density, but in
sort of approximate continuity. Unfortunately, this is rthe this context the average is not over the realizations (ebhkem
case, as well witnessed by the number variance, a measuravsfrage), but rather over the bandwidbh, for a single
the intensity of the fluctuations of the modal densityf) realization. In other words, it represents a sort of locally
around a smooth approximate, e.guw(f), as it will be homogenized modal density, spread equally over the entire
recalled in Section 1I-B. Not only fluctuations do not vanisimodal bandwidthB,, rather than as a set of singularities
with the frequency, but they actually increase in absoluges in (3). For this reason, we will refer to it as lecal
intensity, though their relative intensity decreasesrasgn by average, in contrast to themsemble average. It will be shown
studying the number variance, a measure of modal fluctustion Section VII that this apparently redundant distinctioakas
discussed in Section II-B. A practical example is given ia big difference.

Section VII for a cuboid cavity.

As it will be shown in the rest of this paper, these fluc- . . .
tuations cannot be dismissed as minor approximation errol?s Random matrix theory and universality classes
particularly when the average number of overlapped modeg-ollowing these discussions, what is needed is a probabilis
is not high enough, as happens to be the case eventi@description of the local modal densityz,, (f), as defined
frequencies well above the lowest usable frequency (LUF) #s(1). A theory answering to this need is provided in the next
usually defined by thumb rules proposed in practice withihree Sections. The starting point is the probability disiion
the framework of EMC tests [12] (see the Appendix for moref the spacing between the frequencies of resonance of two
details). adjacent modes, often referred to as nearest-neighboingpac

The differences betweem(f) and mw(f) play a cen- as derived by means of RMT [14].
tral role when studying the average local modal overlapping This short summary is certainly not intended to serve as
Mo(f). This quantity represents the average number 8fi introduction to RMT, and the interested Reader may refer
modes found within a bandwidti,; equal to the averageto the first three chapters in Stockmann’s seminal book [14].

—3 dB width of a mode, i.e.Bys = f/Q, hence Nonetheless, we will give a brief overview of the reasons why
we can apply in practice the results derived in the context
Mioe(f) = mBM(f)fL, (8) of quantum chaos to our problem of field statistics in mode-

Q(f) stirred reverberation chambers.

with Q(f) the ensemble-average composite quality factor of RMT was developed to deal with structures where a direct
a MSRC; the use of ensemblaverages will be indicated by solution of Schrddinger equation is regarded as complex or
means of an overhead bar. simply ill-defined, e.g., when the Hamiltonian operator is
As proven in [13], a high modal density in itself is notunknown. This is the case for complex quantum structures,
a guarantee of a diffuse field, ensuring Gaussian-distbutsuch as large nuclear compounds or mesoscopic structures
scalar field components; the dominant parameter is rat{€rg., quantum dots). A solution to this type of problems
Mo (f), which is required to béZ,,.(f) > 1 in order to sup- Was found by approximating the unknown Hamiltonian op-

port a diffuse field. Therefore, it makes more sense to direcerator by means of a matrix, eventually of asymptotic indinit
_ _ ~ dimensions, whose entries are assumed to follow specific
"By this term we consider the ensemble of all the random rtitizs  probability distributions [17]. This idea is directly rédal to
of cavities generated by varying boundary conditions, dwery stirring . .
procedure, but sharing the same macroscopic propertesaierage quality a prewqus and Ve.ry SU_CC_eSSfUI approach, namely Stat'St.'Ca
factor, volume, average energy density, average modaitdeate. [6]. mechanics, where in a similar manner the problem of studying



the (thermo)dynamics of a large collection of interactirg-p !

ticles was solved by considering a random description of thr  0.9-\  pgisson ensemble
state variables of the particles. The drive in these app@ac 5|
is not having a fine-level information of the system at the
scale of the individual elements it is composed of: the focu:
is rather on its macroscopic behavior, described by mear o6f

—

of statistical quantities related to the statistical motaeof = .| GOE ensemble
physical quantities of interest and in general by means ¢ £
probability distribution functions.

RMT has been widely successful in this respect, and atlea 03
in its basic idea surprisingly simple; the same cannot bé sai
for the mathematical details. The structural similaritysérg
between Helmholtz and Schrodinger equations has motivate
studies comparing the results predicted by RMT to those ok o ‘ ‘ ‘ ‘ ‘ ‘ ]
served in microwave experiments [18]. It is important toicet ' ' z '
that a major difference between these two equations is the
absence of an Hamiltonian operator in Helmholtz equatios: tFig. 1: Nearest-neighbor spacing probability density fiors
structure is the same, but the lack of an Hamiltonian hinddigy an integrable and a GOE system, normalized to the
the drawing of a direct parallel between the two equationgnisemble-average spacing.

It is for this reason that the application of RMT to cavities

where classical waves (of any nature) propagate had Mitual

to wait for a fundamental piece of work, namely the Bohigaghaotic behavior. Integrable systems are actually regaage
Giannoni-Schmidt conjecture [19], where it was postulateth extreme case of non-chaotic systems, whereas in practice
that the results of RMT should apply to any complex systerfi.certain amount of chaos is often observed [21]. In practice
A number of experimental validations have confirmed thigompletely empty rectangular cuboid cavities are a good ex-
conjecture, which is today widely accepted as a physical faBmple of integrable systems, while the inclusion of a scaite
Of particular interest for the EMC community are the workspurs partially chaotic responses as soon as its dimenaiens
dealing with microwave cavities, i.e., unstirred revedtien comparable to the wavelength. The GOE provides the other
chambers, where the accuracy of the prediction of RMT wa&gtreme representation for the ideal case of a fully chaotic
proven beyond any doubt (e.g., [18]). system.

The rationale behind recalling these points is that the An example of direct interest for the EMC community was
nomenclature used in RMT is somewhat cryptic, with defrovided in [22], where it was shown through numerical sim-
initions that make sense in the context of quantum chagitions that a mechanical stirrer is not capable of prowgdi
without having any correspondence in classical wave theogyfully chaotic behavior, with traces of integrable featuri
The apparent validity of the Bohigas conjecture allowed $hould be clear that the notion of integrable system is by no
direct transfer of the RMT ideas from the former to the lattemeans related to the idea of degeneracy in the frequencies of
hence the potentially confusing terminology. resonance of a cavity, as in the case of an empty rectangular

In this framework, we need to recall that RMT is base@avity with widths in rational proportion. Even in the case o
on universality classes allowing to define fundamental syrifational ratios, such a system will present the same tiehav
metry properties of the random matrix approximation of théan any other integrable system.

Hamiltonian, according to fundamental physical propertie The theory introduced in this paper is entirely based on the
of the system under consideration, e.g., energy consenvatistatistics of the nearest-neighbor spacing, defined as
reciprocity, etc., independently from the fine details oé th

system. In this respect, we will consider two configuratiohs si = fir1 — fi, 9)

practical interest, the case of integrable systems, afeoreel

to (improperly) as the Poissonian ensemble [20], and th\gpere si can be regarded, according to RMT, as thth

of the Gaussian Orthogonal Ensemble (GOE) [14], chara;(?-alization of a random variable, the probability density

terized by time-reversal invariance, i.e., energy COretém. unctions (pdfs) of the normalized nearest-neighbor Spaci

A precise definition of the first class is apparently not y :.S/Sb’ mth 5 E 1/mtw ﬂ;e averagle4 nearest-neighbor
available outside the context of quantum chaos, but theoggal Spacing between adjacent modes, are [14]
with microwave structures is still maintained. The impatta

0.7F

0.4r

0.2

0.1,

point to consider is that under the category of integrable pe(z) = e, (10)
systems is considered any system that do not present &Wa Poisson ensemble and

trace of the features of wave-chaotic systems, in particula

level repulsion and of course exponential sensitivity titiah pelz) = Eze‘mz/‘*, (11)

conditions. In practice, the fact that frequencies of resae 2
can cross each other's path when a dynamical perturbation the GOE case. We are thus confronted to either an
(stirring) is operating, is a direct measure of absence oflg f exponential distribution or a Rayleigh one with a parameter



by studying their number variancE?(L), defined as the

18r variance in the number of modes observed over a bandwidth
16- Poisson ensemble containing on averagd. modes, i.e.,.Ls = L/mw. The
Lal number variance is equal to
=7 S3(L) = L, (12)
&1 i
A for an integrable system and
0.8r
GOE ensemble 2
0.6 ¥?(L) = 5 In(27L) +0.0696 + O(L™"),  (13)
7T
0.4r . .
for a GOE chaotic one, as proven in [15].
0.2p The number variance is a measure of the standard deviation
% ; ; . . o of fluctuations in the modal density with respect to the agera
L one defined by means of Weyl's formula. As made clear by

Fig. 2, for an increasing the fluctuations can be quite severe
Fig. 2: Number variances?(L) for an integrable and a GOEfor an integrable system, as opposed to a chaotic one. In
chaotic system. particular, the fact that the variance in the number of modes

increases with an increasing bandwidth is a direct proofief t

non-convergent behavior of the approximate modal dengjty (

o2 = 2/7. These two functions are plotted in Fig. 1 where if he increasing intensity of the fluctuations supports oaincl

is clear that the nil probability of superposed modes in tihaothat assuming the average modal density as an accurate and
systems is a direct consequence of level repulsion. reliable measure of the availability of a large number of e®d

Two major differences can be noticed in these functiofd high frequency is not correct. Modal depleted frequency
and will have a major impact on the statistics of the locdandwidths can pop out at any frequency leading to increased
modal density: 1) for chaotic systems, the modal Spacmg\@rlabmw in the flelld. statistics [13], even at frequersabove
decidedly less dispersed than for an integrable systerh, avit "€ usual LUF definitions. _
probability distribution presenting a mode (peak) clos¢he ~ Unfortunately, the number variance cannot be employed as
average spacing = 1; 2) for an integrable system, it is clear® predictive _tool in t.he. study of t_he probab|llty of obseryin
that modes can come in clusters due to a high probability @fomalous field statistics, since it does not give any measur
superposition [20], so that in order to maintain a fixed ageraOf_the way fluctuations evolve for rare eyents, i.e., towdhds
spacing, the clusters must be relatively isolated one fioen ti@ilS Of the pdf of the local modal density.
other, as justified by the longer exponential tail. We caeref RMT is an asymptotical theory capable of accurately pre-
to this phenomenon as modal depletion, i.e., the local ldck §Cting the statistical properties of the spectrum of a esyst
resonant modes, and it can be conjectured that the protyabifl€ré the frequencies of resonance of a cavity) as long as
of incurring into what are often regarded as outliers [2] ban 1t @dmits a sufficiently large number of states. It should
explained by this phenomenon. In other words, it is a natuf3f clear that RMT cannot pretend to be exact when the
and inevitable phenomenon in an integrable system, wher&ctrical dimensions of a cavity become small, i.e., in its
it is to be expected less likely in chaotic systems. lower frequency range where it mainly behaves as a high

According to the type of system we are dealing Wiﬂ.ﬂuality factor resonator, allowing only a very limited nuemb
a higher probability of observing a wider nearest-neighb8F resonances. Hence, RMT can '?e applied successfull)_/ even
spacing has a direct impact on the number of modes that carfhdrequencies below the LUF, since the modal density is

observed in a fixed bandwidth, as will be derived in Sectian I[YPically high enough to justify a statistical description
As already recalled, practical systems are often in betwe nOther universality classes could be considered, such as the
! %aussian unitary ensemble, or GUE, but it is of minor interes

these two extreme configurations, although a Poisson engem . 7 . .
behavior should be expected in the lower frequency ran practice, as it is useful only in the case of non-reciptoca
ystems. It could nevertheless find some applications in the

when dealing with rectangular cavities: this result holds f the testi f devi ith f i i
long as eventual scatterers in the cavity are electricafigll case of the testing of devices with terromagnetic propsrie
L in general employing non-reciprocal materials. Thisecas

after which the system moves gradually towards a chaofl | be add din thi but th q h
one, as shown experimentally in [18]. Several methods hayg not be addressed in this paper, but the procedures here

been devised to assess the degree of chaoticity of a cawity: ieve_loped are valid in any other t)_/pe of _nearest-nelghbor
the context of this work, we will restrict our discussionglan>Pa¢N9 _statlsncs and can be readily applied to any other
computations to the two extreme classes already introducga'vers"’Illty class.
The following results are directly applicable to the more
general case of intermediary statistics for the modal rstare Ill. BANDWIDTH COVERED BY 2 MODES
neighbor spacing. Access to the nearest-neighbor spacing probability Qistri

A direct measure of the impact on the fluctuations of thigon allows deriving that of the bandwidth coveredsbynodes.
modal density for the two universality classes can be obthinKnowledge of the latter is instrumental in the computatién o



Lar @ _The pdfp ey, (z) implies carrying out convolutions of the
Lol original pdf of the random variablg/n,
. since (£),, involves the sum ofn such random variables
%o.s— that will be assumed to be iid. This procedure implies an
g o6l approximation, as higher-order statistics, involving thetual
' correlations between spacings at different distancesuallys
04l not identically equal to zero [14]. As the average modal dgns
increases, with more packed resonances, the omissioniof the
0.2F correlation can be expected to have an increasing impatanc
In the case of an integrable system, where an exponential
o os distribution is predicted for the nearest-neighbor spgcthe
' - ' result of such operation is available in closed form and és th
25 Gamma probability distribution, with¢),, € T'(n,1/n). In
(b) the other cases, i.e., the GOE and any other intermediate non
10 fully chaotic system, no closed-form solution is availalkte
2r simple way of deriving the pdf of¢),, is to pass through the
characteristic functionp /,, (t) of pe,(z) [23]
__15f 5
5/: 3 Sof/n(t) = ]:{pf/n} (t)v (17)
< 1L 2 by means of a Fourier transform. In the Fourier domaimnrthe
convolutions correspond to
1
05 0. (1) = [e/m ()] (18)
The pdf of the local-average normalized nearest-neighbor
05 0 I 15 5 Py 3 spacing can be retrieved by inverse-transforming its ctara
z istic function
Fig. 3: Probability density functions of the normalized dbc Py, (@) = Fo {<P<§>n} (2), (19)

average nearest-neighbor spa}ci@gn, for (a) an integrable with the total random bandwidth covered by-1 modes given
system and (b) a GOE chaotic one. Several values afe b

considered, showing the rate of convergence of the two uni)-/
versality classes towards the ensemble average valueterpec Sy = n5(E). (20)
from Weyl's formula, corresponding to = 1.
Some examples are given in Fig. 3, for the case of integrable
and GOE systems. As expected for iid random variables, as
the number of modes found within a fixed bandwidth and increases, the central-limit theorem requires the pdf eirth

ultimately for the local modal density. average to converge towards a bell-shaped function, aggmpt
The total bandwidthS,, covered byn 4+ 1 modes can be ically approaching a Gaussian function. What is important t
defined as notice is that the two groups of functions inherit the featur
" N of their respective parent law for the modal nearest-neghb
S, = 8 = e Z&’ (14) spacing. A_s a result, f_or_the same ensemble-average modal
Py mw — nearest-neighbor spacing = 1/mw, the integrable case

' , shows a sensibly larger statistical dispersion, with a much
where then + 1 modes definen random intervals or sub- : . . . .
heavier tail for large nearest-neighbor spacings. Recadlp

bandwidths obeying to the parent laws introduced in the prt?{-is implies that for a fixed bandwidth, the probability of

vious Section. We stick to the use of the normalized neareﬁnding a given number of modes should be expected to
neighbor spacing, as this choice allows deriving completelybe smaller in the case of an integrable system than for a

general results. In th!s respect, itis petter introduchrgglocal- chaotic one. Again, this is related to the higher probabiit
average of the spacing af consecutive modes, . :
close modes found in integrable systems, leading to ckister
1 € interleaved with modal depleted regions. A higher rate of
(Shn == si= ", (15) modal-cluster formation is visible in Fig. 3(a), where the
i=1 probability of finding n modes packed into a bandwidth
where the normalized local average nearest-neighborrspaanarrower than the average one is clearly higher than in the
(€)r, = (s)n/3 will have a central role in Section V. GOE case, especially for a smail Although this could be
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of resonance of a cavity. The first resonance on the lefB of
is taken as a reference in the count, and does not belong
B, being at its left.

il ®)
interpreted as an advantage of integrable systems witecesp o5
to GOE ones, generating a higher modal density with non °
negligible probability, this comes with an also increasatér 04l ﬁ\f
of depletion, as clear in the tail of the distributions. S " ?\\O 3
E [ 5
S: 03r 11, \\ /V\ V\
IV. NUMBER OF MODES IN A FINITE BANDWIDTH < - [ o
o2p o R
The second element needed to derive the probability dis - ‘b/ \ \{7 ¥ .
tribution of the local modal density is the probability law AN
pu(n, B) of finding no more that: modes within a fixed

bandwidthB (see Fig. 4). It can be derived straightforwardly
by recalling that a bandwidtiB contains no more tham
modes if

S, 1 <B<S,. (21) Fig. 5: Probability density functiongs(n, Mw) for (a) an
integrable system and (b) a GOE chaotic one for several salue
In order to provide an unambiguous procedure for countirgj the average number of modégyw. Notice the relatively
these modes, the lower end of the bandwidhwill be high probability of finding no mode in the case of integrable
assumed to coincide with a resonance frequency, as shasystems withMyw < 5, with respect to the GOE case.
in Fig. 4. Clearly, this definition provides a different caun
when other configurations are considered; in fact, this s no
important, as the count is meant as an auxiliary parameter in
the definition of the local modal density. The statisticshoé t .
latter is actually invariant with respect to translatiorisng P(Sns Snt1) = P(Sn1]Sn)ps, (Sn)
the frequency axis, since we are here talking about a fractio = Ps(Snt1 = Sn)ps, (Sn),

of the average spacing, so that our convention does not I§ggere the conditional probability of observing a bandwidth
to any bias in the pdf of the local modal density. As a resukgtwrl covered byn + 2 modes (counting the reference one)
of this choice, the first mode will not be counted as belongir]ghowing thatn + 1 modes cover the bandwid#, is actually

to B, so that of then modes found inB, only n — 1 will be  gquivalent to the probability of observing a further modal

counted. In other words, the first frequency of resonance {garest-neighbor spacing = S,,1 — S, between the last
assumed to be on the left @. two modes. Hence

Hence, according to this convention, the probability law
pum(n, B) is given by

(23)

par(n, B) = P({Sny1 > B} N {S, < B)) (24)

B 0o
:/ / p(SnaSn+1)dSndSn+la
Sn=0JS, =B . . . . . .
o where F(x) is the cumulative distribution function of the
where the joint pdfp(S,,, S,+1) is needed. It can be derivednearest-neighbor spacing Settingy = x/s, this result can
by expressing it as a function of conditional probabilities be recast as

B (o'
par(n, B) = / / Pa(8)p5, (Sn)dSnds
Sp=0Js=B-S,
B

(22) = /0 ps, (z)[1 — Fs(B — )] dz,



My o
pm(n, M) = /0 Py, (W) [1 = Fe (Mw —y)]dy, (25) {Moe = 2} = | J {SEBM = x}
n=1 n
where “(n_ =z
5 Ul e
]\/fw = — = mwB (26) o]
y - U {@r ==}
is the average number of modes expected avefrom an n=1 My

ensemble point of view. In the rest of this paper we willl
consider the case wherklwy = mwB)y, i.€., the average
number of overlapped modes predicted by means of Weyl's

ecalling (15). Whence, partitioning the above event, wiaiob

F]Wloc (x) = P(]\/[loc < ,T) =

formula (2).
Attention should be paid to the fact that the derivation &f th B = P - Mw M
probability function (25) is exact and applies for any numbe - Z (€)n > T pa(n, M) (30)
of modes, but for the case = 0. This case implies that the nl
closest modes to the bandwidth are just outside it, i.e., the -y [1 P, <MW>} s (n, M),
event (21) should now be substituted by the evient- B}. ot x
g;n;;éfigipgge;:ﬁe??si dNtE)O(,jter:igormallzanon property with My defined by (26). Needless to say, since
50 Mloc _ Mioc (31)
pM(O, Mw) =1- Zp]u(i, ]\/fw) (27) MW mw
i=1 the same probability function holds also for the local modal

Another property of (25) is that the average number of mod€§NSity- _ _

E [n] must coincide with that predicted by Weyl's formula, "€ pdf of Mi,. can then be straightforwardly retrieved
i.e., My . This property has been numerically verified for th@Y taking the derivative of (30) with respect to its argument
examples shown in Fig. 5. Expressing it in terms of the deviation from the overlapping

The results obtained from (25) are shown in Fig. 5, whef¥w Predicted by means of Weyl's formula yields
the increased statistical dispersion encountered fogiatee
systems is remarkably higher than for a chaotic one. Of e
particular interest is the non-negligible probability diserv- PMioe /My (2) = & Zp@)n (1/z) pas(n, Mw ). (32)
ing no mode whenMw < 5 in an integrable system, i.e., n=1
of experiencing a modal depletion. This fact is importarffome examples of this pdf are presented in Fig. 6: it is hence
in practice, since an average overlappiify > 5 is not possible to assess the large domain of variability of theahod
automatically achieved even at relatively high frequesicis density, spanning more than one octave with a non negligible
shown in the Appendix. probability even at a relatively high modal overlapping &f 1
modes, and up to two octaves for the integrable case.
The ensemble averagé,., mode and standard deviation of
the local modal overlapping are shown in Fig. 7, as functions
The local definition introduced in (1) can only account fopf My. The mode and the ensemble average are on either
an integer number of modes iB,;, whereas in practice we side of the value predicted by Weyl's formula, indicatingtth
are rather interested in fractional values, too. With refiee although the modal density can be higher than expected for
to Fig. 4, the local modal density can be defined as the ratioweak modal overlapping, the most likely issue (mode) is
n/S,, whereS,, is the bandwidth covered by+ 1 modes (the [ower.
first one being used as a reference), according to the definiti The fact that the average local modal density is higher than
(21). Hence the actual number of overlapping modes ovempgedicted by Weyl's approximation (2) is a direct consegeen

V. LOCAL MODAL DENSITY DISTRIBUTIONS

finite bandwidth, observed on a local scale, reads as of Jensen inequality [24], since the modal density is rellate
" the nearest-neighbor spacing by means of a convex function.
Mo = S—BM. (28) In practice, a statistical mode systematically below the

average implies that even with a GOE chaotic cavity the
This definition is now capable of capturing all the intermeaumber of overlapping modes is likely lower thaty. The
diated cases wher8,, intercepts a fraction of the spacingensemble average for the case of an integrable system is
separating two adjacent modes. For a givén., an infinite  much higher than expected, due to a strong skewness in the
number of modal scenarios can provide the same resgtobability distributions in Fig. 6. Even more important is
The distribution functionFy,,  (z) can now be computed the fact that the standard deviation is still comparablenwit
by considering the entire set of events yielding the samidw even whenMyy 2 10, in both cases. This result implies
equivalent modal overlapping ovét,,, i.e. that even a relatively strong modal overlapping is stileaféd
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Fig. 7: Average value, mode and standard deviation of the
local modal overlapping\/,,., normalized to the expected
F|g 6: Probablllty density functions of the local modal dH!y; Va'ue MVV predicted by means of Wey|'s formula’ for (a) an
normalized to the ensemble-average modal density prefdicigtegrable system and (b) a GOE chaotic one.
by Weyl's formula, i.e., M,./My, for (a) an integrable
system and (b) a GOE chaotic one.
value converge to the same result, as expected by invoking
the central-limit theorem. In particular for this last ppithe
by non-negligible random fluctuations, of the same order efandard deviation expected for the GOE case is about half of
magnitude as the average. Of course, their impact decreas$es in the integrable case.
with My : as discussed in [13], whel,,. 2> 3, although the  We want to stress that these fluctuations in the field stedisti
field will not be yet completely diffused, its deviation fraime must not be interpreted as non-compliancies or shortcasning
asymptotic statistics will become less sensitive to theiact of reverberation chambers, as they just belong to the normal
number of overlapped modes. A much higher dependence frommge of physical responses expected for such systems. As
M. is to be expected at a weak modal overlapping, wherenzade clear by Fig. 6, albeit the probability of experiencing
large statistical dispersion can lead to a dramatic ineréas very low number of modes oves),,; decreases aklyy — oo,
the variability of the electric field. the probability is never equal to zero. In other words, it is
These results, requiring no specific assumption on the finaphysical to expect a reverberation chamber to present no
details of the geometry of a cavity, give an insight inteanomalous statistics even at high frequency. We can coeclud
three important issues: 1) for a weak modal overlapping, thigat the concept of outliers as suggested in [2] appears to
deviation of the field statistics predicted in [13] should beriginate from a biased interpretation of otherwise phaibjc
expected to present a strong statistical dispersion, apérin justified deviations in the field statistics generated by a re
ticular a high probability of leading to even larger dewdats verberation chamber. While unlikely, these extreme scéesar
than those predicted when usiddyw as an estimate of the due to mode-depleted frequencies are perfectly within the
modal overlapping; 2) even at high frequencies where a larghysiological response of a cavity.
number of modes are expected to overlap, their actual number
is still affected by a non-negligible statistical dispersi 3) VI. VALIDATION FOR A CUBOID CAVITY
the differences between Poisson and GOE statistics vanisiAn experimental validation involving modal quantities & f
asymptotically for a large overlapping, e.g., mode and me&iom being a trivial task, since as soon as two consecutive
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20k Fig. 9: Local modal density computed froii(f), averaged
over 0.1 % and 1 % relative bandwidths. The thick black
10t curve is the result predicted by deriving Weyl's approxiimiat
(35). The relative bandwidth over which the average modal
= 0 density should be computed is rathefQ, which is usually
much smaller than the 0.1 % value here considered. Much
_10- stronger fluctuations should be expected in this case, makin
their graphical representation by far less clear.
_20,
gob It is therefore straightforward to compute the cumulative
0 1 2 3 4 56 f7/f0 8§ 9 101 1213 14 number of normal mode¥ ( f), by taking due care in counting

in the degeneracies and allowed combinations of the triplet
Fig. 8: Cumulative number of modes for the rectangular ctiboi”: 7, ) [25]. For the sake of providing a quantitative ex-
cavity taken as an example in Section VI: (a) compariséinPle; the choices = 2.8 m, b = 23-5 m, c = 3.2 m,
between the actual coud¥(f) computed with (4) and (33) corresponding to a volume = 22.4 m* and a fundamental

and Weyl's approximation (34); (b) the residual fluctuationf€Sonancefy = 71.2 MHz will be considered throughout this
Ne(f). Section. The resulting cumulative number of modégf) is

shown in Fig. 8(a).

A more accurate Weyl's approximation valid for the special
resonance frequencies are closer than the average md&@sf ©f an empty cuboid [25] will be used as a reference,
bandwidth Bj;, modal overlapping ensues making it hardly 87V (a+b+e¢) 1
possible to distinguish and thus count the actual number of Nw(f) = 3 b\ + 2 (34)
resonant frequencies.

A numerical validation is possible exclusively in the cas

gredicting a modal density

of regular geometries, e.g., where Helmholtz equation @an b 87V 5, (a+b+c) 35
solved by the method of separation of variables. A cavitha t mw (f) = c f- o : (35)

shape of an empty rectangular cuboid is of practical interes ) .
within the framework of EMC test facilities, and will thus be® comparison between the cumulative number of modes
taken as an example to illustrate the validity of our results Predicted by (34) and those obtained by directly counting
A note of caution is nevertheless necessary, since the " from (4) f"md (33) 'S sh_own_ In Fig. 8(a): the vv_ell_-known
analysis of a regular geometry implies an integrable sy@p"'ty OT Wweyl's apprOX|mat|or_1 n a(_:curately pred|_ct|nget
tem, hence a Poisson class. As already pointed out, theré:li'ér'UIat'Ve number of modes is retngved. Thg re§|dual error
experimental evidence [18], [21], [22] that the behavior dfc- thg ﬂuctuatlng pamVe (f) of N(f) is shown in Fig. 8(b),
real-life reverberation chambers is at least partiallyotica Where it is clea_r thaNf(f) <N(f), at I_east _vvherf/fo R .1'
Unfortunately, in this case no closed-form expression fer tNote how the intensity of the fluctuations increases with the

resonance frequencies is available. gquenclyl/,Bas predicted by the number variance recalled in
For lateral dimensionga,b,c) of the cuboid cavity its eNc lon th- I. read led in Section I1. this shoul
frequencies of resonance can be computed by [25] everineless, as already recafled in section 11, this shou

not be taken as a gauge of the accuracy of Weyl's approx-
) mh 2 na 2 Py 2 33 imation_when dealing with modal dengities. Fig. 9 shows a
Smnp = ) (—) ( ) +( ) g (33) comparison between the results predicted by (35) and the

b

a c
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or My =1 fluctuating around the value predicted by (35). It is notetpr

that the relative bandwidth over which the actual modal dgns
ir N should be averaged is equalltpQ. Now, ) is never as low as
/ just a few hundred units. Therefore, even the results coegput
05t \ over a0.1 % bandwidth are optimistic in their display of a
strongly fluctuating local modal density, since the value of
0 = 1/Q should rather be expected into theé=5 — 10~* range,
0 ! 2 s 4 5 with even wider fluctuations.
My =2 In order to validate our prediction about the pdf of the
number of overlapping modes, we proceeded to a direct count
based on the definition (28). The bandwidths over which this
operation was carried out were computed by taking Weyl's
approximation (35), imposing a givei/yy and finding out
the bandwidth\/yw /mw (f) over which this number of modes
should be expected to overlap at a given frequency. The
4 5 four values My = {1,2,5,10} were considered, and the
My =5 actual countM..(f) was computed over 1000 bandwidths
distributed over the entire frequency range, startingf at
2 fo. The empirical probability distributions thus obtainea ar
shown in Fig. 10(a)-(d), where they are compared to the pdfs
shown in Fig. 6(a). The good agreement between these results
prove that in practical configurations the actual number of
‘ overlapping modes can definitely be smaller than expected
0 1 2 3 4 5 when using Weyl’'s approximation, even when a relativelyhhig
[ My = 10 average modal overlapping is expected.
The question of what average modal overlapping should be
expected in practice is treated in detail in the Appendixereh
it is shown that a weak modal overlapping, i.8f < 3, is
far from unlikely. Experimental results pertaining to tigsue
have also been shown in [13].

051

3 4 5 VIl. PRACTICAL CONSIDERATIONS
Moo/ My

As already recalled in Section |, these discussions about
Fig. 10: Empirical probability distributions of the numbef random fluctuations in the modal overlapping have a direct
overlapped moded/,.. observed for the rectangular cuboidPractical impact, because of _the direct link existing bemwe
cavity discussed in Section VI, obtained by observing 104b€ average local modal density ougf,, and thus the modal
bandwidths over the entire frequency range shown in Fig. @€rlapping, and the variabilityf;, of the energy densitjy’ =
These results pertain to the local modal overlappifg,. ¢l Ell*>, as measured at any position inside at least a sub-
counted over a frequency bandwidth where a reference ovéplume of.a MSRC, a region usually referred to as working
lapping My, is predicted by means of Weyl's approximatioryolume, with N
(35). Four values of\fy are shown. The thick black curves Sor = (WW) (36)
represent the probability density functions predicted by o o
model and shown in Fig. 6(a) for an integrable cavity, whil@ndow the standard deviation 6¥’.

the dashed ones are for a GOE cavity, as given in Fig. 6(b). As demonstrated in the Appendix and already shown in [13],

the number of overlapped modes actually intervening can be
quite low even at frequencies above the LUF estimated by
. . means of the usual thumb rules. Under such conditions, the
actual local average modal density obtained over a relative ., .. . .
. . -variability of W is bound to be higher than expected, as
bandwidth of 0.1 % and 1 % around a continuously varying .
emonstrated in [13]

frequencyf. As discussed in Section I, the fluctuations are

now far from negligible, with a high frequency of occurrence = 1 2 . (37)

of regions of modal depletion, where even at relatively high 3 Mo

frequency the modal density observed can be very close toThe ensemble-average modal density was considered
zero. in [13], with mp,,(f) in (8) approximated by its ensemble

The minimum frequency at which a cavity can be expectederage,mp,,(f) ~ mw(f), thus neglecting the random
to be in an overmoded condition is often estimated at 5 fluctuations that inevitably affect it, as proven in the poers
10 times the fundamental resonanfg Fig. 9 proves that Sections. Having only access to the estimate of the modal
the actual average local modal density is still very strgngtensity provided by Weyl's formula, only the average dewiat
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in the variability would rather pass from 63 % to 126 %,
if a realization featured half the average density. Thersfo
depending on the average modal overlap, fluctuations cam hav
a very different impact, with fields behaving with an incregs
statistical dispersion than expected from ideal revetimra
models [2]. From this example it is clear that the strongest
effect will be felt whenM,. < 3.

A useful summary of the probability of occurrence of
random fluctuations is given in Fig. 11, where the quantiles
of the random variablé/,./ My are computed for a varying
M. The median (50 % quantile) is very well approximated
by the estimateMy provided by Weyl's formula. Hence,
there is an equal probability of observing either a higher or
lower modal overlapping. In the context of deviations from
the asymptotic statistics for field samples, the most ingrt
quantiles are those related to the probability of observing
a lower modal overlapping. In this respect, when expecting
My = 1, there is a 10 % probability of observing an actual
modal overlapping below 49 % and 63 % o&fy for an
integrable and GOE cavity, respectively. Such strong redloic
is proven by our derivation to be a normal phenomenon in a
large cavity, and not related to any non-ideality in its u&e.
50 % reduction in the modal overlapping leads to a twofold

increase in the additional term of the variability of theottiz
energy density, as demonstrated in [13] and recalled in. (37)
Worse, but perfectly normal, scenarios can appear : with a
probability of 1 % the modal overlapping can be found below
25 % and 44 % ofMw. In other words, rare phenomena
04 1 10 of very strong modal depletion can explain the existence of
My anomalous field statistics in a MSRC that is otherwise stahda
compliant.
Fig. 11: Quantiles of the deviation of the local modal over- These results could be expected to improve when a higher
lapping with respect to the estimate obtained from Weylimodal overlapping of\iwy = 3 is considered. This value is
formula, for (a) an integrable system and (b) a GOE chaotiften taken as a reference for the appearance of a diffuse-fie
one. condition in room acoustics [26]. Even in this cadé,,. can
be lower tharb8 % and72 %, and with a probability of 1 %,
below 34 % and 56 %. Hence, even at relatively high modal
can be predicted, or an upper bound, as done in [13]. Theerlappings, the probability of observimgprmal strong de-
non-negligible probability of observing a modal overlappi viations in the field statistics should not be underestichate
even weaker than expected has thus a direct and measurable probability of 1 % is compatible with the rate of ap-
impact on the statistics of the field generated by a revetioera pearance of local non-compliancies as tolerated in current
chamber. As long as the actual number of overlapping modasctice [12], and could thus provide a physical explamatio
M. > 1, this error can be entirely negligible, since (37Jo the observation of outliers [2]. It could also serve as an
converges to the value/3 expected for a diffuse field; but in explanation for the existence of local non-complianciesnev
the case of weak modal overlapping, as already discussed ahdigher frequencies, where the concept of overmodedycavit
proved in [13], very strong statistical deviations can ensuis usually taken for granted.
particularly whenM,. < 3. Of notable importance is the observation of a much higher
The following example should make this point clearer. Istatistical dispersiveness for an integrable case. Intipec
a cavity with an average modal overlapping,. = 1, (37) this scenario is to be expected only when the scatterergnwith
predicts an increase in the variability & equal to 0.63, a reverberation chamber are no longer electrically large, i
corresponding to a 191 % relative deviation in the varigbili towards their lower frequency range of operation, close to
¢Z,. Of all the random realizations generated by a stirrinthe LUF. It is thus pertinent to wonder if the inclusion of
technique, sharing the same average modal density, thtmge passive scatterers within a chamber could improve at
presentingM),. = 1/2 will be affected by an electric energyleast the field statistics, by making the cavity chaotic eath
density with a statistical variability amplified by a factdr than integrable. A similar idea was already vented in presio
i.e., about 380 %, which can easily explain anomalous fiefzhpers, but it was rather based on the hope of increasing
statistics on a local scale. As clear from Fig. 6, such a@he modal density [27], [28]. Our suggestion is of a diffdéren
event is not unlikely. IfM,. = 3, than the relative deviation order: to reduce the statistical dispersion in modal oygitag
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by making a cavity chaotic, in order to avoid even strongel  10f
local deviations in the field statistics, due to modal depiet
justified by stronger random fluctuations for the integrable
case.

VIII. CONCLUSIONS

In this paper we have applied universal results from RMT in
order to derive the probability distributions of modalateld
guantities of interest to the physics of MSRC. These law:
are entirely general and just require a handful of macrascop
parameters to be used in practice: the volume of the cavit
V, its average composite quality fact@p, etc. The two
universality classes representing an integrable and a GC o1 m o
chaotic system serve as extremes in the actual behavior v=_F/fo
real-life MSRCs.

The rationale for our analysis is the link proven in [13]:i . 12: Average modal overlapping predicted by (47) for
between the average number O.f overlapped modes OVeT § Sipation in antenna loads and non-perfectly conductive
average ban_dW|dth ofa mod_e,_dlre_ctly depending on the !0 tallic boundaries, neglecting the inclusion of addiilon
modal density and the dewa_thn in the par_ent. !aw of fiel ssy material into a cavity. These results refer to the case
samples, as assessed by their increased variability. of a fundamental resonance 2t MHz.

It was shown that the estimate of local modal density, an
thus modal overlapping, yielded by Weyl's formula has a far
from negligible probability of overestimating the availétly of with
resonant modes, particularly when modes are already ycant'
overlapped, i.e., forMw < 3. Interestingly, the statistical Q1 = 167°V, (40a)

~

My (v)
[

dispersion of the modal density appears to be non-negéigibl = 3V (40b)
even at frequencies where a relatively large number of modes Q = 28148
is already overlapping, on average. 27V

The inevitable consequence is the appearance of large devi- Qs = AGeoq (40c)

ations from the asymptotic Gaussian behavior expectedhéor t . . .

field generated in an overmoded reverberation chambereTh@g]ere,V is the volume of the cavity and the surface of its
results are expected to be the basis for a better undengan(ﬁpeEa”'C boundary. . .

of anomalous field statistics; moreover, the fact of beinglfir Q1 models the d|55|pat|oq in the antenna load (single
based on physical grounds makes them appealing in the st enna, here), for the special case of a perfectly matched

of the links existing between the physics of large cavitied adn enna_;QQ repres_ents Joule d|_53|pat|on over |mperf_e_ctly
the statistical properties of real-life reverberation robars. conductive walls, witfy,, the relative magnetic permeability
of the metal covering the cavity surface andts effective

skin-depthiQs accounts for power loss due to leakage through

ACKNOWLEDGEMENTS the cavity surface and dissipation in lossy materials withie
The Author is grateful to the anonymous Reviewers for the(i;l’avity (e.g., absorbers) through an average absorptiosscro
constructive remarks and suggestions. section, since they essentially behave in the same maneer. W
obtain from (38) - (40)
APPENDIX 1 5o 160 S§
AVERAGE MODAL OVERLAPPING My FROM Mw(f) = o +4 )\2(1 3 Hwiz: (41)
WEYL'S APPROXIMATION In the lower frequency range, the dominant term in (41) is
The average numbéily, of overlapping modes in a cavity Q4, i.e., dissipation in antenna loads. In this case
can be estimated by means of Weyl's approximation. Since 1
we are mainly interested in knowing the order of magnitude 71012% Mw(f) = 5, =016, (42)
of My, we will consider the basic approximation (2), yielding '
a result well below the average overlapping of 3 modes
My (f) = mw(f)i_ = 87T_VN (38) that is often regarded as ensuring a diffuse-field regime in
Q Q a reverberating cavity [26].

The average composite quality fact@r can be expressed In order to derive a simple closed-form expression, we will
as the harmonic sum of the three main loss/leakage mech@nsider a cubic cavity, with side and non-magnetic metal

nisms [29] surfaces, i.e.4,, = 1. In this case the fundamental resonance
1 23: 1 frequency is .
Q. =Q fo N (43)



Expressing the frequency in terms ¢§, as f = vfy, the
wavelength becomes = \q /v, where), = v/2a. Hence (41)

can be recast into (1]

1 Geq o [2]

16m S0 4
%4‘4/\%1/ —

—_— V.
3N

Mw (v) (44)

(3]
The last term includes the skin depth, which is frequency
dependent. A simplification is possible by writing (4]

50 v25 3
A3 VAo /THoOwCo

where o, is the conductivity of the metallic surfaces. For a
conductivityo,, = 3.5- 107 S/m (aluminium), (44) becomes

(45) [5]

(7]

1 o v2
— 445 4247107 =
27 * )\3 vt \//\0
We are now in condition to assess the average number
overlapping modes predicted by Weyl's approximation. For
a cavity with fy = 20 MHz, i.e., Ay = 15 m, with negligible
leakages and no absorbing materials, we should expect

Mw (v) (46)

El

M (v)

(47)

. +6.37- 107502,
27 [10]
which can now be evaluated at multiples of the fundamental
resonance. We shall consider the two most widely applied
thumb rules for overmoded conditions: 1) a frequency about]
5 or 10 timesfy, i.e.,v =5 or v = 10; 2) a frequency where
the cumulative number of modesié > 60, for which Weyl's
approximation (2) implies

[12]
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2

Vi

corresponding for a cubic cavity @/\ ~ 1.92 andv = 2.7.
We obtainMw (2.7) = 0.16, Mw(5) = 0.17 and Mw (10) =
0.18. In all of these cases\ly < 1, thus making the case for[15]
strong fluctuations in the modal density an important issu[e,_\e]
as implied by the results shown in Fig. 11 for weak average
modal overlapping and discussed in Section VII. Fig. 12 show
M (v) for a varying frequency, in the case whepg — oc: (17
based on dissipation in the antenna load and finite condiyctivi1g]
over the cavity boundary, a modal overlappihfy = 1 is to
be expected only above 45 tim¢gs. 19]

Clearly, the presence of a lossy EUT or absorbers within tI[1e
cavity would increasé/y . Indeed, for a perfectly absorbing
material, the absorption cross-section would be appraobeiypa
equal to its geometrical cross section. Hence, an addltiona
factor 45.,/A? should be included and could be expected 1]
be the dominant one around the LUF. This conclusion agrees
with the observations made in [13], where it was shown that gn;
unloaded cavity can be incapable of supporting a diffudd-fie
condition even above the lowest usable frequency defined in
the IEC standard [12]. The inclusion of additional lossesize |3
to be necessary in the lower frequency range, for the sgkej
of creating more easily reproducible conditions for thedfiel
statistics, i.e., with field statistics approaching thenagiotic
ones derived in [2], [30].

[14]
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