
HAL Id: hal-00673686
https://centralesupelec.hal.science/hal-00673686

Submitted on 24 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probability Distributions of Local Modal-Density
Fluctuations in an Electromagnetic Cavity

Andrea Cozza

To cite this version:
Andrea Cozza. Probability Distributions of Local Modal-Density Fluctuations in an Electromag-
netic Cavity. IEEE Transactions on Electromagnetic Compatibility, 2012, 54 (5), pp.954-967.
�10.1109/TEMC.2012.2190987�. �hal-00673686�

https://centralesupelec.hal.science/hal-00673686
https://hal.archives-ouvertes.fr


1

Probability Distributions of Local Modal-Density
Fluctuations in an Electromagnetic Cavity

Andrea Cozza,Member, IEEE

Abstract—Results from random-matrix theory are applied
to the modeling of random fluctuations in the modal density
observed in an electrically large cavity. By starting from results
describing the probability distribution of the modal spacing
between adjacent frequencies of resonance, or nearest-neighbor
spacing, we introduce a simple procedure allowing to pass from
the modal spacing to the local modal density as measured over
a finite bandwidth. This local definition of the modal density is
more consistent with the physics of reverberation chambers, since
it has been recently shown that the deviation from asymptotic
statistics of field samples is dependent on the number of modes
overlapping within a modal bandwidth. It is shown that as
opposed to current interpretation, the number of overlapping
modes is a strongly fluctuating quantity, and that estimating it
by taking the frequency derivative of Weyl’s formula can lead
to non-negligible errors and misunderstandings. Regarding these
fluctuations as second-order effects is therefore not soundfrom
a physical point of view, since the existence of modal depleted
scenarios can easily explain the appearance of local anomalies in
the field statistics, particularly, but not exclusively, in the lower
frequency range of operation of reverberation chambers.

Index Terms—Cavities, mode-stirred reverberation chambers,
stochastic fields, test facilities, field statistics, random-matrix
theory, random fluctuations.

GLOSSARY

N(f) Cumulative number of modes up to the fre-
quencyf .

NW(f) Weyl’s smooth approximation ofN(f).
Nf(f) Residual fluctuationsN(f) −NW(f) not ac-

counted for by Weyl’s approximation.
mW(f) First derivative ofNW(f), used as an estimate

of the modal density.
MW(f) Average number of modes overlapping in a

bandwidthB, estimated asBmW(f).
Mloc(f) Actual number of modes overlapping in a

bandwidthB.
mloc(f) Homogenized local modal density

Mloc(f)/B.
ς2W (f) Normalized varianceσ2/µ2 of the electric-

energy densityW .

I. I NTRODUCTION

T HE prediction of the performance of mode-stirred (or
tuned) reverberation chambers (MSRCs) as generators

of random electromagnetic test scenarios is a fundamental
topic both from a theoretical and practical point of view in
the operation of these facilities. The main issue here is the
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reproducibility of tests carried out in them and in particular the
need to ensure that the fields generated by any MSRC belong
to the same type of probability law. The current understanding
of MSRCs is that at suitably high frequencies the electric and
magnetic fields can be accurately described as complex-valued
(circular) Gaussian random variables.

Such a probability law is typically assumed as a reasonable
choice due to the (expected) availability of a large number of
normal modes at high frequencies [1], [2], [3], as opposed to
what are regarded as undermoded scenarios, where alternative
reference probability laws have been proposed [4], [5], [6].

Still, as recalled in [7], the Gaussian hypothesis is only
but an approximate model and it is incapable to explain
the appearance of frequencies at which the field statistics
proves to deviate substantially from those of a Gaussian
random variable. Excluding the existence of unconventional
setup configurations where the excitation source is strongly
coupled to the equipment under test (EUT) [8], experimental
observations of local anomalies in field statistics, appearing
as glitches, have been reported in several papers [9], [10],
[11]: these phenomena, though partially tolerated in the current
operation of MSRC [12], have not yet received a satisfying
physical explanation. Anomalies of this kind usually imply
statistical dispersions higher than expected for a diffusefield
(perfect reverberation), taking the form of local deviations
rather than systematic ones over a bandwidth: these are usually
referred to as outliers [2], i.e., as samples not belonging to the
reference law and suspected to indicate a problem of some
sort in the setup.

A rather different explanation can be proposed as soon as we
remember that modal representations of the electromagnetic
field generated within a MSRC are accurately reproduced by
considering a finite number of modes, and in particular the
average number of modesMloc overlapping within the−3 dB
bandwidth of a mode [13]. Theoretical and experimental
results presented in [13] proved thatMloc can be quite low (a
few units) even at frequencies where a MSRC is regarded as
fully functional: as a result, the hypothesis of a Gaussian-
distributed field is no longer justified, and its use should
be limited to an educated guess for approximate predictive
models.

Our previous work in [13] proved that the standardized
(or normalized) variance, or variability for simplicity, of the
electric-energy density, can be predicted on the basis of
a few macroscopic parameters, such as the frequency, the
geometrical dimensions of the cavity and an estimate of its
average quality factor. It was intended as a first step in a
better understanding of anomalous field statistics, suggested
as being basically due to a poor local modal overlapping, a
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fact already recognized [12], [6], without having been more
deeply explored.

The accuracy of the modal density estimated from Weyl’s
formula is often taken for granted. In fact, as shown in this
paper, this is not a sound approach, as the modal density
should rather be treated as a random quantity, subjected
to non-negligible random fluctuations. The apparent lack of
any available model capable of predicting the likeliness of
observing a strong reduction (or increase) in the local modal
density makes any prediction of the probability of observing
these phenomena practically impossible.

It is the aim of this paper to introduce the probability laws of
the modal density as observedlocally, over a finite bandwidth,
an approach that is better matched to the concept of modal
overlapping. The average number of modes and ultimately
the local modal density are considered as random quantities,
according to the concepts of random-matrix theory (RMT)
[14], [15]. Our results are completely general and independent
from the details of implementation of the MSRC, as they are
based on universality classes, as defined in the context of RMT.
Interestingly, the probability law of the local modal density is
entirely characterized by the average modal density predicted
by Weyl’s formula and the class of statistics of the MSRC. A
priori knowledge of the average quality factor, the volume of
the cavity and the frequency of operation are thus sufficient
to derive a complete description of the statistics of the local
modal density.

The interest of these models is not merely relegated to
a better physical understanding of MSRCs, but also has a
direct impact on their practical use. The results here proposed
can be invoked when studying how likely it is that the field
statistics in a reverberation chamber deviates from the ideal
case usually taken as a reference, by means of the procedure
introduced in [13]: clearly, the model here proposed being
derived on physical grounds, the probability of appearanceof
anomalous field statistics can be predicted without recurring to
phenomenological approaches, such as those based on the idea
of fitting empirical field distributions to general theoretical
laws [11].

The paper is organized as follows: Section II discusses
various definitions of modal density and overlapping, while
summarizing some major results derived in the context of
random-matrix theory at the basis of the derivation presented
in the rest of this paper. Sections III and IV introduce
auxiliary results later used in Section V in the derivation of
the probability distributions of the local modal density. An
empty cuboid cavity is used as a test case in Section VI,
supporting our predictions of a strongly fluctuating local modal
density. Some considerations about the practical impact of
these results are presented in Section VII, with an emphasison
the concept of outliers and local anomalous field statistics. The
Appendix presents a detailed general calculation of the number
of overlapping modes that should be expected in a cavity,
supporting our claim that weak modal overlapping should not
be expected only in the lower frequency range, but even in
what is usually expected to be the overmoded region.

II. PRELIMINARY DISCUSSIONS

Our analysis takes its start from results already availablein
the literature: on the one hand the link between the variability
of the energy density and the average number of overlapped
modes observed at the working frequency, and on the other the
statistics of modal-related quantities derived in the context of
RMT. The purpose of this Section is to briefly recall these tools
while emphasizing some physical concepts and limitations that
play a fundamental role in the subsequent derivations.

A. Local modal density and overlapping

When thinking about the modal density, one intuitively
associates it to a certain number of modes resonating around
the working frequency. The modal density can therefore be
defined as the average numberMB of modes found in a
bandwidthB,

mB(f) =
MB(f)

B
, (1)

and is therefore dependent onB itself. As long asB is large
enough to encompass several modes, then (1) is an average
that can be expected to converge to a single value, forB large
enough, predicted by Weyl’s approximation [16]

mW(f) =
8πV

c30
f2 + o(f) =

8πVλ

f
+ o(f), (2)

with V the volume of the cavity,c0 the speed of light in
the filling medium andVλ the volume measured in cubic
wavelengths.

The definition (1) provides a more general framework than
(2), since the modal density is considered in a local setting:
for this reason, it will be referred to as the local modal density,
associated to a specific bandwidth.

It is often practical to associate a specific value to the
modal densitym(f), e.g., by taking the limit forB → 0:
the discrete nature of the set of frequencies{fi} at which a
cavity resonates implies that in practicem(f) can only take
two values, i.e., zero if no mode resonates at the working
frequencyf or infinity otherwise [14], i.e.,

m(f) = lim
B→0

mB(f) =

∞
∑

i=1

δ(f − fi). (3)

This outcome is inevitable as the distribution of the normal
modes cannot approach the completeness of real numbers, thus
leaving inevitable “gaps” between them.

The estimatemW(f) is in general different frommB(f)
because it is not derived as in (3), but in a less direct manner,
by first introducing the functionN(f) describing the overall
number of modes of a cavity up to the frequencyf

N(f) = #{fi : fi 6 f}, (4)

with # the cardinality of a set. This function can be repre-
sented as the sum of a smooth approximationNW(f) and a
fluctuating functionNf(f) with zero average value

N(f) = NW(f) +Nf(f). (5)
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This smooth approximation was first derived by Weyl and
was intended to provide an approximate solution asymptoti-
cally exact at infinite frequency [16]. The fact that the intensity
of the residual fluctuations grows less quickly thanNW(f) as
f → ∞, thus ensuring

lim
f→∞

∣

∣

∣

∣

Nf(f)

NW(f)

∣

∣

∣

∣

= 0, (6)

should not be mistaken for an indication that modal density can
be defined as often done, by taking the derivative ofNW(f)
at the working frequencyf , leading to the approximation

m(f) = lim
B→0

MB

B
∼= dNW(f)

df
= mW(f). (7)

As a matter of fact, the residualRm(f) = |mW(f) −
MB/B| does not converge to zero, sinceNf(f) takes on the
discrete nature ofN(f), thus preserving the results in (3).
It could be expected that the accuracy of the approximation
(7) improves as the frequency, and thusN(f), increases,
hence leading to modes getting close enough to provide a
sort of approximate continuity. Unfortunately, this is notthe
case, as well witnessed by the number variance, a measure of
the intensity of the fluctuations of the modal densitym(f)
around a smooth approximate, e.g.,mW(f), as it will be
recalled in Section II-B. Not only fluctuations do not vanish
with the frequency, but they actually increase in absolute
intensity, though their relative intensity decreases, as proven by
studying the number variance, a measure of modal fluctuations
discussed in Section II-B. A practical example is given in
Section VII for a cuboid cavity.

As it will be shown in the rest of this paper, these fluc-
tuations cannot be dismissed as minor approximation errors,
particularly when the average number of overlapped modes
is not high enough, as happens to be the case even at
frequencies well above the lowest usable frequency (LUF) as
usually defined by thumb rules proposed in practice within
the framework of EMC tests [12] (see the Appendix for more
details).

The differences betweenm(f) and mW(f) play a cen-
tral role when studying the average local modal overlapping
Mloc(f). This quantity represents the average number of
modes found within a bandwidthBM equal to the average
−3 dB width of a mode, i.e.,BM = f/Q̄, hence

Mloc(f) = mBM
(f)

f

Q̄(f)
, (8)

with Q̄(f) the ensemble-average composite quality factor of
a MSRC; the use of ensemble† averages will be indicated by
means of an overhead bar.

As proven in [13], a high modal density in itself is not
a guarantee of a diffuse field, ensuring Gaussian-distributed
scalar field components; the dominant parameter is rather
Mloc(f), which is required to beMloc(f) ≫ 1 in order to sup-
port a diffuse field. Therefore, it makes more sense to directly

†By this term we consider the ensemble of all the random realizations
of cavities generated by varying boundary conditions, due to any stirring
procedure, but sharing the same macroscopic properties, i.e., average quality
factor, volume, average energy density, average modal density, etc. [6].

count the number of modes overlapping overBM , rather than
passing through (8), since it requires an estimate of the local
modal densitymBM

(f), as defined in (1). This subtle distinc-
tion makes all the difference and should not be underestimated:
it could seem more natural to assumemBM

(f) ≃ mW (f) and
deriveMloc(f) from (8), but in this way we would implicitly
accept the notion of a deterministic and smoothly increasing
modal density, with no random fluctuations, with amW (f) not
depending onBM . On the other hand, it is tempting to just
consider the average modal density (and overlapping), since in
practice the ensemble-average ofmBM

(f) can be quite close
tomW (f); as discussed in Section VII, such an approximation
directly leads to a fundamental misunderstanding about the
origin of statistical anomalies, or outliers, originated by strong
random fluctuations in the modal density expected for single
realizations of the cavity.

When directly considering the number of modes overlapping
over BM , the corresponding modal density should rather be
defined as in (1), with an implicit local definition depending
on BM . In practice, (1) is an average modal density, but in
this context the average is not over the realizations (ensemble
average), but rather over the bandwidthBM for a single
realization. In other words, it represents a sort of locally
homogenized modal density, spread equally over the entire
modal bandwidthBM rather than as a set of singularities
as in (3). For this reason, we will refer to it as alocal
average, in contrast to theensemble average. It will be shown
in Section VII that this apparently redundant distinction makes
a big difference.

B. Random matrix theory and universality classes

Following these discussions, what is needed is a probabilis-
tic description of the local modal densitymBM

(f), as defined
in (1). A theory answering to this need is provided in the next
three Sections. The starting point is the probability distribution
of the spacing between the frequencies of resonance of two
adjacent modes, often referred to as nearest-neighbor spacing,
as derived by means of RMT [14].

This short summary is certainly not intended to serve as
an introduction to RMT, and the interested Reader may refer
to the first three chapters in Stöckmann’s seminal book [14].
Nonetheless, we will give a brief overview of the reasons why
we can apply in practice the results derived in the context
of quantum chaos to our problem of field statistics in mode-
stirred reverberation chambers.

RMT was developed to deal with structures where a direct
solution of Schrödinger equation is regarded as complex or
simply ill-defined, e.g., when the Hamiltonian operator is
unknown. This is the case for complex quantum structures,
such as large nuclear compounds or mesoscopic structures
(e.g., quantum dots). A solution to this type of problems
was found by approximating the unknown Hamiltonian op-
erator by means of a matrix, eventually of asymptotic infinite
dimensions, whose entries are assumed to follow specific
probability distributions [17]. This idea is directly related to
a previous and very successful approach, namely statistical
mechanics, where in a similar manner the problem of studying
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the (thermo)dynamics of a large collection of interacting par-
ticles was solved by considering a random description of the
state variables of the particles. The drive in these approaches
is not having a fine-level information of the system at the
scale of the individual elements it is composed of: the focus
is rather on its macroscopic behavior, described by means
of statistical quantities related to the statistical moments of
physical quantities of interest and in general by means of
probability distribution functions.

RMT has been widely successful in this respect, and at least
in its basic idea surprisingly simple; the same cannot be said
for the mathematical details. The structural similarity existing
between Helmholtz and Schrödinger equations has motivated
studies comparing the results predicted by RMT to those ob-
served in microwave experiments [18]. It is important to notice
that a major difference between these two equations is the
absence of an Hamiltonian operator in Helmholtz equation: the
structure is the same, but the lack of an Hamiltonian hinders
the drawing of a direct parallel between the two equations.
It is for this reason that the application of RMT to cavities
where classical waves (of any nature) propagate had virtually
to wait for a fundamental piece of work, namely the Bohigas-
Giannoni-Schmidt conjecture [19], where it was postulated
that the results of RMT should apply to any complex system.
A number of experimental validations have confirmed this
conjecture, which is today widely accepted as a physical fact.
Of particular interest for the EMC community are the works
dealing with microwave cavities, i.e., unstirred reverberation
chambers, where the accuracy of the prediction of RMT was
proven beyond any doubt (e.g., [18]).

The rationale behind recalling these points is that the
nomenclature used in RMT is somewhat cryptic, with def-
initions that make sense in the context of quantum chaos
without having any correspondence in classical wave theory.
The apparent validity of the Bohigas conjecture allowed a
direct transfer of the RMT ideas from the former to the latter,
hence the potentially confusing terminology.

In this framework, we need to recall that RMT is based
on universality classes allowing to define fundamental sym-
metry properties of the random matrix approximation of the
Hamiltonian, according to fundamental physical properties
of the system under consideration, e.g., energy conservation,
reciprocity, etc., independently from the fine details of the
system. In this respect, we will consider two configurationsof
practical interest, the case of integrable systems, also referred
to (improperly) as the Poissonian ensemble [20], and that
of the Gaussian Orthogonal Ensemble (GOE) [14], charac-
terized by time-reversal invariance, i.e., energy conservation.
A precise definition of the first class is apparently not yet
available outside the context of quantum chaos, but the analogy
with microwave structures is still maintained. The important
point to consider is that under the category of integrable
systems is considered any system that do not present any
trace of the features of wave-chaotic systems, in particular
level repulsion and of course exponential sensitivity to initial
conditions. In practice, the fact that frequencies of resonance
can cross each other’s path when a dynamical perturbation
(stirring) is operating, is a direct measure of absence of a fully
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Fig. 1: Nearest-neighbor spacing probability density functions
for an integrable and a GOE system, normalized to the
ensemble-average spacing.

chaotic behavior. Integrable systems are actually regarded as
an extreme case of non-chaotic systems, whereas in practice
a certain amount of chaos is often observed [21]. In practice,
completely empty rectangular cuboid cavities are a good ex-
ample of integrable systems, while the inclusion of a scatterer
spurs partially chaotic responses as soon as its dimensionsare
comparable to the wavelength. The GOE provides the other
extreme representation for the ideal case of a fully chaotic
system.

An example of direct interest for the EMC community was
provided in [22], where it was shown through numerical sim-
ulations that a mechanical stirrer is not capable of providing
a fully chaotic behavior, with traces of integrable features. It
should be clear that the notion of integrable system is by no
means related to the idea of degeneracy in the frequencies of
resonance of a cavity, as in the case of an empty rectangular
cavity with widths in rational proportion. Even in the case of
irrational ratios, such a system will present the same behavior
than any other integrable system.

The theory introduced in this paper is entirely based on the
statistics of the nearest-neighbor spacing, defined as

si = fi+1 − fi, (9)

where si can be regarded, according to RMT, as thei-th
realization of a random variables, the probability density
functions (pdfs) of the normalized nearest-neighbor spacing
ξ = s/s̄, with s̄ = 1/mW the average nearest-neighbor
spacing between adjacent modes, are [14]

pξ(x) = e−x, (10)

for a Poisson ensemble and

pξ(x) =
π

2
xe−πx2/4, (11)

for the GOE case. We are thus confronted to either an
exponential distribution or a Rayleigh one with a parameter
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Fig. 2: Number variancesΣ2(L) for an integrable and a GOE
chaotic system.

σ2 = 2/π. These two functions are plotted in Fig. 1 where it
is clear that the nil probability of superposed modes in chaotic
systems is a direct consequence of level repulsion.

Two major differences can be noticed in these functions
and will have a major impact on the statistics of the local
modal density: 1) for chaotic systems, the modal spacing is
decidedly less dispersed than for an integrable system, with a
probability distribution presenting a mode (peak) close tothe
average spacingξ = 1; 2) for an integrable system, it is clear
that modes can come in clusters due to a high probability of
superposition [20], so that in order to maintain a fixed average
spacing, the clusters must be relatively isolated one from the
other, as justified by the longer exponential tail. We can refer
to this phenomenon as modal depletion, i.e., the local lack of
resonant modes, and it can be conjectured that the probability
of incurring into what are often regarded as outliers [2] canbe
explained by this phenomenon. In other words, it is a natural
and inevitable phenomenon in an integrable system, whereas
it is to be expected less likely in chaotic systems.

According to the type of system we are dealing with,
a higher probability of observing a wider nearest-neighbor
spacing has a direct impact on the number of modes that can be
observed in a fixed bandwidth, as will be derived in Section III.

As already recalled, practical systems are often in between
these two extreme configurations, although a Poisson ensemble
behavior should be expected in the lower frequency range
when dealing with rectangular cavities: this result holds as
long as eventual scatterers in the cavity are electrically small,
after which the system moves gradually towards a chaotic
one, as shown experimentally in [18]. Several methods have
been devised to assess the degree of chaoticity of a cavity: in
the context of this work, we will restrict our discussions and
computations to the two extreme classes already introduced.
The following results are directly applicable to the more
general case of intermediary statistics for the modal nearest-
neighbor spacing.

A direct measure of the impact on the fluctuations of the
modal density for the two universality classes can be obtained

by studying their number varianceΣ2(L), defined as the
variance in the number of modes observed over a bandwidth
containing on averageL modes, i.e.,Ls̄ = L/mW. The
number variance is equal to

Σ2(L) = L, (12)

for an integrable system and

Σ2(L) =
2

π2
ln(2πL) + 0.0696 +O(L−1), (13)

for a GOE chaotic one, as proven in [15].
The number variance is a measure of the standard deviation

of fluctuations in the modal density with respect to the average
one defined by means of Weyl’s formula. As made clear by
Fig. 2, for an increasingL the fluctuations can be quite severe
for an integrable system, as opposed to a chaotic one. In
particular, the fact that the variance in the number of modes
increases with an increasing bandwidth is a direct proof of the
non-convergent behavior of the approximate modal density (2).
The increasing intensity of the fluctuations supports our claim
that assuming the average modal density as an accurate and
reliable measure of the availability of a large number of modes
at high frequency is not correct. Modal depleted frequency
bandwidths can pop out at any frequency leading to increased
variability in the field statistics [13], even at frequencies above
the usual LUF definitions.

Unfortunately, the number variance cannot be employed as
a predictive tool in the study of the probability of observing
anomalous field statistics, since it does not give any measure
of the way fluctuations evolve for rare events, i.e., towardsthe
tails of the pdf of the local modal density.

RMT is an asymptotical theory capable of accurately pre-
dicting the statistical properties of the spectrum of a system
(here the frequencies of resonance of a cavity) as long as
it admits a sufficiently large number of states. It should
be clear that RMT cannot pretend to be exact when the
electrical dimensions of a cavity become small, i.e., in its
lower frequency range where it mainly behaves as a high
quality factor resonator, allowing only a very limited number
of resonances. Hence, RMT can be applied successfully even
at frequencies below the LUF, since the modal density is
typically high enough to justify a statistical description.

Other universality classes could be considered, such as the
Gaussian unitary ensemble, or GUE, but it is of minor interest
in practice, as it is useful only in the case of non-reciprocal
systems. It could nevertheless find some applications in the
case of the testing of devices with ferromagnetic properties
or in general employing non-reciprocal materials. This case
will not be addressed in this paper, but the procedures here
developed are valid in any other type of nearest-neighbor
spacing statistics and can be readily applied to any other
universality class.

III. B ANDWIDTH COVERED BY n MODES

Access to the nearest-neighbor spacing probability distribu-
tion allows deriving that of the bandwidth covered byn modes.
Knowledge of the latter is instrumental in the computation of
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versality classes towards the ensemble average value expected
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the number of modes found within a fixed bandwidth and
ultimately for the local modal density.

The total bandwidthSn covered byn + 1 modes can be
defined as

Sn =

n
∑

i=1

si =
1

mW

n
∑

i=1

ξi, (14)

where then + 1 modes definen random intervals or sub-
bandwidths obeying to the parent laws introduced in the pre-
vious Section. We stick to the use of the normalized nearest-
neighbor spacingξ, as this choice allows deriving completely
general results. In this respect, it is better introducing the local-
average of the spacing ofn consecutive modes,

〈s〉n =
1

n

n
∑

i=1

si =
〈ξ〉n
mW

, (15)

where the normalized local average nearest-neighbor spacing
〈ξ〉n = 〈s〉n/s̄ will have a central role in Section V.

The pdfp〈ξ〉n(x) implies carrying outn convolutions of the
original pdf of the random variableξ/n,

pξ/n(x) = npξ(nx), (16)

since 〈ξ〉n involves the sum ofn such random variables
that will be assumed to be iid. This procedure implies an
approximation, as higher-order statistics, involving themutual
correlations between spacings at different distances is usually
not identically equal to zero [14]. As the average modal density
increases, with more packed resonances, the omission of their
correlation can be expected to have an increasing importance.

In the case of an integrable system, where an exponential
distribution is predicted for the nearest-neighbor spacing, the
result of such operation is available in closed form and is the
Gamma probability distribution, with〈ξ〉n ∈ Γ(n, 1/n). In
the other cases, i.e., the GOE and any other intermediate non-
fully chaotic system, no closed-form solution is available. A
simple way of deriving the pdf of〈ξ〉n is to pass through the
characteristic functionϕξ/n(t) of pξ/n(x) [23]

ϕξ/n(t) = F
{

pξ/n
}

(t), (17)

by means of a Fourier transform. In the Fourier domain then
convolutions correspond to

ϕ〈ξ〉n(t) =
[

ϕξ/n(t)
]n

. (18)

The pdf of the local-average normalized nearest-neighbor
spacing can be retrieved by inverse-transforming its character-
istic function

p〈ξ〉n(x) = F−1
{

ϕ〈ξ〉n

}

(x), (19)

with the total random bandwidth covered byn+1 modes given
by

Sn = ns̄〈ξ〉n. (20)

Some examples are given in Fig. 3, for the case of integrable
and GOE systems. As expected for iid random variables, as
n increases, the central-limit theorem requires the pdf of their
average to converge towards a bell-shaped function, asymptot-
ically approaching a Gaussian function. What is important to
notice is that the two groups of functions inherit the features
of their respective parent law for the modal nearest-neighbor
spacing. As a result, for the same ensemble-average modal
nearest-neighbor spacinḡs = 1/mW, the integrable case
shows a sensibly larger statistical dispersion, with a much
heavier tail for large nearest-neighbor spacings. Reciprocally,
this implies that for a fixed bandwidth, the probability of
finding a given number of modes should be expected to
be smaller in the case of an integrable system than for a
chaotic one. Again, this is related to the higher probability of
close modes found in integrable systems, leading to clusters
interleaved with modal depleted regions. A higher rate of
modal-cluster formation is visible in Fig. 3(a), where the
probability of finding n modes packed into a bandwidth
narrower than the average one is clearly higher than in the
GOE case, especially for a smalln. Although this could be
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Fig. 4: Definitions of some modal-related quantities, showing
the convention adopted in order to predict the number of
modes appearing withinB. Each dot represents a frequency
of resonance of a cavity. The first resonance on the left ofB
is taken as a reference in the count, and does not belong to
B, being at its left.

interpreted as an advantage of integrable systems with respect
to GOE ones, generating a higher modal density with non-
negligible probability, this comes with an also increased rate
of depletion, as clear in the tail of the distributions.

IV. N UMBER OF MODES IN A FINITE BANDWIDTH

The second element needed to derive the probability dis-
tribution of the local modal density is the probability law
pM (n,B) of finding no more thatn modes within a fixed
bandwidthB (see Fig. 4). It can be derived straightforwardly
by recalling that a bandwidthB contains no more thann
modes if

Sn−1 6 B < Sn. (21)

In order to provide an unambiguous procedure for counting
these modes, the lower end of the bandwidthB will be
assumed to coincide with a resonance frequency, as shown
in Fig. 4. Clearly, this definition provides a different count
when other configurations are considered; in fact, this is not
important, as the count is meant as an auxiliary parameter in
the definition of the local modal density. The statistics of this
latter is actually invariant with respect to translations along
the frequency axis, since we are here talking about a fraction
of the average spacing, so that our convention does not lead
to any bias in the pdf of the local modal density. As a result
of this choice, the first mode will not be counted as belonging
to B, so that of then modes found inB, only n− 1 will be
counted. In other words, the first frequency of resonance is
assumed to be on the left ofB.

Hence, according to this convention, the probability law
pM (n,B) is given by

pM (n,B) = P ({Sn+1 > B} ∩ {Sn 6 B})

=

∫ B

Sn=0

∫ ∞

Sn+1=B

p(Sn, Sn+1)dSndSn+1,
(22)

where the joint pdfp(Sn, Sn+1) is needed. It can be derived
by expressing it as a function of conditional probabilities
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Fig. 5: Probability density functionspM (n,MW) for (a) an
integrable system and (b) a GOE chaotic one for several values
of the average number of modesMW. Notice the relatively
high probability of finding no mode in the case of integrable
systems withMW < 5, with respect to the GOE case.

p(Sn, Sn+1) = P (Sn+1|Sn)pSn
(Sn)

= ps(Sn+1 − Sn)pSn
(Sn),

(23)

where the conditional probability of observing a bandwidth
Sn+1 covered byn + 2 modes (counting the reference one)
knowing thatn+1 modes cover the bandwidthSn is actually
equivalent to the probability of observing a further modal
nearest-neighbor spacings = Sn+1 − Sn between the last
two modes. Hence

pM (n,B) =

∫ B

Sn=0

∫ ∞

s=B−Sn

ps(s)pSn
(Sn)dSnds

=

∫ B

0

pSn
(x) [1− Fs(B − x)] dx,

(24)

where Fs(x) is the cumulative distribution function of the
nearest-neighbor spacings. Settingy = x/s̄, this result can
be recast as



8

pM (n,MW) =

∫ MW

0

p〈ξ〉n(y) [1− Fξ (MW − y)] dy, (25)

where

MW =
B

s̄
= mWB (26)

is the average number of modes expected overB from an
ensemble point of view. In the rest of this paper we will
consider the case whereMW = mWBM , i.e., the average
number of overlapped modes predicted by means of Weyl’s
formula (2).

Attention should be paid to the fact that the derivation of the
probability function (25) is exact and applies for any number
of modes, but for the casen = 0. This case implies that the
closest modes to the bandwidth are just outside it, i.e., the
event (21) should now be substituted by the event{s > B}.
Since (25) applies to anyn ∈ N\0, the normalization property
of a pdf can be rather used to derive

pM (0,MW) = 1−
∞
∑

i=1

pM (i,MW). (27)

Another property of (25) is that the average number of modes
E [n] must coincide with that predicted by Weyl’s formula,
i.e.,MW. This property has been numerically verified for the
examples shown in Fig. 5.

The results obtained from (25) are shown in Fig. 5, where
the increased statistical dispersion encountered for integrable
systems is remarkably higher than for a chaotic one. Of
particular interest is the non-negligible probability of observ-
ing no mode whenMW < 5 in an integrable system, i.e.,
of experiencing a modal depletion. This fact is important
in practice, since an average overlappingMW > 5 is not
automatically achieved even at relatively high frequencies, as
shown in the Appendix.

V. L OCAL MODAL DENSITY DISTRIBUTIONS

The local definition introduced in (1) can only account for
an integer number of modes inBM , whereas in practice we
are rather interested in fractional values, too. With reference
to Fig. 4, the local modal density can be defined as the ratio
n/Sn, whereSn is the bandwidth covered byn+1 modes (the
first one being used as a reference), according to the definition
(21). Hence the actual number of overlapping modes over a
finite bandwidth, observed on a local scale, reads as

Mloc =
n

Sn
BM . (28)

This definition is now capable of capturing all the interme-
diated cases whereBM intercepts a fraction of the spacing
separating two adjacent modes. For a givenMloc, an infinite
number of modal scenarios can provide the same result.
The distribution functionFMloc

(x) can now be computed
by considering the entire set of events yielding the same
equivalent modal overlapping overBM , i.e.

{Mloc = x} =

∞
⋃

n=1

{

n

Sn
BM = x

}

=
∞
⋃

n=1

{

n

Sn
s̄ =

x

MW

}

=

∞
⋃

n=1

{

〈ξ〉−1
n =

x

MW

}

,

(29)

recalling (15). Whence, partitioning the above event, we obtain

FMloc
(x) = P (Mloc 6 x) =

=

∞
∑

n=1

P

(

〈ξ〉n >
MW

x

)

pM (n,MW)

=
∞
∑

n=1

[

1− F〈ξ〉n

(

MW

x

)]

pM (n,MW),

(30)

with MW defined by (26). Needless to say, since

Mloc

MW
=

mloc

mW

, (31)

the same probability function holds also for the local modal
density.

The pdf of Mloc can then be straightforwardly retrieved
by taking the derivative of (30) with respect to its argument.
Expressing it in terms of the deviation from the overlapping
MW predicted by means of Weyl’s formula yields

pMloc/MW
(x) = x−2

∞
∑

n=1

p〈ξ〉n (1/x) pM (n,MW). (32)

Some examples of this pdf are presented in Fig. 6: it is hence
possible to assess the large domain of variability of the modal
density, spanning more than one octave with a non negligible
probability even at a relatively high modal overlapping of 10
modes, and up to two octaves for the integrable case.

The ensemble averagēMloc, mode and standard deviation of
the local modal overlapping are shown in Fig. 7, as functions
of MW. The mode and the ensemble average are on either
side of the value predicted by Weyl’s formula, indicating that
although the modal density can be higher than expected for
a weak modal overlapping, the most likely issue (mode) is
lower.

The fact that the average local modal density is higher than
predicted by Weyl’s approximation (2) is a direct consequence
of Jensen inequality [24], since the modal density is related to
the nearest-neighbor spacing by means of a convex function.

In practice, a statistical mode systematically below the
average implies that even with a GOE chaotic cavity the
number of overlapping modes is likely lower thanMW. The
ensemble average for the case of an integrable system is
much higher than expected, due to a strong skewness in the
probability distributions in Fig. 6. Even more important is
the fact that the standard deviation is still comparable with
MW even whenMW & 10, in both cases. This result implies
that even a relatively strong modal overlapping is still affected
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Fig. 6: Probability density functions of the local modal density,
normalized to the ensemble-average modal density predicted
by Weyl’s formula, i.e.,Mloc/MW, for (a) an integrable
system and (b) a GOE chaotic one.

by non-negligible random fluctuations, of the same order of
magnitude as the average. Of course, their impact decreases
with MW: as discussed in [13], whenMloc & 3, although the
field will not be yet completely diffused, its deviation fromthe
asymptotic statistics will become less sensitive to the actual
number of overlapped modes. A much higher dependence from
Mloc is to be expected at a weak modal overlapping, where a
large statistical dispersion can lead to a dramatic increase in
the variability of the electric field.

These results, requiring no specific assumption on the fine
details of the geometry of a cavity, give an insight into
three important issues: 1) for a weak modal overlapping, the
deviation of the field statistics predicted in [13] should be
expected to present a strong statistical dispersion, and inpar-
ticular a high probability of leading to even larger deviations
than those predicted when usingMW as an estimate of the
modal overlapping; 2) even at high frequencies where a large
number of modes are expected to overlap, their actual number
is still affected by a non-negligible statistical dispersion; 3)
the differences between Poisson and GOE statistics vanish
asymptotically for a large overlapping, e.g., mode and mean
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Fig. 7: Average value, mode and standard deviation of the
local modal overlappingMloc, normalized to the expected
valueMW predicted by means of Weyl’s formula, for (a) an
integrable system and (b) a GOE chaotic one.

value converge to the same result, as expected by invoking
the central-limit theorem. In particular for this last point, the
standard deviation expected for the GOE case is about half of
that in the integrable case.

We want to stress that these fluctuations in the field statistics
must not be interpreted as non-compliancies or shortcomings
of reverberation chambers, as they just belong to the normal
range of physical responses expected for such systems. As
made clear by Fig. 6, albeit the probability of experiencinga
very low number of modes overBM decreases asMW → ∞,
the probability is never equal to zero. In other words, it is
unphysical to expect a reverberation chamber to present no
anomalous statistics even at high frequency. We can conclude
that the concept of outliers as suggested in [2] appears to
originate from a biased interpretation of otherwise physically
justified deviations in the field statistics generated by a re-
verberation chamber. While unlikely, these extreme scenarios
due to mode-depleted frequencies are perfectly within the
physiological response of a cavity.

VI. VALIDATION FOR A CUBOID CAVITY

An experimental validation involving modal quantities is far
from being a trivial task, since as soon as two consecutive
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Fig. 8: Cumulative number of modes for the rectangular cuboid
cavity taken as an example in Section VI: (a) comparison
between the actual countN(f) computed with (4) and (33)
and Weyl’s approximation (34); (b) the residual fluctuations
Nf(f).

resonance frequencies are closer than the average modal
bandwidthBM , modal overlapping ensues making it hardly
possible to distinguish and thus count the actual number of
resonant frequencies.

A numerical validation is possible exclusively in the case
of regular geometries, e.g., where Helmholtz equation can be
solved by the method of separation of variables. A cavity in the
shape of an empty rectangular cuboid is of practical interest
within the framework of EMC test facilities, and will thus be
taken as an example to illustrate the validity of our results.

A note of caution is nevertheless necessary, since the
analysis of a regular geometry implies an integrable sys-
tem, hence a Poisson class. As already pointed out, there is
experimental evidence [18], [21], [22] that the behavior of
real-life reverberation chambers is at least partially chaotic.
Unfortunately, in this case no closed-form expression for the
resonance frequencies is available.

For lateral dimensions(a, b, c) of the cuboid cavity its
frequencies of resonance can be computed by [25]

fmnp =
c0
2

√

(m

a

)2

+
(n

b

)2

+
(p

c

)2

, (33)
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Fig. 9: Local modal density computed fromN(f), averaged
over 0.1 % and 1 % relative bandwidths. The thick black
curve is the result predicted by deriving Weyl’s approximation
(35). The relative bandwidth over which the average modal
density should be computed is rather1/Q̄, which is usually
much smaller than the 0.1 % value here considered. Much
stronger fluctuations should be expected in this case, making
their graphical representation by far less clear.

It is therefore straightforward to compute the cumulative
number of normal modesN(f), by taking due care in counting
in the degeneracies and allowed combinations of the triplet
(m,n, p) [25]. For the sake of providing a quantitative ex-
ample, the choicea = 2.8 m, b = 2.5 m, c = 3.2 m,
corresponding to a volumeV = 22.4 m3 and a fundamental
resonancef0 = 71.2 MHz will be considered throughout this
Section. The resulting cumulative number of modesN(f) is
shown in Fig. 8(a).

A more accurate Weyl’s approximation valid for the special
case of an empty cuboid [25] will be used as a reference,

NW(f) =
8πVλ

3
− (a+ b+ c)

λ
+

1

2
, (34)

predicting a modal density

mW(f) =
8πV

c30
f2 − (a+ b+ c)

c0
. (35)

A comparison between the cumulative number of modes
predicted by (34) and those obtained by directly counting
them from (4) and (33) is shown in Fig. 8(a): the well-known
ability of Weyl’s approximation in accurately predicting the
cumulative number of modes is retrieved. The residual error,
i.e., the fluctuating partNf(f) of N(f) is shown in Fig. 8(b),
where it is clear thatNf(f) ≪ N(f), at least whenf/f0 & 1.
Note how the intensity of the fluctuations increases with the
frequency, as predicted by the number variance recalled in
Section II-B.

Nevertheless, as already recalled in Section II, this should
not be taken as a gauge of the accuracy of Weyl’s approx-
imation when dealing with modal densities. Fig. 9 shows a
comparison between the results predicted by (35) and the
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Fig. 10: Empirical probability distributions of the numberof
overlapped modesMloc observed for the rectangular cuboid
cavity discussed in Section VI, obtained by observing 1000
bandwidths over the entire frequency range shown in Fig. 9.
These results pertain to the local modal overlappingMloc

counted over a frequency bandwidth where a reference over-
lappingMW is predicted by means of Weyl’s approximation
(35). Four values ofMW are shown. The thick black curves
represent the probability density functions predicted by our
model and shown in Fig. 6(a) for an integrable cavity, while
the dashed ones are for a GOE cavity, as given in Fig. 6(b).

actual local average modal density obtained over a relative
bandwidth of 0.1 % and 1 % around a continuously varying
frequencyf . As discussed in Section II, the fluctuations are
now far from negligible, with a high frequency of occurrence
of regions of modal depletion, where even at relatively high
frequency the modal density observed can be very close to
zero.

The minimum frequency at which a cavity can be expected
to be in an overmoded condition is often estimated at 5 to
10 times the fundamental resonancef0. Fig. 9 proves that
the actual average local modal density is still very strongly

fluctuating around the value predicted by (35). It is noteworthy
that the relative bandwidth over which the actual modal density
should be averaged is equal to1/Q̄. Now, Q̄ is never as low as
just a few hundred units. Therefore, even the results computed
over a0.1 % bandwidth are optimistic in their display of a
strongly fluctuating local modal density, since the value of
1/Q̄ should rather be expected into the10−6 − 10−4 range,
with even wider fluctuations.

In order to validate our prediction about the pdf of the
number of overlapping modes, we proceeded to a direct count
based on the definition (28). The bandwidths over which this
operation was carried out were computed by taking Weyl’s
approximation (35), imposing a givenMW and finding out
the bandwidthMW/mW(f) over which this number of modes
should be expected to overlap at a given frequency. The
four valuesMW = {1, 2, 5, 10} were considered, and the
actual countMloc(f) was computed over 1000 bandwidths
distributed over the entire frequency range, starting atf =
2f0. The empirical probability distributions thus obtained are
shown in Fig. 10(a)-(d), where they are compared to the pdfs
shown in Fig. 6(a). The good agreement between these results
prove that in practical configurations the actual number of
overlapping modes can definitely be smaller than expected
when using Weyl’s approximation, even when a relatively high
average modal overlapping is expected.

The question of what average modal overlapping should be
expected in practice is treated in detail in the Appendix, where
it is shown that a weak modal overlapping, i.e.,MW < 3, is
far from unlikely. Experimental results pertaining to thisissue
have also been shown in [13].

VII. PRACTICAL CONSIDERATIONS

As already recalled in Section I, these discussions about
random fluctuations in the modal overlapping have a direct
practical impact, because of the direct link existing between
the average local modal density overBM , and thus the modal
overlapping, and the variabilityς2W of the energy densityW =
ǫ0‖E‖2, as measured at any position inside at least a sub-
volume of a MSRC, a region usually referred to as working
volume, with

ς2W =
(σW

W̄

)2

(36)

andσW the standard deviation ofW .
As demonstrated in the Appendix and already shown in [13],

the number of overlapped modes actually intervening can be
quite low even at frequencies above the LUF estimated by
means of the usual thumb rules. Under such conditions, the
variability of W is bound to be higher than expected, as
demonstrated in [13]

ς2W =
1

3
+

2

πMloc

. (37)

The ensemble-average modal density was considered
in [13], with mBM

(f) in (8) approximated by its ensemble
average,m̄BM

(f) ≃ mW(f), thus neglecting the random
fluctuations that inevitably affect it, as proven in the previous
Sections. Having only access to the estimate of the modal
density provided by Weyl’s formula, only the average deviation
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Fig. 11: Quantiles of the deviation of the local modal over-
lapping with respect to the estimate obtained from Weyl’s
formula, for (a) an integrable system and (b) a GOE chaotic
one.

can be predicted, or an upper bound, as done in [13]. The
non-negligible probability of observing a modal overlapping
even weaker than expected has thus a direct and measurable
impact on the statistics of the field generated by a reverberation
chamber. As long as the actual number of overlapping modes
Mloc ≫ 1, this error can be entirely negligible, since (37)
converges to the value1/3 expected for a diffuse field; but in
the case of weak modal overlapping, as already discussed and
proved in [13], very strong statistical deviations can ensue,
particularly whenMloc . 3.

The following example should make this point clearer. In
a cavity with an average modal overlappinḡMloc = 1, (37)
predicts an increase in the variability ofW equal to 0.63,
corresponding to a 191 % relative deviation in the variability
ς2W . Of all the random realizations generated by a stirring
technique, sharing the same average modal density, those
presentingMloc = 1/2 will be affected by an electric energy
density with a statistical variability amplified by a factor2,
i.e., about 380 %, which can easily explain anomalous field
statistics on a local scale. As clear from Fig. 6, such an
event is not unlikely. IfM̄loc = 3, than the relative deviation

in the variability would rather pass from 63 % to 126 %,
if a realization featured half the average density. Therefore,
depending on the average modal overlap, fluctuations can have
a very different impact, with fields behaving with an increased
statistical dispersion than expected from ideal reverberation
models [2]. From this example it is clear that the strongest
effect will be felt whenM̄loc . 3.

A useful summary of the probability of occurrence of
random fluctuations is given in Fig. 11, where the quantiles
of the random variableMloc/MW are computed for a varying
MW. The median (50 % quantile) is very well approximated
by the estimateMW provided by Weyl’s formula. Hence,
there is an equal probability of observing either a higher or
lower modal overlapping. In the context of deviations from
the asymptotic statistics for field samples, the most important
quantiles are those related to the probability of observing
a lower modal overlapping. In this respect, when expecting
MW = 1, there is a 10 % probability of observing an actual
modal overlapping below 49 % and 63 % ofMW for an
integrable and GOE cavity, respectively. Such strong reduction
is proven by our derivation to be a normal phenomenon in a
large cavity, and not related to any non-ideality in its use.A
50 % reduction in the modal overlapping leads to a twofold
increase in the additional term of the variability of the electric
energy density, as demonstrated in [13] and recalled in (37).
Worse, but perfectly normal, scenarios can appear : with a
probability of 1 % the modal overlapping can be found below
25 % and 44 % ofMW. In other words, rare phenomena
of very strong modal depletion can explain the existence of
anomalous field statistics in a MSRC that is otherwise standard
compliant.

These results could be expected to improve when a higher
modal overlapping ofMW = 3 is considered. This value is
often taken as a reference for the appearance of a diffuse-field
condition in room acoustics [26]. Even in this case,Mloc can
be lower than58 % and72 %, and with a probability of 1 %,
below 34 % and56 %. Hence, even at relatively high modal
overlappings, the probability of observingnormal strong de-
viations in the field statistics should not be underestimated.

A probability of 1 % is compatible with the rate of ap-
pearance of local non-compliancies as tolerated in current
practice [12], and could thus provide a physical explanation
to the observation of outliers [2]. It could also serve as an
explanation for the existence of local non-compliancies even
at higher frequencies, where the concept of overmoded cavity
is usually taken for granted.

Of notable importance is the observation of a much higher
statistical dispersiveness for an integrable case. In practice,
this scenario is to be expected only when the scatterers within
a reverberation chamber are no longer electrically large, i.e.,
towards their lower frequency range of operation, close to
the LUF. It is thus pertinent to wonder if the inclusion of
large passive scatterers within a chamber could improve at
least the field statistics, by making the cavity chaotic rather
than integrable. A similar idea was already vented in previous
papers, but it was rather based on the hope of increasing
the modal density [27], [28]. Our suggestion is of a different
order: to reduce the statistical dispersion in modal overlapping
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by making a cavity chaotic, in order to avoid even stronger
local deviations in the field statistics, due to modal depletions
justified by stronger random fluctuations for the integrable
case.

VIII. C ONCLUSIONS

In this paper we have applied universal results from RMT in
order to derive the probability distributions of modal-related
quantities of interest to the physics of MSRC. These laws
are entirely general and just require a handful of macroscopic
parameters to be used in practice: the volume of the cavity
V , its average composite quality factor̄Q, etc. The two
universality classes representing an integrable and a GOE
chaotic system serve as extremes in the actual behavior of
real-life MSRCs.

The rationale for our analysis is the link proven in [13]
between the average number of overlapped modes over the
average bandwidth of a mode, directly depending on the local
modal density and the deviation in the parent law of field
samples, as assessed by their increased variability.

It was shown that the estimate of local modal density, and
thus modal overlapping, yielded by Weyl’s formula has a far
from negligible probability of overestimating the availability of
resonant modes, particularly when modes are already scantly
overlapped, i.e., forMW . 3. Interestingly, the statistical
dispersion of the modal density appears to be non-negligible
even at frequencies where a relatively large number of modes
is already overlapping, on average.

The inevitable consequence is the appearance of large devi-
ations from the asymptotic Gaussian behavior expected for the
field generated in an overmoded reverberation chamber. These
results are expected to be the basis for a better understanding
of anomalous field statistics; moreover, the fact of being firmly
based on physical grounds makes them appealing in the study
of the links existing between the physics of large cavities and
the statistical properties of real-life reverberation chambers.
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APPENDIX

AVERAGE MODAL OVERLAPPINGMW FROM

WEYL’ S APPROXIMATION

The average numberMW of overlapping modes in a cavity
can be estimated by means of Weyl’s approximation. Since
we are mainly interested in knowing the order of magnitude
of MW, we will consider the basic approximation (2), yielding

MW(f) = mW(f)
f

Q̄
=

8πVλ

Q̄
. (38)

The average composite quality factor̄Q can be expressed
as the harmonic sum of the three main loss/leakage mecha-
nisms [29]

1

Q̄
=

3
∑

i=1

1

Q̄i
, (39)
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Fig. 12: Average modal overlapping predicted by (47) for
dissipation in antenna loads and non-perfectly conductive
metallic boundaries, neglecting the inclusion of additional
lossy material into a cavity. These results refer to the case
of a fundamental resonance at20 MHz.

with

Q̄1 = 16π2Vλ (40a)

Q̄2 =
3V

2δµwS
(40b)

Q̄3 =
2πV

λσ̄eq

, (40c)

whereV is the volume of the cavity andS the surface of its
metallic boundary.
Q̄1 models the dissipation in the antenna load (single

antenna, here), for the special case of a perfectly matched
antenna;Q̄2 represents Joule dissipation over imperfectly
conductive walls, withµw the relative magnetic permeability
of the metal covering the cavity surface andδ its effective
skin-depth;Q̄3 accounts for power loss due to leakage through
the cavity surface and dissipation in lossy materials within the
cavity (e.g., absorbers) through an average absorption cross
section, since they essentially behave in the same manner. We
obtain from (38) - (40)

MW(f) =
1

2π
+ 4

σ̄eq

λ2
+

16π

3
µw

Sδ

λ3
. (41)

In the lower frequency range, the dominant term in (41) is
Q̄1, i.e., dissipation in antenna loads. In this case

lim
f→0

MW(f) =
1

2π
≃ 0.16, (42)

a result well below the average overlapping of 3 modes
that is often regarded as ensuring a diffuse-field regime in
a reverberating cavity [26].

In order to derive a simple closed-form expression, we will
consider a cubic cavity, with sidea and non-magnetic metal
surfaces, i.e.,µw = 1. In this case the fundamental resonance
frequency is

f0 =
c0√
2a

. (43)
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Expressing the frequency in terms off0, as f = νf0, the
wavelength becomesλ = λ0/ν, whereλ0 =

√
2a. Hence (41)

can be recast into

MW(ν) =
1

2π
+ 4

σ̄eq

λ2
0

ν2 +
16π

3

Sδ

λ3
0

ν3. (44)

The last term includes the skin depth, which is frequency
dependent. A simplification is possible by writing

Sδ

λ3
=

ν2.5√
λ0

3√
πµ0σwc0

, (45)

whereσw is the conductivity of the metallic surfaces. For a
conductivityσw = 3.5 · 107 S/m (aluminium), (44) becomes

MW(ν) =
1

2π
+ 4

σ̄eq

λ2
0

ν2 + 2.47 · 10−4 ν
2.5

√
λ0

. (46)

We are now in condition to assess the average number of
overlapping modes predicted by Weyl’s approximation. For
a cavity withf0 = 20 MHz, i.e., λ0 = 15 m, with negligible
leakages and no absorbing materials, we should expect

MW(ν) =
1

2π
+ 6.37 · 10−5ν2.5, (47)

which can now be evaluated at multiples of the fundamental
resonance. We shall consider the two most widely applied
thumb rules for overmoded conditions: 1) a frequency about
5 or 10 timesf0, i.e., ν = 5 or ν = 10; 2) a frequency where
the cumulative number of modes isN ≥ 60, for which Weyl’s
approximation (2) implies

Vλ =
45

2π
(48)

corresponding for a cubic cavity toa/λ ≃ 1.92 andν = 2.7.
We obtainMW(2.7) = 0.16, MW(5) = 0.17 andMW(10) =
0.18. In all of these cases,MW < 1, thus making the case for
strong fluctuations in the modal density an important issue,
as implied by the results shown in Fig. 11 for weak average
modal overlapping and discussed in Section VII. Fig. 12 shows
MW(ν) for a varying frequency, in the case whereQ̄3 → ∞:
based on dissipation in the antenna load and finite conductivity
over the cavity boundary, a modal overlappingMW = 1 is to
be expected only above 45 timesf0.

Clearly, the presence of a lossy EUT or absorbers within the
cavity would increaseMW. Indeed, for a perfectly absorbing
material, the absorption cross-section would be approximately
equal to its geometrical cross section. Hence, an additional
factor 4σ̄eq/λ

2 should be included and could be expected to
be the dominant one around the LUF. This conclusion agrees
with the observations made in [13], where it was shown that an
unloaded cavity can be incapable of supporting a diffuse-field
condition even above the lowest usable frequency defined in
the IEC standard [12]. The inclusion of additional losses seems
to be necessary in the lower frequency range, for the sake
of creating more easily reproducible conditions for the field
statistics, i.e., with field statistics approaching the asymptotic
ones derived in [2], [30].
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