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Abstract—FT-GReLoSSS (FTG) is a C++/MPI framework to
ease the development of fault-tolerant parallel applications be-
longing to a SPMD family termed GReLoSSS. The originality of
FTG is to rely on the MoLOToF programming model principles
to facilitate the addition of an efficient checkpoint-based fault
tolerance at the application level. Main features of MoLOToF
encompass a structured application development based on fault-
tolerant “skeletons” and lay emphasis on collaborations. The
latter exist between the programmer, the framework and the
underlying runtime middleware/environment. Together with the
structured approach they contribute into achieving reduced
checkpoint sizes, as well as reduced checkpoint and recovery
overhead at runtime. This paper introduces the main principles
of MoLOToF and the design of the FTG framework. To prop-
erly assess the framework’s ease of use for a programmer as
well as fault tolerance efficiency, a series of benchmarks were
conducted up to 128 nodes on a multicore PC cluster. These
benchmarks involved an existing parallel financial application
for gas storage valuation, originally developed in collaboration
with EDF company, and a rewritten version which made use of
the FTG framework and its features. Experiments results display
low-overhead compared to existing system-level counterparts.

Keywords-distributed fault tolerance; application-level check-
pointing; SPMD paradigm; framework; skeletons

I. INTRODUCTION

As a result of increased competition, many industries have

strived for new, more accurate simulation models. Their de-

sign, assessment and exploitation often requires huge amounts

of computational power which eventually led those industries

to adopt high performance distributed systems (HPDS).

In many cases, computations may be broken into several

independent parts which can straightforwardly exploit HPDS.

However, not all computations fit efficiently the embarrass-

ingly parallel computation model. Programmers with little

parallel background face three major issues. Firstly, they

need to learn how to make their applications run efficiently

on HPDS. Secondly, as the probability of failure increases

with the number of computational resources (or nodes) used,

developped applications have to be robust and fault-tolerant.

Finally, HPDS systems involve rapidly evolving hardware and

software which compels the use of portable fault tolerance

(FT) solutions. Efficiency of these solutions is not an option as

industrial environments are subject to time constraints: for ex-

ample, some long-running applications in financial institutions

are run overnight, and their results are expected in the morning

in order to decide on the daily strategy to follow. Hence, FT

efficiency translates into little slowdown of applications during

failure-free time intervals. In case of failure, it translates into

little wasted work and short restart times.

Checkpointing is a widely spread FT technique which

consists in periodically saving the application state to sta-

ble storage. Following a failure, application execution is

interrupted and the most recent saved state is then used to

resume execution. This paper presents FTG, a specialized

framework derived from the MoLOToF programming model

[1]. MoLOToF aims to facilitate the development of effi-

cient parallel applications and their endowment with efficient

application-level checkpointing.

After covering related works (Section II), we describe the

MoLOToF programming model and the software architecture

of the FTG programming framework (Sections III and IV).

Ease of development is assessed through the use of FTG on

an existing industrial application for gas storage valuation

from EDF company (Section V). Finally, the efficiency of

the approach is evaluated experimentally (Section VI) before

concluding (Section VII).

II. RELATED WORKS

Existing FT research for message passing applications has

focused a lot on transparency. By combining a sequential

checkpointer (e.g.: BLCR [2], MTCP [3] . . . ) and some

rollback recovery (RR) protocol, it was possible to endow

existing MPI libraries such as OpenMPI [4] or MPICH [5]

with transparent FT or to provide more general solutions

such as DMTCP [6] for socket-based distributed applica-

tions. RR protocols ensure that individual checkpoints of

MPI processes remain consistent despite interdependencies

created by communications: they form a recovery line. Most

available solutions implement a so called blocking RR protocol

which “freezes” communications while a checkpoint is made.



MPICH-V [5] is the exception, for it implements several other

RR protocols. From our experience with the OpenMPI-BLCR

pair or DMTCP, such solutions yield bulky checkpoint files,

and are very sensitive to changes of the underlying runtime

system. As a result of including too much system-dependent

information, issues are often raised as the system is updated.

C3 [7] and CPPC [8] strive for similar levels of trans-

parency to the user, but at the application level. By leveraging

source-to-source compilers, source code of C/Fortran MPI

applications is automatically transformed such as the resulting

application can checkpoint and restart itself. Besides unbur-

dening the user from non-trivial source code transformations,

this approach benefits from high portability for it works at

the application level. Many legacy and recent applications

written in C/Fortran can benefit from this approach. However,

providing similar transformations is challenging for languages

such as C++ which is commonly used in many applications.

On the other end, FT can be tackled manually. Though not

clearly stated in the litterature, the manual approach to FT

is not unusual. Admittedly, the approach is tedious even with

the aid of third-party libraries (e.g.: TCS [9], SCR [10] check-

pointing libraries). Nevertheless, resulting FT is very efficient

and portable, and the user may improve it further based on

his knowledge of the application. For production applications,

the efficiency gained quickly outweighs the endeavour.

Finally, users can rely upon frameworks to achieve FT.

PUL-RD [11] and Cactus [12] are examples where users are

subject to some programming constraints in exchange of which

they benefit among others from FT. Compared to the previous

two approaches, frameworks also facilitate writing parallel

applications. As a framework, FTG shares similarities with

PUL-RD and Cactus as far as the parallelization model is

concerned. All three involve iterative calculations with two

array datastructures, swapped at the end of each iteration.

FTG supports applications with none-trivial distribution of

calculations among processes. It differs by relying on a specific

programming model for fault tolerance named MoLOToF. The

introduction of fault-tolerant skeletons yields an explicit struc-

turation of the application, which in turn provides a simple,

yet efficient, way to endow applications with FT. Hence, users

are led to “actively” interact with the framework. Our fault-

tolerant skeletons are inspired by the skeleton programming

approach, and are designed at lower level. Hence they should

be named “sub-skeletons” (or “low-level skeletons”). But for

simplicity, in the rest of this paper we call them “skeletons”.

III. MOLOTOF PROGRAMMING MODEL FOR FT

1 FT Skel
2 {
3 FT Loop
4 {
5 c a l c u l a t i o n s ( )
6 com m unica t ions ( )
7 c h e c k p o i n t ( )
8 }
9 }

Fig. 1: MoLOToF fault-

tolerant skeleton example.

MoLOToF (Model for Low-

Overhead Tolerance of Faults)

is a programming model geared

towards easing the development

of fault-tolerant parallel applica-

tions. MoLOToF relies (1) on a

peculiar structuring of the ap-

plication and (2) on establish-

ing collaborations through inter-

action functionalities between the programmer, the framework

and the underlying environment. To achieve these, MoLOToF

introduces the concept of fault-tolerant skeletons. The latter

are structured pieces of code endowed with fault-tolerant

properties. Usually, they are made of fault-tolerant loops each

of which has the ability to save and restore itself. As illus-

trated in fig. 1, a typical loop body contains calculation, and

possibly communication phases (l. 5-6). Checkpoint definition

(l. 7) within the loop allows to save calculations and related

application state.

A. Skeleton-based code structuring

Using fault-tolerant skeletons, the application is split into

two broad types of code operations: heavy and light operations.

Heavy operations correspond to time-consuming code. Such

code is usually found within calculation and communication

phases of a skeleton. Light operations designate every other

piece of code which is really fast to reexecute, and hence

not interesting to checkpoint. Such separation results in a

straightforward save/restore (checkpointing) mechanism based

on application reexecution. To illustrate the mechanics, let us

assume an application made of a single skeleton as the one in

fig. 1. As represented in fig. 2, the application comprises an

initialization phase, a skeleton and a cleanup phase.

Source code

Init Calc Comm Ckpt Cleanup[ [
i: 1..n

Fig. 2: Application source code representation.

During normal application execution (cf. Fig. 3), check-

pointing occurs whenever a checkpoint location and a check-

point condition are met. In our example, a checkpoint occurs

on the second iteration. Among saved data is the iterator’s

value (i.e.: 2). Consistency of individual checkpoints is ensured

by some adapted RR protocol. An application executes until

it quits gracefully or until a failure occurs. In our example it

fails somewhere during communications of the third iteration.

After the detection of a failure (cf. Fig. 4), the application

is restarted from its most recent recovery line: here, the check-

point taken at iteration 2. The application enters recovery mode

(cf. “restarting:true” in fig. 4). Namely, each process

restarts from the very beginning as in its initial run til it reaches

the checkpoint location where the checkpoint it is supposed

to restart from was achieved. During this course, only light

operations are reexecuted therefore resulting in fast restarts.

When reaching the appropriate checkpoint location, applica-

tion context is restored. To complete recovery, checkpoint file

contents are loaded back into the application, which can then

normally resume its execution: the application falls back into

normal execution mode (cf. “restarting:false” in fig.

4) and resumes with the third iteration.



Runtime

Calc Comm Ckpt[
i:1

restarting:false

Calc Comm

i:2

Calc Comm Ckpt

i:3

Ckpt

Achieve
checkpoint:
Save i:2,

etc.

Init

Failure

Fig. 3: Normal execution with checkpoint and failure.

B. Collaborations

To ease parallel programming, skeletons enclose a paral-

lelization paradigm and come usually as part of a special-

ized framework. Through their use, the programmer easily

develops his parallel application and installs checkpoint/restart

semantics in it. Further involvement of the user may be

required when checkpoints of fault-tolerant skeletons are not

“self-contained”. This means that their default contents do

not capture entirely the application state. The user has to

register as part of the checkpoint contents missing data in

order to capture the application state. When fault-tolerant

skeletons are self-contained, such action on behalf of the user

is unnecessary as far as correctness is concerned. However, it

is desirable in order to reduce the resulting checkpoint size and

hence improve checkpointing efficiency. Therefore, in order to

either constitute a consistent checkpoint or improve efficiency,

the programmer’s intervention may be needed. It makes all

the more sense as the programmer, knowing the application

semantics, may come up with smart choices.

Moreover, checkpoint efficiency may depend on the ex-

ecution environment characteristics over time. For example,

platforms under heavy load or aged platforms are more prone

to failures. Hence, it is important that the application is able

to adapt its fault tolerance based on external information.

To allow such interventions, FT skeletons come up with

additional functionality allowing the programmer to control

data which is enclosed in a checkpoint as well as setting

the checkpointing frequency. Such interaction is seen as col-

laboration between the framework and the programmer. The

other collaboration envisionned by MoLOToF lies between

the framework and the underlying middleware, and is fully

compatible with the spirit of fault-tolerant ecosystems such as

the Fault-Tolerant Backplane [13].

Runtime

Find

Recovery Line

+

Init
Ckpt[

i:1

restarting:true

Calc Comm Ckpt

i = i+1

i:3

{

Calc and Comm
omitted

Reload
checkpoint:
Load i:2,

etc.

restarting:false

{

Fig. 4: Recovery execution.

To date, two framework implementations following the

MoLOToF programming model exist. The first implementation

is a Javaspace-based Master-Worker framework [14] which

considers self-contained skeletons. The second implementation

is a framework named FT-SPMD [1] which targets a broad

family of SPMD applications named GReLoSSS (cf. Section

IV). FT-SPMD benefitted from several modifications in its

architecture and API which resulted in a seriously improved

version called FT-GReLoSSS (FTG for short) which is pre-

sented hereafter. Compared to [1] the framework architecture

is presented more in-depth and it is validated using an indus-

trial application (cf. Section IV).

IV. FTG PROGRAMMING FRAMEWORK

A. GReLoSSS computation model

The GReLoSSS (Globally Relaxed, Locally Strict

Synchronization SPMD) parallel computation model

encompasses SPMD applications consisting in a main

loop where each iteration (or superstep) contains a calculation

and a communication phase. Such applications follow globally

a classic BSP scheme [15]. However, these applications differ

from BSP in two ways:

1) to improve efficiency on big parallel architectures, algo-

rithms do not have a global synchronization between

supersteps: each process starts its next superstep as

soon as it has issued, but not necessarily completed,

all its communications. Hence, global synchronization

is relaxed as in the PRO model [16].

2) yet, to improve checkpointing efficiency, each process

completes all its communications before starting the

next superstep. Dependencies due to communications

between processes disappear and consistent checkpoint-

ing is facilitated. Hence, compared to PRO, GReLoSSS

has a locally strict synchronization which prevents over-

lapping of calculations with communications.

B. Application class supported by GReLoSSS and examples

The applications of the class supported by FTG (FT-

GReLoSSS) involve two array datastructures one of which

contains data used in the current superstep. The role of the

second one depends on the application. A domain decompo-

sition application such as Jacobi relaxations [17] will use that

datastructure to store new results at the current superstep. A

data circulation application such as in some parallel matrix

multiplication algorithms [1] will use it to receive data for the

next superstep from neighbouring processes.

During communications, processes exchange data corre-

sponding to initial data or to intermediary results. Commu-

nications between processes may be quite varied, yet, in most

cases, they are sufficiently foreseeable to be specified by the

programmer. For example, in a Jacobi relaxations application,

it consists in exchanging borders (or shadow regions) between



subdomains assigned to different processes. A subdomain

designates the subset of the entire domain which was assigned

to a process. Thus, a subdomain has the same datatype as array

datastructures. At the end of communications, the two array

datastructures are swapped.

Algorithms using two array datastructures (of 1 or more

dimensions) such as the ones described may seem restrictive.

But from our experience, they cover the needs of a fairly wide

class of applications.

C. Software architecture and features

FTG is a C++ framework implementing programming prin-

ciples described in MoLOToF. It is built on top of the MPI

specification which makes it compatible with every MPI

library. It provides a set of classes to ease the development

of fault-tolerant GReLoSSS parallel applications.

Relations between main FTG classes are depicted in fig. 5.

The ftg_Skel class represents a GReLoSSS skeleton and

comprises:

• a calculation kernel (cf. ftg_Calc_Kern) which pro-

vides the calculation method and the skeleton’s main

loop iterator. It is also possible to specify a condition

for communications achievement.

• a routing plan (cf. ftg_Routing_plan) which is re-

sponsible for determining and scheduling communication

exchanges between processes.

• a checkpoint (cf. ftg_Checkpoint) which sets the

location in the skeleton where checkpoints will be taken.

• two array datastructures (cf. ftg_Domain) as intro-

duced previously in the GReLoSSS computation model

(cf. Sections IV-A and IV-B).

ftg_Skelftg_Routing_plan

ftg_Checkpoint

ftg_Domain ftg_Domain_desc

ftg_Serializable

ftg_Domain2D ftg_Domain3D

ftg_Calc_Kernelftg_Cpr

1..*

0..1

2

<<static inheritance>>

1

2

1
1

Fig. 5: FTG UML class diagram

The source code excerpt of ftg_Skel class (cf. Fig.

6) shows how these abstractions are layed out within the

execute method. The resulting structure closely follows

the example skeleton in fig. 1. It differs in the existence of

conditional communications (l. 50-51) and the presence of a

swap method (l. 61) where the two datastructures exchange

their data according to the GReLoSSS computation model.

Condition has to be verified globally: all processes enter com-

munication phase or none. Notice the name prefixes: ftgu_

are user-provided (l. 29-30, 41, 44), ftg_ are framework

provided (l. 16), and ftgf_ are framework-provided based

on user-provided methods (l. 38).

Concerning FT, the GReLoSSS skeleton defines a check-

point right after the swap operation. By default, it contains

data internal to the skeleton such as the two datastructures and

skeleton iterators. ftg_Skel exposes to the programmer an

interface allowing him to control data to include in the check-

point. Furthermore, data which can be included in checkpoint

files has to be either a primitive C++ type or derived from

the framework’s ftg_Serializable class (cf. Fig. 5), in

which case the programmer has to provide a pair of save and

load methods. This approach was used within FTG to make

ftg_Domain and ftg_Domain_desc classes serializable.

The latter is a helper class which describes the extent of a

domain (or subdomain) along each dimension.

Upon instantiation of the skeleton, the user has to inform

the routing plan whether application communication consists

in borders exchanges or in circulating data. Aside from this,

he may choose among different communication schemes.

Currently, the routing plan integrates two schemes based on

the MPI_Issend-MPI_Irecv pair of MPI primitives. The

first scheme performs all communications in parallel, while

the second tries to “pace” them so that there is only a

limited amount of ongoing concurrent communications at a

time [18]. Concerning data movement, the routing plan groups

sparse data into contiguous large messages and also minimizes

copies from/to communication buffers by detecting ranges

of contiguous elements. This last feature proved useful in

applications where data to transfer is contiguous as it avoids

using intermediate buffers.

The calculation kernel is merely made of pure virtual

methods which the programmer has to define.

The array datastructure provides the programmer with an

interface to N-dimensional arrays enclosed in ftg_Domain.

When interfacing his own array datastructure (by inheriting

from ftg_Domain), the programmer provides information

regarding (1) the way the domain is split among processes

as well as (2) the way to access an element given its coor-

dinates (x1, x2, · · · , xn). Moreover, the programmer provides

information regarding the storage order. In 2D, C storage order

consists in storing the array line-wise, while a Fortran storage

order consists in storing the array column-wise. Storage order

generalizes in higher dimensions and can lead to more differ-

ent storages depending on the order of storing each dimension.

Since the interface proposed by ftg_Domain targets N -

dimensional domains, it manipulates a vector of coordinates

which can be inconvenient to the programmer in small

dimensions. It can also be less efficient. Therefore, FTG

proposes specific interfaces for dimensions 2 and 3 (resp.

ftg_Domain2D and ftg_Domain3D in fig. 5).

Finally, after splitting a domain among processes (cf. Fig.

7), any given element can be located either relative to the first

element of the entire domain or relative to the first element of



1 t emplate
2 <

3 c l a s s T numtype , / / Domain n u m e r i c a l t y p e
4 i n t N rank , / / Domain d i m e n s i o n
5 c l a s s T i t e r , / / Main loop i t e r a t o r t y p e
6 >

7 c l a s s f t g S k e l
8 {
9 p r i v a t e :

10 T i t e r i t ; / / Main loop i t e r a t o r ( user−d e f i n e d )
11 i n t s t e p ; / / Loca l i t e r a t o r
12
13 / / DOUBLE DATASTRUCTURE POINTERS
14 f tgu Dom ain t ∗ r e a d b u f f e r , ∗ w r i t e b u f f e r ;
15
16 f t g C h e c k p o i n t t c ; / / S k e l e t o n ’ s c h e c k p o i n t
17
18 bool i s c i r c u l a t i o n ; / / Communicat ion t y p e
19
20 p u b l i c :
21 / / C o n s t r u c t o r , D e s t r u c t o r and o t h e r methods
22 / / . . .
23
24 / / E x e c u t e s t h e s k e l e t o n .
25 vo id e x e c u t e ( vo id )
26 {
27 / / I n i t r o u t i n g p lan and i t e r a t o r s
28 r t = new f t g R o u t i n g p l a n t ( /∗ . . . ∗ / ) ;
29 T i t e r i t b e g = ck−>f t g u b e g ( ) ;
30 T i t e r i t e n d = ck−>f t g u e n d ( ) ;
31 T i t e r i t n x t ;
32 s t e p = 0 ;
33
34 / / MAIN LOOP
35 f o r ( i t = i t b e g ; i t != i t e n d ; i t = i t n x t ) {
36
37 / / CALCULATION PHASE
38 ck−>f t g f c a l c u l a t e ( r e a d b u f f e r , w r i t e b u f f e r ,
39 i t ) ;
40
41 i t n x t = ck−>f t g u n x t ( i t ) ;
42
43 / / CONDITIONAL COMMUNICATION PHASE
44 i f ( ck−>f t g u d o e x e c u t e r o u t i n g p l a n ( i t ) )
45 r t −>ft comms ( i t , i t n x t ) ;
46
47 / / CHECKPOINT PHASE
48 c . run ( s t e p + + ) ;
49
50 / / DATASTRUCTURES SWAP
51 swap ( ) ;
52 }
53 }
54 } ;

Fig. 6: FTG’s fault-tolerant skeleton.

Global ref.

(0,0)

P0 P1 P2

(0,0)

Local ref.

A[3][15]:

Global coord.: (1,8)
Local  coord.: (1,3)

Fig. 7: Global versus local array access.

the subdomain it belongs to (resp. Global ref and Local

ref in fig. 7). The first are called global coordinates while

the second are called local coordinates.

FTG allows the programmer to use either of them without

any further involvement. Access through local coordinates is

preferable since it is faster, but it is not always the most

convenient. Using global coordinates incurs a slight overhead

due to an additional offset computation.

From a design standpoint, the use of dynamic polymorphism

(through classic inheritance) is sufficient. However, since array

access methods are often used, the resulting overhead is

tremendous. That is why FTG relies also on static poly-

morphism, and more specifically on the Curiously Recurring

Template Pattern (CRTP) [19].

In the following section, we decribe the Swing application

and the steps to interface it efficiently with FTG.

V. Swing FINANCIAL APPLICATION MIGRATION

Due to house heating, demand in gas is higher in winter

than in summer. Gas is mainly provided by pipes that cannot

deliver more than a specific amount of gas per day and it

results in far higher gas prices in winter. In order to provide

energy to their customers, gas market actors have to own some

storages that can help them smooth peak demand. In order to

assess a project’s rentability, gas companies can use a financial

real option approach that can be implemented in a software.

A. Swing application goal and implementation

The Swing application is used at EDF company to valuate

a gas storage facing the energy market. It aims at giving the

average cash flow generated by the asset depending on some

prices scenario. It also gives the management and hedging

strategies [20]. These calculated strategies are used in a second

application simulating the way the storage is used. This second

application gives some cash flow distributions obtained by the

storage management. While the time needed for the second

application is short, the swing valuation can be very costly

depending on the price models used to generate scenarios. The

price models used at EDF for this software are a gaussian one-

factor model (g), a normal inverse gaussian model (nig), and a

two-factor gaussian model (g2d) [21]. The resolution method

for the Swing application is the dynamic programming method

that has been written in C++ and uses MPI for parallelization

following the methodology in [18]. It also makes extensive

use of the Blitz library for its convenient array manipulation

facilities [22], and is about 18380 logical lines of code.

From an algorithmic standpoint, the Swing application fits

perfectly the GReLoSSS computation model. While being a

domain decomposition application, it is more complex than

classic Jacobi relaxations. Indeed, over supersteps:

• calculations involve a subdomain of the entire calculation

domain; that subdomain may change;

• shadow regions between processes have no fixed extent

and may change as well.

To interface the existing application with FTG, we follow

some typical development steps which are described hereafter

and summarized in fig. 8.

B. Development workflow

As part of the typical development steps, we have to inherit

from ftg_Calc_Kern to define a calculation kernel:

t emplate <c l a s s T numtype , i n t N rank , c l a s s T i t e r>
c l a s s Swing :

p u b l i c f t g C a l c K e r n e l <T numtype , N rank , T i t e r ,
Swing Domain>

{ }



ftg_Domain2Dftg_Domain_desc

ftg_Cpr

Swing_DomainSwing

main

ftg_Calc_Kernel

ftg_Skel

Gas_storage_asset

Gas_storage_price

2

<<uses>>

<<uses>> <<uses>>

<<uses>>

1 1
<<uses>>

Fig. 8: Swing application within FTG.

and also to inherit from one of the available ftg_Domain

classes to define the calculation domain:

t emplate <c l a s s T numtype , i n t N rank , c l a s s T i t e r>
c l a s s Swing Domain :

p u b l i c ftg Domain2D<T numtype , N rank , T i t e r ,
Swing Domain>

/ / i m p l e m e n t s C u r i o u s l y R e c u r r i n g Templa te P a t t e r n
{ }

When inheriting from ftg_Calc_Kern we provide the

calculation method:

vo id f t g u c a l c u l a t e ( f tgu Dom ain t ∗d1 ,
f tgu Dom ain t ∗d2 ,
T i t e r s t e p ) ;

the main loop calculation iterator:

T i t e r f t g u b e g ( vo id ) ;
T i t e r f t g u e n d ( vo id ) ;
T i t e r f t g u n x t ( T i t e r ) ;

and a method which tells when to achieve communications:

bool f t g u d o e x e c u t e r o u t i n g p l a n ( T i t e r s t e p ) ;

When inheriting from one of the available ftg_Domain

classes, we have to define two so called partition methods:

f tg Domain desc<N rank>
f t g u d a t a p o s s e s s e d d e f ( i n t rank , i n t numprocs ,

i n t s t e p )
f tg Domain desc<N rank>

f t g u d a t a n e e d e d d e f ( i n t rank , i n t numprocs ,
i n t s t e p )

which tell what data is owned and what is needed by each

process at each superstep. In an application with borders

exchange, such as the Swing application, data owned is a

subset of the data needed.

Moreover, we have to define a method telling the framework

how to resize a domain:

vo id f t g u r e s i z e ( T inyVecto r<in t , N rank> &e x t e n t )

and some methods on how to access any element or retrieve

its memory address, given its local coordinates:

double f t g u l g e t ( i n t lx , i n t l y )
vo id f t g u l s e t ( i n t lx , i n t ly , double e )
double∗ f t g u l g e t A d d r ( T inyVecto r<in t , N rank> &l c o o r d )

The resize method is not relevant to every application. Yet,

in the case of Swing, it is interesting as subdomains attributed

to each process and subdomains sizes vary across the course

of an execution. Leveraging this feature, FTG can optimize

memory management. The resize, the partition and the local

access methods which the user provides (ftgu_ prefix) are

used to build the routing plan. The “ftg_Domain*” classes

also use local access methods to implement the global access

methods they provide the user with.

Finally, the application’s main function consisted in in-

stantiating a calculation kernel and using it to initialize and

execute the GReLoSSS skeleton. The corresponding source

code has to be enclosed between the initialization and finaliza-

tion statements of the framework provided by the ftg_Cpr

(Checkpoint recovery) singleton class (cf. Fig. 8). The last

step consists in choosing relevant checkpoint data. In partic-

ular, we unregister from the checkpoint the Domain which is

useless at the end of the iteration, and register some application

specific data which is not restored upon recovery (by mere

reexecution), and hence has to be saved.

C. Ease of development assessement

The definition of the calculation method within our Swing

calculation kernel involves the reuse of calculation func-

tions in Gas_storage_price, and access to data in

Gas_storage_asset (cf. Fig. 8). Both classes stem from

the original Swing application. Similarly, partition methods in

our Swing_Domain class require access to data and code

reuse from Gas_storage_asset.

The calculation and partition methods are usually the most

time-consuming to write. Especially the partition methods,

which are prone to error due to indexes. Since compati-

ble partition functions already exist in the original paral-

lel Swing application, it is a matter of adapting them to

use ftg_Domain_desc type to describe subdomains. The

same applies for the calculation method, but some pieces of

code have to be rewritten to use the accessors provided by

ftg_Domain instead of those provided by Blitz Arrays. In

the process, the interface of Swing_Domain was enriched

to allow efficient and convenient access to ranges of data.

Another challenge we encountered concerned efficiency. In

particular, partition methods have to be really fast as they

are often called by the framework either to access elements

through global coordinates or to build the routing plan.

In the end, the full fault-tolerant Swing application with

FTG is about 353 logical lines of code less than the original

application. Provided we are careful, the resulting application

displays a clean and simple design as shown in fig. 8.

Moreover, the application is fault-tolerant and the programmer

has less lines of code to write. As shown in the next section,

performance is as good as without FTG, sometimes slightly

better.

VI. PERFORMANCE EXPERIMENTS

The evaluation of FTG consists in a comparison with the

popular OpenMPI (OMPI) library which implements a block-

ing checkpoint protocol in combination with BLCR. OMPI

applications benefit from a system-level checkpoint/restart

solution. Experiments led, assess FTG and OMPI perfor-

mances without and with FT enabled. When FT is enabled,

checkpoints are taken, and we consider application runtimes

in the failure-free case and recovery times otherwise. We also

consider checkpoint size reduction and their impact on runtime

overhead.

In these experiments, we consider temporary crash failures

of nodes which can be dealt with by having both FTG and
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Fig. 10: Checkpoint sizes comparison under the g2d model.

OMPI store checkpoints locally to each node (i.e.: /tmp).

Also, this setting avoids disrupting measurements due to addi-

tional communications resulting from significant data transfer

across the network.

A. Testbed description

Experiments were led on the Intercell cluster hosted at

SUPELEC. Intercell features 256 nodes running on 64-bit

Fedora Core 8 and inteconnected through a CISCO 6509
Gigabit Ethernet switch. Each node has an Intel Xeon-3075

dual-core processor (i.e.: a total of 512 cores) and 4 GB of

RAM. However, experiments were run with one process per

node. Benchmarks applications use OpenMPI 1.5.3 and were

compiled with g++ 4.1.2 compiler and −O3 optimization flag.

B. Runtime overheads comparison in absence of checkpoints

Fig. 9 shows that FTG exhibits negligible to no overhead for

the g2d price model, and scales well up to 256 nodes where

it performs better than the application not using FTG. Similar

results were observed for the g and nig price models.

C. Checkpoint size

Checkpoint size is dominated by the size of the two array

datastructures used for parallelization. Since at the end of a

superstep, the input data is useless, it can be omitted from the

checkpoint. This optimization results in checkpoint sizes per

node twice as light compared to system-level checkpoints (cf.

Fig. 10). The same can be observed for the g and nig models.

These models require less memory and result in checkpoints

size ranging between 20 MB and several kilobytes with FTG

compared to 40 MB et 7 MB for OMPI BLCR. In what follows,

we focus on the g2d model: its’ long runtimes make it a good

candidate for FT.

D. Fault tolerance performance without failures

For this experiment, we have run both versions of our

application with the g2d model and different number of

checkpoints: the lengthier the benchmark the more checkpoints

were achieved in order to minimize the wasted amount of

time in case of failure. In the present experiments we set

the maximum allowed wasted amount of time to 4 minutes.

Fig. 11 reports the runtimes on 128, 64 and 32 nodes. The

plots compare OMPI with BLCR and FTG. In the latter’s

case we measured runtimes without and with checkpoint size

optimization in an attempt to quantify the impact of checkpoint

size reduction. The difference remains marginal (0− 3%) and

is the highest with the biggest checkpoint sizes as the ones

involved on 32 nodes. The difference is expected to grow

further with bulkier checkpoint files. The remaining overhead

observed with OMPI-BLCR ranges between 6% and 40%.

Overhead incurred by FTG is always lower and does not

exceed 8% in all cases. OMPI-BLCR’s overhead is mainly

attributed to its blocking checkpoint protocol [4], which, unlike

FTG’s protocol, involves communications and “freezes” the

application execution in order to checkpoint.

E. Recovery overhead

Recovery from a checkpoint comprises (1) a negotiation

phase where processes decide from which recovery line to

recover, followed by a (2) context recovery phase, and fi-

nally (3) a recovery from checkpoint file phase (i.e.: time

to load data). Measured negotiation phase time is negligible

(< 10ms). Context recovery phase is small as well. Overall

recovery time from a checkpoint is rather small as it does not

exceed 1s for the g2d model on 128, 64 and 32 nodes. Thus,

fast restarts combined with the low-overhead checkpointing

pointed out earlier make FTG suited for applications with time

constraints.

VII. CONCLUSION AND PERSPECTIVES

Endowing parallel applications with efficient checkpoint-

based FT at the application level can be a tedious task

which adds up to the existing difficulties of parallelization.

Our approach based on the MoLOToF programming model

introduces fault-tolerant skeletons and results in a tractable

way for users to endow efficient fault tolerance into their

applications. Moreover, combined with a specialized frame-

work, MoLOToF eases parallel programming, and encourages

a synergy between the user, the framework and the runtime

environment to improve FT efficiency. MoLOToF is applied to

the GReLoSSS family of applications which we characterized

in this paper. The application of the resulting FTG framework

to an industrial application of EDF company showed that

initial development with FTG involved simple steps and points

out some elements to watch in order to minimize runtime

overhead. Finally, experiments show the effectiveness of the

overall approach and especially the efficiency of FT. For the

same number of checkpoints achieved, FTG yields smaller

checkpoint sizes than OMPI-BLCR and incurs at most 8%
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Fig. 11: Runtimes comparison under the g2d model when
increasing number of achieved checkpoints.

runtime overhead. Recovery from achieved checkpoints ex-

hibited negligible overheads. These results confirm previous

ones we achieved on more elementary but varied benchmark

applications [1].

Many principles of MoLOToF were used in the design of

FTG. But some of them, such as the integration with fault-

tolerant ecosystems, still have to be integrated and experi-

mented with. Moreover, due to its inherent portability, the

approach appears viable for hybrid GP-GPU applications. FTG

might further be extended to support other parallelization

models such as asynchronous distributed iterative algorithms.

Future works are planned along the aforementioned lines.

ACKNOWLEDGMENT

This research is partially supported by Region Lorraine.

REFERENCES

[1] C. Makassikis, V. Galtier, and S. Vialle, “A Skeletal-Based Approach
for the Development of Fault-Tolerant SPMD Applications,” in Proceed-

ings of the 11
th International Conference on Parallel and Distributed

Computing, Applications and Technologies (PDCAT), 2010.
[2] P. H. Hargrove and J. C. Duell, “Berkeley Lab Checkpoint/Restart

(BLCR) for Linux Clusters,” in Proceedings of SciDAC, 2006.
[3] M. Rieker, J. Ansel, and G. Cooperman, “Transparent User-Level Check-

pointing for the Native Posix Thread Library for Linux,” in PDPTA,
2006, pp. 492–498.

[4] J. Hursey, J. M. Squyres, T. I. Mattox, and A. Lumsdaine, “The Design
and Implementation of Checkpoint/Restart Process Fault Tolerance for
Open MPI,” in Proceedings of the 21st IEEE International Parallel and

Distributed Processing Symposium (IPDPS), 2007.
[5] A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier, and F. Cappello,

“MPICH-V: a Multiprotocol Fault Tolerant MPI,” International Journal

of High Performance Computing and Applications, vol. 20, no. 3, pp.
319–333, 2006.

[6] J. Ansel, K. Aryay, and G. Cooperman, “DMTCP: Transparent check-
pointing for cluster computations and the desktop,” in Proceedings of

the 23rd IEEE International Symposium on Parallel and Distributed

Processing (IPDPS), 2009.
[7] G. Bronevetsky, R. Fernandes, D. Marques, K. Pingali, and P. Stodghill,

“Recent Advances in Checkpoint/Recovery Systems,” Proceedings of

the 20th International Parallel and Distributed Processing Symposium

(IPDPS), 2006.
[8] G. Rodrı́guez, M. J. Martı́n, P. González, J. Touriño, and R. Doallo,
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