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Zonotopic Set-Membership Estimation for Interval Dynamic Systems

V.T.H. Le, T. Alamo, E.F. Camacho, C. Stoica and D. Dumur

Abstract— This paper presents an improved method for
guaranteed state estimation of discrete-time linear-time varying
systems affected by disturbances, noises and structured uncer-
tainties modeled as interval uncertainties. Under the hypothesis
that the disturbances and the noises are bounded, a zonotopic
outer approximation of the state estimation domain is computed
offering good performance and low complexity compared to
the existing methods. The size of this zonotope is decreased by
solving an off-line optimization problem. The advantages of the
proposed approach are illustrated via a numerical example.

I. INTRODUCTION

In the context of control systems theory, the system
state is necessary to solve many control problems such as
implementation of a feedback control or system diagnosis.
Consequently, estimating the state of a dynamic system
using available measurements is an important issue. The
state estimation can be formulated as follows. Under the
hypothesis of a mathematical model of a real dynamical
process with some noisy measurements, the state of the
real process has to be estimated. This can be generally
difficult and time consuming as mathematical models are
never perfect representations of real plants and the available
measurements do not provide perfect data due to existing
noises or sensors’ limitations. In the literature, the approach
of Kalman filter [1] appeared very early (from the 1960s)
and it is still a widely applied technique. It is based on
some probabilistic assumptions about the perturbations and
the noises. The state estimation is done by minimizing the
error variance. However these assumptions are sometimes
not realistic and difficult to validate.

Another approach is the set-membership [2] or worst-case
estimation. In the last 50 years, it has received increased
attention from control researchers [3], [4], [5], [6] [7],
[8], [9], [10]. Set-membership estimation relies on the as-
sumption of unknown but bounded perturbations and noises
without considering any other hypotheses on the distribution
of perturbations and measurement noises. The state estima-
tion set is characterized as a compact set containing all
possible system states that are consistent with the uncertain
system and the measurement noise. Similar to Kalman filter,
this approach consists in 3 steps: the prediction step, the
measurement step and the update or correction step. Using
set-membership estimation approach results in a trade-off
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between the computation load and the size of the set. In order
to exactly represent the domain of variation for the system
state in a linear formulation, polytopes can be successfully
used for a reasonable number of vertices of the polytopes
[5]. In order to reduce the complexity due to a large number
of vertices, ellipsoids [11], [8] has been firstly used to
represent the estimation set, sometimes with a significant
loss of performance. To improve the performance compared
to ellipsoids and to reduce the computation time compared
to polytopes, the representation by zonotopes is further used
in this paper. Contrary to ellipsoids, the Minkowski sum of
two zonotopes is a zonotope, this property being very useful
in the prediction step of the state estimation. In addition,
zonotopes can represent uncertainties independently in each
direction of the state-space being a suitable solution for
the elimination of the wrapping effect [12]. The state-space
domain is represented by zonotopes in many applications
such as: reachability analysis [13], [10], collision detection
[14], states estimation [7], [9] and fault diagnosis [15], [16].

Most of the works cited above solve the problem for
a known plant model dealing with uncertainties related to
state perturbations and measurement noises. [8] dealt with
model uncertainties using a conservative assumption of the
relation between the matrix uncertainty and perturbation.
In our paper, the problem of state estimation of dynamic
systems with interval uncertainties will be considered by
using zonotopes. An interval dynamic system [17], [18] is
defined as a system where the exact values of its parameters
are unknown but bounded by some intervals.

The main contribution of this paper is a new approach
to determine the state estimation for dynamic systems with
interval uncertainties. This is an extended and improved
version of the method presented in [19] for interval dynamic
systems. In order to improve the results in [19] a bisection
algorithm is added to obtain the best approximation of the
guaranteed state set. The proposed method is also generalized
for multivariable systems with interval uncertainties. The
proposed approach allows to move most of the on-line com-
putation in the existing approaches [7], [9] by solving off-
line a Linear Matrix Inequality (LMI) optimization problem.
The on-line computation time (singular value decomposition
in [7], convex optimization in [9]) is considerably reduced
and a reasonable performance of the state estimation set is
obtained in comparison to existing approaches (e.g. [9]).

The paper is organized as follows. Section II reminds some
basic definitions and properties of zonotopes that will be
used along this paper. In Section III, the class of dynamical
systems with interval uncertainties is defined. The next
section presents the new approach to compute an outer bound



of the state estimation by zonotopes for systems with interval
uncertainties. In Section V, an example is proposed in order
to show the advantages of the developed algorithm. Finally,
some concluding remarks and perspectives are presented.

The following notations will be used throughout the paper:
• An interval: I = [a, b] , {x : a ≤ x ≤ b} with its

center mid(I) = a+b
2 and its radius rad(I) = b−a

2 ;
• A unitary interval: B = [-1,1];
• The set of real compact intervals [a, b]: I, with a, b ∈ R

and a ≤ b;
• A box: ([a1, b1], ..., [an, bn])T , which is an interval

vector;
• A unitary box in Rm: Bm, which is a box composed

by m unitary intervals;
• An interval matrix: [M ] ∈ In×m, which is a matrix

whose elements are intervals. It means that each element
Mij , with i = 1, ..., n and j = 1, ...,m, of this matrix
is defined as Mij = {mij : aij ≤ mij ≤ bij}. In the
matrix space, this interval matrix is a hyper-rectangle
and hence a convex set;

• The set of all vertices of the interval matrix [M ]:
vert([M ]), which denotes the set of all matri-
ces S = [sij ] such that sij = aij or sij = bij for all
i = 1, ..., n and j = 1, ...,m;

• The center of an interval matrix [M ]:
mid([M ])ij =

aij+bij
2 , i = 1, ..., n and j = 1, ...,m;

• The radius of an interval matrix [M ]: rad([M ])ij =
bij−aij

2 , i = 1, ..., n and j = 1, ...,m;
• The Minkowski sum of two sets X and Y :
X ⊕ Y , {x+ y : x ∈ X, y ∈ Y };

• A strip: S , {x ∈ Rn : |cTx − d| ≤ σ}, with c ∈ Rn
and d, σ ∈ R+;

• A positive (resp. negative) definite matrix: M � 0 (resp.
M � 0);

• The ”row sum” diagonal matrix of a matrix M ∈ Rn×m
[7]: rs(M) = diag(m̃ii), with m̃ii =

∑m
j=1 |mij |,

i = 1, ..., n.

II. FUNDAMENTAL DEFINITIONS AND PROPERTIES

This section reminds some basic definitions and properties
of zonotopes which are necessary to understand the concepts
developed in this paper.

A zonotope is a convex symmetric polytope. A zonotope
of order m in Rn can be defined as the linear image of a
m-dimensional hypercube in Rn. The order m is a measure
of the geometrical complexity of the zonotope. Given a
vector p ∈ Rn and a matrix H ∈ Rn×m, a m-zonotope
in Rn is defined as Z = p⊕HBm = {p+Hz : z ∈ Bm}.
This is the Minkowski sum of the m-segments defined by m
columns of matrix H in Rn.

The P -radius of a zonotope Z = p⊕HBm is defined as
L = max(‖z − p‖2P ), with z ∈ Z. This notion is related to
the ellipsoid (x− p)TP (x− p) ≤ 1.

Property 1: ([7]) Given two centered zonotopes
Z1 = H1Bm1 ∈ Rn and Z2 = H2Bm2 ∈ Rn, the
Minkowski sum of two zonotopes is also a zonotope defined
by Z = Z1 ⊕ Z2 =

[
H1 H2

]
Bm1+m2 .

Property 2: ([7]) The image of a centered zonotope
Z1 = H1Bm1 ∈ Rn by a linear application K can be com-
puted by a standard matrix product K · Z1 = (K ·H1)Bm1 .

Property 3: (Zonotope reduction) ([7], [9]) Given the
zonotope Z = p ⊕ HBm ∈ Rn and the interger s with
n < s < m, denote Ĥ the resulting matrix after reordering
the columns of the matrix H =

[
h1...hi...hm

]
in decreas-

ing order of Euclidean norm (Ĥ =
[
ĥ1...ĥi...ĥm

]
with

‖ĥi‖2 ≥ ‖ĥi+1‖2). Define the matrix ĤT obtained from the
first s− n columns of matrix Ĥ and the matrix ĤQ the rest
of the matrix Ĥ . Then the following inclusion is obtained
Z ⊆ p⊕

[
ĤT rs(ĤQ)

]
Bs.

This property is used in the Section IV allowing to
estimate a high-order zonotope by a lower-order zonotope.

Property 4: (Zonotope inclusion) ([9]) Consider a family
of zonotopes represented by Z = p⊕ [M ]Bm where p ∈ Rn
is a real vector and [M ] ∈ In×m is an interval matrix. A
zonotope inclusion (denoted ♦(Z)) is an outer approximation
of this family which is defined by:

♦(Z) = p⊕
[
mid([M ]) rs(rad([M ]))

]
Bm+n (1)

Property 5: Given an interval matrix [M ] ∈ In×p
and a real matrix N ∈ Rp×q , the center and the
radius of the interval matrix defined by the product
[M ]N are given by mid([M ]N) = mid([M ])N and
rad([M ]N) = rad([M ])|N |, where |N | designates the ab-
solute value of each element of N .

Property 6: An interval vector [c] ∈ In is defined by the
zonotope [c] = mid([c])⊕ rs(rad([c]))Bn.

III. PROBLEM FORMULATION

Consider the following linear discrete time variant system
of the form: {

xk+1 = Akxk + ωk
yk = cTxk + vk

(2)

where xk ∈ Rn is the state of the system, yk ∈ R is the
measured output at sample time k. The vector ωk ∈ Rnω

represents the state perturbation vector and vk ∈ R is the
measurement perturbation (noise, offset, etc.). The matrix
Ak is unknown but belongs to a Schur stable interval matrix
[A] (all matrices in the interval matrix [A] are Schur stable)
[20], [21]. This assumption is not conservative because in
many applications the matrix Ak is given by a closed-loop
matrix Ãk+B̃kK, where Ãk, B̃k are the open-loop matrices
with Ãk, resp. B̃k belonging to the interval matrices [Ã],
resp. [B̃]. The stabilizing controller gain K can be computed
by solving a LMI problem [22]. It is assumed that the
uncertainties and the initial state are bounded by zonotopes:
ωk ∈W, vk ∈ V and x0 ∈ X0. To simplify the computation,
the center of W and V are assumed to be the origin. Note that
if this assumption is not satisfied, a change of coordinates
can be used. From the definition of a zonotope, W and V can
be written as W = FBnω and V = σB1, with F ∈ Rn×nω

and σ ∈ R+. With these notations, the consistent state set
and the exact uncertain set are defined as follows.



Definition 1: Given the system (2) and a measured out-
put yk, the consistent state set at time k is defined as
Xyk = {x ∈ Rn : |cTx− yk| ≤ σ}.

Definition 2: Consider the system (2). The exact uncertain
state set Xk is equal to the set of states that are consistent
with the measured output and the initial state set X0:
Xk = (Ak−1Xk−1 ⊕ FBnω ) ∩Xyk , for k ≥ 1.

Remark 1: The computation of the exact uncertain state set
is a difficult task. In the literature, this set is approximated
by using different geometrical forms such as polytopes,
parallelotopes, ellipsoids or zonotopes. In this paper, due
to its properties, a zonotopic outer approximation will be
determined using the following algorithm which is similar
to the Kalman filter. Suppose the state at instant k − 1 is
known to belong to the zonotope X̂k−1 and the measured
output yk at instant k is available.

Algorithm 1
1) Prediction step. Given the system (2), compute a

zonotopic set X̄k that offers a bound for the uncer-
tain trajectory of the system by using the zonotope
inclusion.

2) Measurement. Compute the consistent state set Xyk by
using the measurement yk. According to the assump-
tion on vk this set can be represented by a strip as
Xyk = {x ∈ Rn : |cTx− yk| ≤ σ}.

3) Correction step. In order to find the state estimation
set, compute an outer approximation X̂k of the inter-
section between Xyk and X̄k.

To obtain a zonotope bounding the uncertain trajectory of
the system, Properties 1 and 2 are used. The complexity of
this zonotope is limited (from Property 3). To compute the
intersection set from step 3, an optimization problem will be
solved as detailed in the next section.

IV. GUARANTEED STATE INTERSECTION FOR SYSTEMS
WITH INTERVAL UNCERTAINTIES

This section states the main result of this paper. In the last
step of Algorithm 1, the intersection between the zonotope
X̄k and the strip Xyk is approximated by an outer family of
zonotopes (parameterized by a vector λ). This is resumed by
the following property.

Property 7: ([9]) Given a zonotope X = p⊕HBr ⊂ Rn,
a strip S = {x ∈ Rn : |cTx − d| ≤ σ}
and a vector λ ∈ Rn. Define a parametrized vector
p̂(λ) = p+ λ(d− cT p) ∈ Rn and a parametrized matrix
Ĥ(λ) = [(I − λcT )H σλ] ∈ Rn×(m+1). Then the following
expression holds X ∩ S ⊆ X̂(λ) = p̂(λ)⊕ Ĥ(λ)Br+1.

In [9], there exist two methods for choosing λ, that are
based either on the minimization of the segments of the
zonotope or on the minimization of the volume of the
intersection. The first approach results in a fast computation
but with a loss of performance for the estimation, while the
second approach offers more accurate results but increases
the computation time because an optimization problem must
be solved at each sampling time.

This section proposes a new approach (which is the main
contribution of this paper) offering a good trade-off between

performance and computation time. A different criterion
based on the minimization of the P-radius of a zonotope
is used to compute the vector λ from Property 7 in order to
combine the advantages of the two mentioned methods.

Denote an outer approximation of the state set
X̂k = p̂k ⊕ ĤkBr at the time instant k and the measured
output yk+1 at the instant k+ 1. Then the predicted state set
at the next time instant X̄k+1 can be computed using (2),
Property 1 and Property 2:

X̄k+1 = Akp̂k⊕
[
AkĤk F

]
Br+nω = p̄k+1⊕ H̄k+1Br+nω

(3)
An outer approximation of the intersection (the exact

estimation set) between the predicted state set and the strip
(which represents the measured output) can be computed
based on Property 7. This leads to:

X̂k+1(λ) = p̂k+1(λ)⊕ Ĥk+1(λ)Br+nω+1 (4)

with the parametrized vector p̂k+1(λ) = Akp̂k +
λ(yk+1 − cTAkp̂k) and the parametrized matrix
Ĥk+1(λ) =

[
(I − λcT )

[
AkĤk F

]
σλ
]

at the next
time instant k + 1.

The idea is to compute a symmetric positive definite
matrix P = PT � 0 and a vector λ such that the P -radius of
the zonotopic state estimation set is decreased. This means
that the zonotopic state estimation set is contracted in time.

Denote the P -radius of the state estimation set at instant
k as Lk = max(‖x− p̂k‖2P ) or Lk = maxz β‖Ĥkz‖2P . This
condition can be expressed in a mathematical formulation as
follows:

Lk+1 ≤ βLk + max
ω
‖Fω‖22 + σ2 (5)

or this is equivalent to:

max
ẑ
‖Ĥk+1ẑ‖2P ≤ max

z
β‖Ĥkz‖2P + max

ω
‖Fω‖22 + σ2 (6)

with ẑ =

zω
η

 ∈ Br+nω+1, z ∈ Br, ω ∈ Bnω , η ∈ B1, and

β ∈ [0, 1).
Using the explicit form of ẑ, the following expression is

a sufficient condition to satify the expression (6) (reverse
triangle inequality):

max
z,ω,η

(‖Ĥk+1

zω
η

 ‖2P − β‖Ĥkz‖2P − ‖Fω‖22 − σ2) ≤ 0 (7)

Then (7) is equivalent to:

ẑT ĤT
k+1PĤk+1ẑ−βzT ĤT

k PĤkz−ωTFTFω−σ2 ≤ 0 ∀ẑ
(8)

Define η ∈ B1 so that ‖η‖∞ ≤ 1. As a consequence,
the following inequality is true σ2(1− η2) ≥ 0. Adding this
term to the left hand size of (8) leads to a sufficient condition:

ẑT ĤT
k+1PĤk+1ẑ − βz̃T ĤT

k PĤkz̃ − ω̃TFTFω − σ2+

+ σ2(1− η2) ≤ 0 (9)



This is equivalent to:

ẑT ĤT
k+1PĤk+1ẑ − βzT ĤT

k PĤkz − ωTFTFω − σ2η2 ≤ 0
(10)

With the notation θ = Ĥkz ∈ Rn×1, a matrix formulation
of the inequality (10) is the following:θω

η

T A11 A12 A13

∗ A22 A23

∗ ∗ A33

θω
η

 ≤ 0, ∀

θω
η

 6= 0 (11)

with the symbol ’*’ used for the corresponding transposed
terms and the additional notations:



A11 = ((I − λcT )Ak)TP ((I − λcT )Ak)− βP
A12 = ((I − λcT )Ak)TP (I − λcT )F
A13 = ((I − λcT )Ak)TPσλ
A22 = ((I − λcT )F )TP (I − λcT )F − FTF
A23 = ((I − λcT )F )TPσλ
A33 = σ2λTPλ− σ2.

(12)

Using the definition of a positive-definite matrix, the ex-
pression (11) is equivalent to the following matrix inequality:A11 A12 A13

∗ A22 A23

∗ ∗ A33

 � 0, ∀

θω
η

 6= 0 (13)

which is further equivalent to:−A11 −A12 −A13

∗ −A22 −A23

∗ ∗ −A33

 � 0, ∀

θω
η

 6= 0 (14)

Let vert([A]) be the set of all vertices of [A]. As [A]
is a convex set, if (14) is true on each vertex of [A], then
it is true for all Ak ∈ [A]. This is a generalization of the
technique in [19] where a fixed known matrix A is considered
instead of Ak. Using the explicit notations (12) and doing
some manipulations in (14) lead to a BMI (Bilinear Matrix
Inequality) problem:βP 0 0

∗ FTF 0
∗ ∗ σ2

−
−

 (STi − STi cλT )P
(FT − FT cλT )P )

λTPσ

P−1
 (STi − STi cλT )P

(FT − FT cλT )P )
λTPσ

T � 0

(15)

where Si, i = 1, ..., 2q are the vertices of the interval
matrix [A] and q is the number of interval elements of [A].

Applying the Schur complement [23], it is equivalent to
the following BMI:

βP 0 0 STi P − Si
T cY T

∗ FTF 0 FTP − FT cY T
∗ ∗ σ2 Y Tσ
∗ ∗ ∗ P

 � 0 (16)

with β, P and λ as decision variables.

As the 2-norm is a convex function and W is a convex
set the constant term const = maxω ‖Fω‖22 can be easily
computed. Then the condition (6) can be written as Lk+1 ≤
βLk + const+ σ2, which at infinity is equivalent to:

L∞ = βL∞ + const+ σ2 (17)

or even

L∞ =
σ2 + const

1− β
(18)

Consider now an ellipsoid {x : xTPx ≤ σ2+const
1−β }

or the normalized ellipsoid {x : xT (1−β)P
σ2+constx ≤ 1}. To

minimize the P -radius (which is L∞) of the zonotope, the
ellipsoid with the smallest diameter must be found ([23]).
This is equivalent to solve an EVP (eigenvalue problem).
The following algorithm synthesizes this problem.

Algorithm 2
Using the bisection algorithm [24], find the smallest value
of β ∈ [0, 1) such that the following optimization problem
is feasible:

max
τ,P,Y

τ

subject to the LMIs:

(1−β)P
σ2+const � τI, τ > 0
βP 0 0 STi P − Si

T cY T

∗ FTF 0 FTP − FT cY T
∗ ∗ σ2 Y Tσ
∗ ∗ ∗ P

 � 0,∀i = 1, ..., 2q

(19)
with the change of variable Y = Pλ. The decision variables
are: P = PT ∈ Rn×n, Y ∈ Rn and τ ∈ R. The total number
of scalar decision variables is n(n+1)

2 + n+ 1 = n2+3n+2
2 .

Note that this LMI optimization problem is solved off-line
allowing to reduce the overall computation time compared
to the algorithms developed in [9]. Moreover, in order to
decrease the domain complexity, a reduction step based on
Property 3 is implemented to approximate the obtained high-
order zonotope by a lower-order zonotope. In addition, to
reduce the computational complexity when dealing with high
order interval matrices, the methods developed in [22] can
be used.

To summarize, the guaranteed state estimation using the
P-radius minimization can be implemented in two phases.
Firstly, an optimal value of vector λ is computed using
Algorithm 2. Secondly, for k = 1, ..., N iterations, Algorithm
1 is implemented to compute the zonotopic state estimation
set introducing the value of λ into the correction step of
Algorithm 1. Note that after computing the vector λ, the
decrement speed depends only on the matrix Ak. The bisec-
tion algorithm is used to obtain the smallest value of β which
allows that the guaranteed state estimation set decreases
quickly and has a better performance in comparison to [19].

As Ak is unknown but belong to the interval matrix
[A], in each iteration X̄k is computed by a zonotopic
outer approximation using Properties 1 to 6, as detailed in
Appendix:

X̄k = mid([A])p̂k ⊕GBl (20)



with l = r + 2n + nω and the notation
G =

[
mid([A])Ĥk F rs(rAHk

) rs(rApk)
]

where
rAHk

= rad([A])|Ĥk| and rApk = rad([A])|p̂k|).
Since the matrices Ak are stable, the states of the system

converge to the origin and thus the term rad([A])|p̂k| is
bounded and time decreasing. Then the contractive property
of the estimation set is always preserved.

Remark 2: For multivariable systems the procedure can be
repeated for each element of the measurement vector yk.

V. ILLUSTRATIVE EXAMPLE

In this section, the same linear discrete time-variant system
as described in [9] is used for further comparisons:

xk+1 =

[
0 −0.5
1 1 + 0.3δk

]
xk + 0.02

[
−6
1

]
ωk

yk =
[
−2 1

]
xk + 0.2vk

(21)

with δk ≤ 1, ‖vk‖∞ ≤ 1, ‖ωk‖∞ ≤ 1 generated by random
functions. The initial state x0 belongs to the box 3B2 and the
order of the zonotopes is limited to m ≤ 20 in the interest
of a fast simulation. A simple second order system is chosen
in order to facilitate the graphical visualization.

The evolution of the state estimation set is shown in Fig 1.
This set is an outer approximation of the intersection between
the predicted state set X̄k and the measurement Xyk . The
size of this set is decreased at each iteration.

To show the advantage of the P -radius minimization ap-
proach, in this paper a performance comparison (the bound’s
width of x1k ) to the existing approaches is done (Fig 2&3).
The continuous lines (resp. the dotted lines and the dash
dotted lines) are the bounds of x1k obtained by the P -
radius minimization approach (resp. the segment minimiza-
tion approach and the volume minimization approach). The
exact states x1k at each iteration are represented by the
stars. These stars lie between the bounds of x1k obtained
by the set membership estimation approach which confirms
a good estimation. For a more clear representation, the
bound’s width are compared also in percent values (Fig 3).
The bound’s width obtained by the segment minimization
is considered as 100. Then this is compared to the bound’s
width obtained by the P -radius approach and the volume
minimization approach. The simulation results confirm a
better performance (10%) of the P -radius than the segment
minimization approach and a comparable performance of
the proposed method compared to the volume minization
approach.

The comparison of computation time between different
algorithms is shown in Table I. The LMI optimization from
Algorithm 2 is solved using the LMI toolbox of Matlab R©.
If the off-line computation time is not taken into account,
the P -radius approach offers the same performance as the
segment minimization and 4 times better than the volume
minimization approach. All the simulations are performed
on an Intel Core 2 Duo E8500 3.16 GHz configuration.

To conclude, the segment minimization approach offers
a short computation time with a loss of performance. The

(a) k = 1

(b) k = 2

(c) k = 3

Fig. 1. Intersection X̂k between the predicted state set X̄k and the
measurement Xyk

volume minimization approach allows to obtain a better
performance but the computation is more complex. The P -
radius approach allows to combine the advantage of the
two existing approaches: fast computation time and good
performance.

VI. CONCLUSION

In this paper a new zonotopic outer-bounding for the
state estimation of a linear discrete time-variant system
with model interval uncertainties has been developed. The
proposed method computes a set of all the states that are
consistent with the measured output, the bounded noise,
the bounded perturbation and the model interval uncertainty.
Based on the minimization of the P-radius of a zonotope,
the size of this zonotope is decreased. The new method
offers a good trade-off between the performance and the



Fig. 2. The bounds of x1 obtained by different methods

Fig. 3. Comparison of the bound’s width of x1 obtained by different
methods

computation time compared to existing methods. An output-
feedback control of the linear discrete time-variant systems
via set-membership state estimation will be considered in
future work.

VII. APPENDIX

This Appendix proposes the proof of the expres-
sion (20). The starting point is given by equation (3):
X̄k+1 = Akp̂k ⊕

[
AkĤk F

]
Br+nω . As Ak is bounded by

the interval matrix [A], an outer approximation of X̄k+1 can
be obtained by [A]p̂k ⊕

[
[A]Ĥk F

]
Br+nω .

Using Property 6, the following expression is true:
[A]p ∈ mid([A])p̂k ⊕ rs(rad([A])|p̂k|)Bn.

In addition, Properties 4 and 5 imply that
[A]ĤkBr ∈

[
mid([A])Ĥk rs(rad([A])|Ĥk|)

]
Br+n.

The Minkowski sum of the last two expressions leads to:
mid([A])p̂k ⊕ rs(rad([A])|p̂k|)Bn ⊕
⊕
[
mid([A])Ĥk rs(rad([A])|Ĥk|))

]
Br+n.

Therefore the zonotopic outer approximation of X̄k+1 is
mid([A])p̂k⊕GBl, with l = r + 2n+ nω and the matrix G
defined as G =

[
mid([A])Ĥk F rs(rAHk

) rs(rApk)
]

where rAHk
= rad([A])|Ĥk| and rApk = rad([A])|p̂k|).
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