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Abstract: This paper addresses the optimal control of multiple linear agents in the presence
of a set of adversary constraints. This type of constraints makes the convergence of the agents’
dynamics towards the “natural” equilibrium position, impossible to fulfill. Therefore, this default
equilibrium point has to be replaced by a set of equilibrium points or even accept the existence of
limit cycles. Furthermore, the constraints introduced in the transitory optimization problem are
non convex. The present paper proposes a dual-mode control strategy which switches between
an unconstrained optimum controller and a constrained control law whenever the adversary
constraints are activated. The proposed method builds on invariance concepts and proves to be
related to eigenstructure assignement problems. The technique exhibits effective performance
and is validated here by an illustrative example.
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1. INTRODUCTION

In many application involving the cooperative control of
multiple agents [Grundel et al., 2007], collision avoidance
represents a fundamental issue that needs to be integrated
in the design strategy (see, for instance, [Richards and
How, 2002]). This problem turns out to be a difficult one by
the non-convexity of the associated constraints (see, for de-
tails [Stoican et al., 2011], at least from the computational
point of view). These constraints are defined in the con-
text of an autonomous agent navigating by the obstacles
and/or other moving entities. Whenever the agent employs
a continuous cycle of sensing and acting, a collision-free
control law for the agent must be computed in each cycle
based on the local observation of the environment.
The problem of collision avoidance has been extensively
studied [Grundel and Pardalos, 2004]. Various control
methods are related with the potential field approach
[Tanner et al., 2007], or approaches based on graph theory
[Lafferriere et al., 2005]. Alternative methods are based on
Mixed Integer Programming (MIP)(see the comprehensive
monography [Jünger et al., 2009]), which has the ability
to include non convex constraints and discrete decisions in
the optimization problem. However, despite its modeling
capabilities and the availability of good solvers, MIP has
serious numerical drawbacks. As stated in [Garey and
Johnson, 1979], mixed-integer techniques are NP-hard,
i.e. the computational complexity increases exponentially
with the number of binary variables used in the problem
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formulation. A method for reducing the number of binary
variables together with an application in the obstacles
avoidance problem is detailed in [Stoican et al., 2011].
The goal of the present paper is twofold. In a first stage
we perform a detailed analysis of the limit behavior for an
agent with linear dynamics in the presence of adversary
constraints. More precisely, we need to define the fixed
points and the invariance properties for the agent state
trajectory while avoiding a convex region containing the
origin in its strict interior. This region can, in fact,
represent an obstacle (static constraints) or another agent
(dynamic constraints, leading to a parametrization of the
set of constraints with respect to the current state).
In a second stage, our interest is to ensure the stability
over the feasible region of the state space using a dual-
mode strategy. The principles can be found in the finite
horizon formulation of Model Predictive Control (MPC)
technique (see, for instance, [Mayne et al., 2000], for
basic notions in MPC) including avoidance constraints
for an agent. The first remark is that the presence of a
restricted region constraint leads to the infeasibility of the
control law around the origin (which is an equilibrium
point for the autonomous system). This is an unusual
formulation for the classical MPC design. To the best
of the authors knowledge, all the studies on constrained
MPC rely on the assumption that the origin is in the
relative interior of the feasible region (see, for example,
[Mayne et al., 2000], [Seron et al., 2002], [Bemporad et al.,
2002]) or on the frontier of the feasible region [Pannocchia
et al., 2003]. In the present paper we show that necessary
and sufficient conditions can be formulated in order to



guarantee the existence of a stable equilibrium point
having the entire feasible region as a basin of attraction.
The employed methods are specific for Piecewise Affine
(PWA) systems analysis, with a geometric insight on the
invariance properties of polytopic regions in the state
space.
There are many applications of the present work which
are of particular interest, namely those where static or
dynamic constraints must be respected. Examples include
coordinated ocean platform control for a mobile offshore
base [Girard et al., 2001]. The homogeneous modules form-
ing the offshore base must be able to perform long-term
station keeping at sea, in the presence of waves, winds and
currents. Therefore, the independent modules have to be
controlled in order to be maintained aligned. This task can
be easily accomplished if each module converges to differ-
ent fixed points, which are suitably chosen. Furthermore,
it is well known that the North Atlantic is one of the most
inhospitable environments on the planet. Yet, it is here
that Atlantic Norway’s offshore oil and gas industry (see,
[Grant and Shaw, 2001], [Bertino and Lisæter, 2008]) has
been operating for years and with an impressive amount
of success. In order to remain prosperous under such harsh
conditions, the offshore industry relies on a variety of
innovative technologies. An example is the ice-breaking
cargo vessel and/or tanker which needs to break the ice
around the platform. Therefore, the ice-breaking vessel
has to maneuver as close as possible to the platform, while
avoiding the collision with it (i.e. the vessel has to converge
to a limit cycle).
The rest of the paper is organized as follows. In Section 2
the constrained predictive control problem is formulated.
Section 3 presents the local constrained control problem
based on invariance concepts, while the designed problem
is developed in Section 4. Discussions based on the simula-
tion results are presented in Section 5 and the conclusions
are drawn in Section 6.
The following notations will be used throughout the paper.
The spectrum of a matrix M is the set of the eigenvalues
of M , denoted by Λ(M) = {λi : i ∈ N}. A point xe is a
fixed point of a function f if and only if f(xe) = xe (i.e.
a point identical to its own image). The boundary of a
set S, denoted by ∂S is the set of points which can be
approached both from S and from the outside of S.

2. PRELIMINARIES

Consider the behavior of an agent described by a discrete
time linear time-invariant system:

xt+1 = Axt +But, (1)
where xt ∈ Rn is the state, ut ∈ Rm is the input signal
and A, B are state matrices of appropriate dimensions. It
is assumed that the pair (A,B) is stabilizable.
The goal is to control the agent such that its state is
transferred as close as possible to the origin while its
trajectory avoids a polyhedral region 1 defined by:

S =
{
x ∈ Rn : hTi x < ki, i = 1 : nh

}
, (2)

1 Such limitations arise often in control applications and we will
discuss later in the paper the collision or obstacle avoidance problems
for multi-agent systems which originate them.

with (hi, ki) ∈ Rn × R and nh being the number of half-
spaces. This paper focuses on the case where ki > 0 for
all i = 1 : nh, meaning that the origin is contained in the
strict interior of the polytopic region, i.e. 0 ∈ S. Note that,
the feasible region in which the agent can reside is the non
convex region defined as the complement Rn \ S.
The minimization of a given cost function (usually a
quadratic function involving states and inputs) leads to
the linear state-feedback control law characterizing the
optimal unconstrained infinite horizon problem:

ut = KLQxt (3)
with KLQ computed from the solution of the discrete
algebraic Riccati equation. However, here we want to
design a control action such that the agent trajectories
evolve outside the interdicted region (2):

xt /∈ S. (4)
This can be enforced by the construction of an optimal
control sequence u = {ut|t, ut+1|t, · · · , ut+N−1|t} over
a finite constrained receding horizon. This leads to a
predictive control policy:

u∗ = arg
u

min(xTt+N |tPxt+N |t +
N−1∑
i=1

xTt+i|tQxt+i|t+ (5)

+
N−1∑
i=0

uTt+i|tRut+i|t)

Here Q = QT � 0, R � 0 are positive definite weighting
matrices, P = PT � 0 defines the terminal cost and N
denotes the prediction horizon.
In this classical convex formulations (even including in-
put/state restrictions), the stability is assured by explic-
itly requiring that the state enters into a terminal region
(containing the origin) at the end of the prediction horizon
[Mayne et al., 2000].
Such considerations do not apply to the case:

u∗ = arg
u

min(xTt+N |tPxt+N |t +
N−1∑
i=1

xTt+i|tQxt+i|t+ (6)

+
N−1∑
i=0

uTt+i|tRut+i|t)

s.t.:
{
xt+i+1|t = Axt+i|t +But+i|t
xt+i|t ∈ Rn \ S, i = 1 : N (7)

as long as the equilibrium point is not “approachable”.
Moreover, the non convex nature of the feasible region (7)
imposes the use of mixed integer techniques, which means
that auxiliary binary variables are added to the problem.
In order to reduce the complexity of the problem (6)–
(7), we propose a dual-mode control law which switches
between an unconstrained optimum controller and a local
constraints-handling feedback when necessary 2 .

2 Ideally we would like to have a controller which resembles the LQ
control as mush as possible; in practice this means we can operate the
LQ control when “far away” from the interdicted region and switch
to the constrained control when approaching this region.



Besides satisfying the constrains, we additionally impose
that the agent state approaches an equilibrium point and
avoids cyclic or chaotic behavior 3 .

3. LOCAL CONSTRAINED CONTROL

In this section, we first establish conditions for an affine
state-feedback control law to both render a half-space
positively invariant and to assign an equilibrium state
lying on its boundary. Then, these conditions are used
for the derivation of control law that transfer system’s
state as close as possible to the origin, all by avoiding the
interdicted region.
Consider now an affine control law of the form:

ut = K(xt − xe) + ue, (8)
with xe ∈ Rn the desired equilibrium state and K ∈
Rm×n the gain matrix. The resulting closed-loop system
is described by the state equation

xt+1 = Axt +BK(xt − xe) +Bue, (9)
and xt − xe defines its transient behavior.
A state xe is an equilibrium state for the closed-loop
system (1) if:

xe = Axe +Bue. (10)
Therefore, only the states xe belonging to the preimage
through the linear map (I − A), of the linear subspace,
spanned by the columns of matrix B, can represent equi-
librium states.
Remark 1. The above conditions are independent of K.
Consequently, the states that can be equilibria are defined
by the dynamics of the unforced dynamics and are com-
pletely specified by ue. �

3.1 Invariance guarantee

With these elements, we can concentrate on one of the
key issues for the control design: the controlled invariance
with respect to an affine control law (8) and subsequently
the closed-loop stability. For solving this problem, the
following lemma describing algebraic invariance conditions
will be used. Note that this result is a special case of a more
general result established in [Bitsoris and Truffet, 2011].
Lemma 2. The half-space defined by the inequality:

vTx ≤ γ, (11)
is a positively invariant set of the affine system

xt+1 = Mxt + c, (12)
if and only if there exists a positive real number g such
that:

vTM = gvT , (13)
and

gγ + vT c ≤ γ. (14)
�

Proof: Suppose xt verifies relation (11):
vTxt ≤ γ. (15)

3 In the general case the periodic solutions can be considered as
optimal candidates for the limit behavior. In the present paper, the
control objective is to avoid limit cycles and concentrate on the
convergence to a fixed point.

We want to prove that xt+1 verifies the same relation. By
explicitly replacing:

vTxt+1 = vT (Mxt + c) = gvTxt + vT c, (16)
and taking into account the hypothesis (15) and g is a
positive number it follows that

vTxt+1 ≤ gγ + vT c ≤ γ, (17)
which is verified by (14). �

According to Lemma 2, similar conditions will guarantee
the positive invariance of the opposite half-space, defined
by the inequality vTx ≥ γ. Thus, we establish the following
result.
Theorem 3. If xe is an equilibrium state of the closed-
loop system (1) lying on the hyperplane vTx = γ, then
a necessary and sufficient condition for the hyperplane to
partition the state space into two positively invariant half-
spaces is that vT is a left eigenvector of the closed-loop
matrix A+BK associated with a positive eigenvalue λ ≤ 1.
�

Proof: We apply the result from Lemma 2 to system (9)
which can be written as:

xt+1 = (A+BK)xt +B(ue −Kxe). (18)
Then, the conditions (13)–(14) become:

vT (A+BK) = λvT , (19)
λγ + vTB(ue −Kxe) ≤ γ. (20)

Condition (20) is always satisfied if xe is an equilibrium
state of the closed-loop system (18) lying on the hyper-
plane vTx = γ. Indeed, in this case xe satisfies relation
(10) and vTxe = γ. Then, condition (20) becomes:

λγ + vTxe − vT (A+BK)xe ≤ γ, (21)
or

λγ + γ − λvTxe ≤ γ. (22)
Finally, we have that vTxe ≥ γ which is verified.
It is clear that if conditions (19)–(20) are satisfied, then
this is also true for

− vT (A+BK) = λ(−vT ), (23)
λ(−γ)− vTB(ue −Kxe) ≤ −γ, (24)

which means that the opposite half-space is positively
invariant. �

As seen above, under mild assumptions, the eigenvector
of a closed-loop matrix can partition the space into two
complementary and invariant half-spaces. Here we are
interested in the converse problem: Given a hyperplane,
does it exist a certain structural constraint on the gain
matrix which makes the resulting closed-loop matrix to
have the hyperplane as an eigenvector? If not, which is
the closest approximation possible (in the sense of the
infinity norm)? The approach proposed here is related to
the eigenstructure assignment.
Indeed, for the dynamics described by (1) and a given
vector v ∈ Rn, under controllability assumptions, there
exists a scalar λ ∈ R and a matrix K ∈ Rm×n such that
the pair (λ, vT ) is an eigenvalue/left eigenvector of matrix
(A+BK) and K verifies the linear constraint

vTB ·K = wT , (25)
with w ∈ Rn and wT , vT (λI − A). Furthermore, we
obtain that vT depends on the values of λ and wT :



vT = wT (λI −A)−1. (26)
An optimization problem can be formulated in order to
find an eigenvalue λ > 0 and a parameter wT (and im-
plicitly a condition over the gain matrix K) such that the
associated left eigenvector is equal with a given hyperplane
v:

min δ
δ,λ,w

(27)

s.t.: − δ ≤ vT (A− λI) + wT ≤ δ
δ ≥ 0
0 < λ < 1

In the case when the optimal solution is δ∗ = 0, the vector
v can be used for the separation of invariant half-spaces (as
detailed in Lemma 2 and Theorem 3) with respect to the
closed-loop dynamics. Moreover, the conditions imposed
on the associated eigenvalue assure the contractiveness of
the respective eigenvector.
The optimal argument of the LP problem (27) w∗ ∈ Rn,
will be instrumental in the control design problem through
a linear constraint upon the fixed gain matrix:

KT z = w, (28)
with z ∈ Rm. The equation (28) is obtained from (25) by
considering vTB = zT under full-column rank hypothesis,
concerning the matrix B.

3.2 Affine parametrization of the feedback policies

As it can be seen from the left eigenstructure assignment
described above, the main difficulty for proving the stabil-
ity in the neighborhood of xe is imposed by the structural
constraint on the gain matrix inherited from the invariance
desideratum. This imposes a reformulation of the local
control problem in order to identify the design parameters.
In the following, we will derive an affine parametrization of
the feedback policies such that a fixed gain matrix K can
be used for feedback, all by respecting the constraint (28).
Note that z ∈ Rm can be decomposed into two elements
z = [ẑ z̃] such that the element z̃ ∈ R∗ (a non-zero scalar)
and ẑ ∈ Rm−1. Decomposing, KT ∈ Rn×m similarly into
K̂T ∈ Rn×m and K̃T ∈ Rn×(m−1) we can express after
simple algebraic manipulations K̂T as a function of w,ẑ
and z̃−1. Introducing this into the original equality (28)
we obtain an affine relation where KT is in the left side
and w, ẑ, z̃ and K̃T are in an affine relation in the right
side.
With these developments one can obtain an affine de-
scription of matrix K ∈ Rm×n using the independent
parameters contained in K̃ ∈ R(m−1)×n:

KT = Γ + K̃T ·Ψ (29)
where Γ ∈ Rn×m and Ψ ∈ R(m−1)×n are defined as follows:

Γ =
[
0n×(m−1) wz̃

−1] , Ψ =
[
I(m−1) −ẑz̃−1] . (30)

Remark 4. Note that for m = 1 in (29), the gain matrix is
directly given by Γ = wz−1 since for this particular case
the subspace defining K̃ is null. �

Illustrative example: We propose here an illustrative exam-
ple of the reasoning leading to equations (29)–(30) and the

subsequent values of the matrices involved. In this sense,
let use consider a matrix K ∈ R2×2 which respects the
constraint (28). Then, we can write:[

k11 k12
k21 k22

] [
z1
z2

]
=
[
w1
w2

]
, (31)

which is equivalent to:[
k11 k12
k21 k22

]
︸ ︷︷ ︸
KT∈R2×2

=
[

0 w1z
−1
2

0 w2z
−1
2

]
︸ ︷︷ ︸

Γ∈R2×2

+
[
k11
k21

]
︸ ︷︷ ︸
K̃T∈R2

[
1 − z1z

−1
2
]︸ ︷︷ ︸

Ψ∈R1×2

. (32)

where each of the vectors/matrices corresponds with the
notation in (29)–(30).
A similar decomposition can be applied to another partic-
ular case, i.e. for K ∈ R3×3:

[
k11 k12 k13
k21 k22 k23
k31 k32 k33

]
︸ ︷︷ ︸

KT∈R3×3

=

 0 0 w1z
−1
3

0 0 w2z
−1
3

0 0 w3z
−1
3


︸ ︷︷ ︸

Γ∈R3×3

+
[
k11 k12
k21 k22
k31 k32

]
︸ ︷︷ ︸
K̃T∈R3×2

(33)

[
1 0 −z1z

−1
3

0 1 −z2z
−1
3

]
︸ ︷︷ ︸

Ψ∈R2×3

.

3.3 Local controller synthesis

Using the previous parametrization, relation (29) can be
introduced into the closed-loop matrix as follows:
A+BK = A+B

(
ΓT + ΨT K̃

)
=
(
A+BΓT

)
+BΨT K̃.

(34)
This leads to a reformulation of the original dynamics (1)
into a formulation as described in the following:

xt+1 =
(
A+BΓT

)︸ ︷︷ ︸
Ã

xt +BΨT︸ ︷︷ ︸
B̃

K̃xt, (35)

where we denote A+BΓ = Ã and BΨT = B̃.
We can now state that the controllability (which implies
the stabilizability of the overall system) of system (1)
with the gain matrix subject to a condition of type (28)
is equivalent with the controllability of system (35). In
this case, the usual controllability tests (e.g. the gramian
of controllability, controllability matrix) and design of
gain matrix apply (e.g. pole placement, Linear Quadratic
Regulator (LQR) or solving a Riccati equation).
In the present paper we choose to construct the controller
K̃ from (35) with a LQ design using the solution of the
discrete algebraic Riccati equation

ÃTP + PÃ− PB̃R−1B̃TP +Q = 0. (36)
Furthermore, assuming the system (35) is controllable and
a suitable gain matrix K̃ = R−1BTP is known, it is simple
to introduce it in (29) and to obtain the stabilizing K for
the original dynamics (1).
Figure 1 resumes the theoretical details discussed in this
section by a graphical illustration. Therefore, S ∈ R2 is
the interdicted region defined as in (2). All the equilibrium
states lie on the hyperplane which trespass the origin (see,
(10) and Remark 1). Solving the optimization problem
(27), we find an eigenvector which approximates very



well a hyperplane of the interdicted region. Moreover, the
hyperplane partition the space into invariant half-spaces
(see Lemma 2). As consequence, the equilibrium point xe
that we are interested on, lies at the intersection of the
aforementioned hyperplanes.

S

Fig. 1. The interdicted region and the equilibrium point,
which lies on the boundary of the feasible region

4. THE DESIGN PROBLEM

With the results obtained in the previous section, a local
linear control feedback gain is available such that xe, a
point on the frontier of S, is an attractor for the closed
loop unconstraint trajectories. In the constrained case, the
condition xt /∈ S is assured only for a half-space, described
by one of the supporting hyperplanes of S.
In the present section we will describe the procedure to
ensure the stability of xe by the use of a receding horizon
optimal control procedure. Its design principles are related
to the dual-mode control:

- a generic optimization-based control integrating col-
lision avoidance constraints;

- its equivalence with the unconstrained feedback law
(8) over an invariant region containing xe;

- guarantees of convergence in finite time towards this
invariant region.

Consider the agent system (1) and the equilibrium point
which verifies the relation xe = Axe +Bue. The optimiza-
tion problem to be solved is formulated as:

u∗ =arg
u

min((xt+N |t − xe)TP (xt+N |t − xe)+ (37)

+
N−1∑
i=1

(xt+i|t − xe)TQ(xt+i|t − xe)+

+
N−1∑
i=0

(uTt+i|t −Kxe − ue)R(ut+i|t −Kxe − ue)),

s.t.:
{
xt+i+1|k = Axt+i|t +But+i|t,

xt+i|t ∈ Rn \ S, i = 1 : N, (38)

with u = {ut|t,...,ut+N−1|t}. The parameters xe, ue and
K, are determined in the previous section (see, (8)–(10),
(28)–(35)). Applying the first component of the optimal

formulation (37) and reiterating the optimization using the
new state xk, considered measurable, we dispose of a global
control law with the following properties (formulated here
without the formal proofs which can be derived without
difficulties based on the classical results in [Chmielewski
and Manousiouthakis, 1996] and [Mayne et al., 2000]):

- the optimization problem is recursively feasible (as
consequence of the unbounded feasible domain);

- it is tractable (finite number of constraints);
- the matrices P,Q,R can be tuned upon inverse op-
timality principles to ensure the the equivalence be-
tween the unconstrained optimum and the feedback
control action (8), ut = K(xt − xe) + ue;

- there exists a prediction horizon such that the reach-
ability analysis can be used to determine the minimal
N for which the predicted state trajectory

vTxt+N ≥ γ,∀xt ∈ (Rn \ S).
Furthermore, observe that the constraints introduced in
(37) are non convex. This problem rises naturally from
separation conditions (agents that have to avoid each
others and/or obstacles, [Grundel and Pardalos, 2004],
[Grundel et al., 2007]). As a solution to the collision
avoidance problem, we use the well-known technique of
Mixed-Integer Programming (MIP) for describing the fea-
sible region. This implies that auxiliary binary variables
are added to the problem. Since the non convex region is
the exterior of a bounded convex set with finitely many
support hyperplanes (a polytope), it is sufficient to add a
binary variable for each hyperplane. However, by doing
this, a significant number of binary variables is added
in the problem formulation, thus leading to a sensitive
numerical problem (the algorithms are branch and cut and
in the worst-case scenarios are exponentially dependent of
the number of binary variables). A method for reducing
the computational time is detailed in [Stoican et al., 2011]
with an application in an obstacles avoidance problem.
This paper proposes a technique for making the time of
computation P-hard in the number of LP/QP subproblems
that have to be solved by means of a significant reduction
in the number of binary variables.
Remark 5. Note that the initial optimization problem
(37) is feasible since the constraints describe unbounded
region. Here, for the simplicity of the presentation we
let only constraints dealing with the state. Of course,
a realistic approach requires constraints on the control
action. We do not treat them here but we mention that
their inclusion could make the problem more difficult to
deal with, since the optimization problem may become
infeasible for certain values of the input and states. �

5. SIMULATION RESULTS

Consider an agent in two spatial dimensions with the
dynamics described by:

A =
[
−0.78 0.33
−0.85 1.08

]
, B =

[
1 1
−5 2

]
(39)

The components of the state are the position coordinates
of the agent. Note that the pair (A,B) is stabilizable.
The state constraints as described in (2) are illustrated
in Figure 2 by the red polytope. Solving the optimization
problem (27), we obtained an affine parametrization of



the gain matrix K =
[
−0.17 −0.09

0.74 −0.38

]
as in (29) with

K̃ = [−0.17 − 0.09], Γ =
[

0 0.86
0 −0.31

]
and Ψ = [1 0.70].

This makes the closed-loop matrix to have a hyperplane
of the interdicted region as an eigenvector. Furthermore,
we obtained ue = [0.09 1.29] and the equilibrium point
xe = [0 10.1], in Figure 2 is illustrated in green. The
tunning parameters of the optimization problem (37) are:

P =
[

0.59 −0.04
−0.04 0.50

]
, Q =

[
0.11 0.30
0.30 0.21

]
,

R =
[

0.54 −0.30
−0.30 0.65

]
and the prediction horizon N = 2.

Finally, in Figure 2 we depict three different state trajec-
tories converging to a unique equilibrium point when the
predictive control law (37) is applied.

−10 −8 −6 −4 −2 0 2 4 6 8 10 12

−20

−10

0

10

20

30

x1

x
2

Fig. 2. The interdicted region and different agent state
trajectories which converge to a fixed point.

6. CONCLUSIONS

A finite horizon predictive optimization problem formu-
lation was proposed in order to describe the evolution of
an agent in the presence of a set of adversary constraints.
This type of constraints are particular, as they make the
convergence of the agent trajectory to origin an infeasible
task. We propose a dual-mode control law which switches
between an unconstrained optimum controller and the
predictive solution, when necessary. Simple algebraic con-
ditions for the existence and uniqueness of a stable fixed
point on the boundary of the feasible region represent the
main result of this paper, completed with an optimization
based control for the global attractivity. The analyzed
cases are presented through some illustrative simulation
results. Future work will focus on collision avoidance in
the context of formations and the stabilization of multiple
agents around a limit cycle.
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