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Abstract: This paper addresses a predictive control strategy for multi-agent formations with a time-varying topology.
The goal is to guarantee a trajectory tracking, where a reference trajectory is specified for an agent designed
as the leader. Then, a predictive control strategy combined with the Potential Field method is used in order to
derive a control action based only on local information within the group of agents. The main concern is that
the interconnections between the agents are time-varying, affecting the neighborhood around each agent. The
proposed method exhibits effective performance validated through some illustrative examples.

1 INTRODUCTION

Control and coordination of multi-agent systems,
such as pedestrians in the crowd, vehicles, space-
craft and unmanned vehicles, are emerging as a
challenging field of research. There exist several
classes of multi-agent systems where the intercon-
nections between the agents could be time-varying
(e.g. traffic control, pedestrian behavior in the crowd
etc.). Guaranteeing stability with the existing coop-
erative control techniques is still an open problem for
multi-agent systems with time-varying (constrained)
topologies. This paper addresses a new methodology
based on predictive control in order to answer to some
of these difficulties; an illustrative example proves the
interest of the proposed methodology.

Collision avoidance can be difficult in the con-
text of managing multiple agents, since certain (static
or dynamic) constraints are non-convex. A common
point of most publications in the collision avoidance
problem is devoted to the case of punctiform agents,
which is far from real world applications. In many
of them the relative positioning between agents be-
comes important, such as the NASA’s mission to con-
struct a large interferometer from multiple telescopes
(Schneider, 2009). Also, in air traffic management,
two aircraft are not allowed to approach each other
closer than a specific alert distance.

A class of methods for collision avoidance prob-

lems uses artificial potential fields to directly obtain
feedback control actions steering the agents over the
entire workspace. There is a large literature dedicated
to the formation control for collections of vehicles us-
ing the potential field approach. The authors of (Jad-
babaie et al., 2003) and (Tanner et al., 2007) investi-
gate the motions of vehicles modeled as double inte-
grators. Their objective is that the vehicles achieve a
common velocity while avoiding collisions with ob-
stacles and/or agents assumed to be points.

The aim of the present paper is twofold: first, to
provide a framework for non point-like shapes which
may define obstacles and/or safety regions around
an agent; second, to offer a novel control strategy
derived from a combination of constrained receding
horizon and potential field techniques for the trajec-
tory tracking problem, applied to multi-agent systems
with time-varying topologies.

This paper is organized as follows. Section 2
presents two constructions that take into account the
shape of a convex region defining an obstacle and/or
a safety region around an agent. Section 3 presents
the trajectory tracking problem for a leader/followers
formation. A flat trajectory is generated for the leader
and using predictive control the tracking error is min-
imized. For the followers, a potential function is em-
bedded within MPC in order to achieve the group for-
mation with a collision free behavior. Further on, Sec-
tion 4 presents illustrative simulation results. And fi-



nally, several concluding remarks are drawn in Sec-
tion 5.

The following notations will be used through-
out the paper. Given a vector v ∈ Rn, ‖v‖∞ :=
maxi=1,··· ,n |vi| denotes the infinity norm of v.
Minkowski’s addition of two sets X and Y is defined
as X ⊕Y =

{
A+B : A ∈ X , B ∈ Y

}
. The interior of

a set S, Int(S) is the set of all interior points of S. De-
note as Bn

p = {x∈Rn : ‖x‖p≤ 1} the unit ball of norm
p, where ‖x‖p is the p-norm of vector x. Let xk+1|k
denote the value of x at time instant k+ 1, predicted
upon the information available at time k ∈ N.

2 PREREQUISITES

For safety and obstacle avoidance problems the
feasible region in the space of solutions is a non-
convex set. Usually this region is considered as the
complement of a (union of) convex region(s) which
describes an obstacle and/or a safety region.

Let us define a bounded convex set in its polyhe-
dral approximation, a polytope S ⊂ Rn through the
implicit half-space description:

S =
{

x ∈ Rn : hax≤ ka, a = 1, · · · ,nh
}
, (1)

with ha ∈ R1×n, ka ∈ R and nh the number of half-
spaces. We focus on the case where ka > 0, meaning
that the origin is contained in the strict interior of the
polytopic region, i.e. 0 ∈ Int(S).

In the following, we are interested in measuring
the relative position of an agent to such a region. In
other words, we require a function which measures if
and when a given state is inside or outside the poly-
hedral set (1). The forthcoming constructions will be
used in a repulsive potential function to take into ac-
count the shape of the convex region in terms of (1).

2.1 Polyhedral function

Consider the class of (symmetrical) piecewise linear
functionals defined using the specific shape of a poly-
hedral set. The following definitions will be instru-
mental for the rest of the paper.
Definition 1 (Minkowski function – (Blanchini,
1995)). Any bounded convex set S induces a
Minkowski function defined as

µ(x) = in f
{

α ∈ R, α≥ 0 : x ∈ αS
}

(2)

Definition 2 (Polyhedral function – (Blanchini,
1995)). A polyhedral function is the Minkowski func-
tion of the polyhedral bounded convex set S defined in
(1). This function has the following expression:

µ(x) = ‖Fx‖∞, (3)

where F ∈Rnh×n is a full column matrix with Fa =
ha
ka

,
a = 1, · · · ,nh.

In fact, any polytope can be defined in terms of the
Minkowski function (2). Indeed there always exists a
full column matrix F ∈ Rnh×n such that the polytope
S in (1) is equivalently defined as

S =
{

x ∈ Rn : µ(x)≤ 1
}
, (4)

with µ(x) defined by (3). From the avoidance point of
view, the Minkowski function (2) denotes the inclu-
sion of a value x to the given polytope (4) if µ(x) ∈
[0,1]. Conversely, if µ(x) > 1, then x is outside the
polytope (4).

Remark 1. Note that if ka < 0 in (1), the origin is not
contained in the strict interior of the polytopic region,
i.e. 0 /∈ Int(S); then the polyhedral function can be
brought to the form (3) by imposing

Fa =
ha(x− xs)

ka−haxs
, a = 1, · · · ,nh, (5)

with xs ∈ Rn the analytic center of the polytope (1).

Note that, the polyhedral function (3) is piecewise
affine and continuous. This means that each of the
inequalities which compose its definition can provide
the maximum, an explicit description of these regions
being

Xa =
{

x ∈ Rn : ha
ka

x > hb
kb

x,∀ a 6= b, a,b = 1, · · · ,nh

}
.

(6)
The entire space can thus be partitioned in a union
of disjoint regions Xa which are representing in fact
cones with a common point in the origin (respectively
in xs for the general case evoked in Remark 1).

Practically, the polyhedral function (2) can be rep-
resented in the form

µ(x) = Fax, ∀ x ∈ Xa, a = 1, · · · ,nh (7)

and the piecewise affine gradient is defined as:

5µ(x) = Fa, ∀ x ∈ Xa, a = 1, · · · ,nh. (8)

Remark 2. Strictly speaking the gradient (8) is mul-
tivalued (the Minkowski function induced by a poly-
tope is not differentiable in the classical sense, rather
it is differentiable almost everywhere). However, an
univocal candidate can be selected for the forthcom-
ing computations, an alternative is to work with the
multivalued expression of the gradient.

2.2 Exemplification for the construction
of repulsive potential function

In this subsection the previous theoretical tools will
be integrated in order to describe a piecewise affine
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Figure 1: (a) The polyhedral function (7). (b) The repulsive
potential using the polyhedral function (7).

function which measure the position of a state with
respect to the frontier of a polyhedral set defined in
(1). The derived potential function takes into account
the shape of the convex region which will define a
safety region for an agent and/or an obstacle. For a
given convex region, Figure 1.a illustrates the polyhe-
dral function according to (7).

Further, for the control design purpose, the con-
struction based on the polyhedral function defined in
(7) is proposed for the generation of a repulsive po-
tential:

Vµ(µ(x)) = c1e−(µ(x)−c2)
2
, (9)

where the parameters c1 and c2 are positive constants
representing the strength and effect ranges of the re-
pulsive potential.

Figure 1.b illustrates the proposed function (9) for
two polyhedral obstacles. As it can be seen, the func-
tion has a high value inside the polytopes and a low
value outside them. The repulsive potential will be
further used in order to derive a control action such
that the collision avoidance inside the formation is
satisfied.

3 TRAJECTORY TRACKING FOR
A LEADER/FOLLOWERS
FORMATION

This section presents the formation trajectory
tracking problem. The agents are required to follow a
pre-specified trajectory while preserving a tight inter-
agent formation in time. Each agent has an associated
polyhedral safety region as defined in (1). Using a
leader/followers approach, we generate a flat trajec-
tory for the leader and formulate a receding horizon
optimization problem in order to minimize the track-
ing error. For the followers, we propose a gradient
method combined with a receding horizon approach
which aims to follow the group leader and respects
the collision avoidance formation specifications.

A set of Na linear systems will be used to model
the behavior of individual heterogeneous agents. The
ith system is described by the following continuous
time dynamics:

ẋi(t) = Ac,ixi(t)+Bc,iui(t), i = 1, · · · ,Na, (10)

where xi(t)∈Rn are the state variables and ui(t)∈Rm

is the control input vector for the ith agent. The
components of the state are: the position pi(t) and
the velocity vi(t) of the ith agent such that xi(t) =
[pi(t) vi(t)]T .

3.1 Trajectory generation

The idea is to find a trajectory (xl(t),ul(t)) that steers
the model of the leader (10) with i = l from an initial
state x0 to a final state x f , over a fixed time interval
[t0, t f ]. Using the flatness theory (Fliess et al., 1995),
the system is parameterized in terms of a finite set of
variables zl(t) and a finite number of their derivatives:

xl(t) = ξ(zl(t), żl(t), · · · ,zl,(q)(t)), (11)

ul(t) = η(zl(t), żl(t), · · · ,zl,(q)(t)),

where zl(t) = ϒ(xl(t),ul(t), u̇l(t), · · · ,ul,(q)(t)) is
called the flat output1. The generation of a reference
trajectory will be based on the class of polynomial
functions. Using the parametrization (11) and impos-
ing boundary constraints for the evolution of the dif-
ferentially flat systems (De Doná et al., 2009) a ref-
erence trajectory zl

re f (t) can be generated by solving
a linear system of equalities. Therefore, the corre-
sponding reference state and input for the system (10),
with i = l are obtained by replacing the reference flat
output zl

re f (t), with t ∈ [t0, t f ] in (11):

xl
re f (t) = ξ(zl

re f (t), ż
l
re f (t), · · · ,z

l,(q)
re f (t)), (12)

ul
re f (t) = η(żl

re f (t), z̈
l
re f (t), · · · ,z

l,(q)
re f (t)),

where t ∈ [t0, t f ].
In the rest of the paper we use the discrete corre-

spondent of the reference signals in (12). Therefore, a
corresponding discrete-time model for the equations
(10) is constructed upon a chosen sampling period Ts
by considering the time instants tk = kTs:

xi(k+1) = Aixi(k)+Biui(k), k ∈ N, i = 1 : Na,
(13)

where xi(0) corresponds to the boundary condition in
(12) and ui(k) = ui(tk). The pairs (Ai, Bi) are given
by:

Ai = eAc,iTs , Bi =
∫ Ts

0
eAc,i(Ts−θ)Bc,idθ.

1Hereafter we assume that the characteristics necessary
for flat trajectory (controllability and existence of a flat out-
put) are respected for the leader.



Considering the discrete-time model of the leader
(13) with i = l, we compare the measured state
and input variables with the reference trajectory
(xl

re f (k),u
l
re f (k)) which satisfies the nominal dynam-

ics:
xl

re f (k+1) = Alxl
re f (k)+Blul

re f (k). (14)
Further on, the tracking error between the leader’s

state (13) and the state reference (14) becomes:

x̃l(k+1) = Al x̃l(k)+Bl ũl(k), (15)

with ũl(k) = ul(k)−ul
re f (k), x̃l(k) = xl(k)− xl

re f (k).
Since the reference trajectory is available before-

hand, an optimization problem which minimizes the
tracking error for the leader can be formulated in a
predictive control framework (Maciejowski, 2002).

3.2 Predictive control for the leader

In what follows we present the predictive control
problem, where an optimization is performed to com-
pute the control law for the leader. The discrete model
of the leader (i.e. i = l in (13)) is used in a predictive
control context which permits the minimization of the
tracking error.

A finite receding horizon implementation of
the optimal control law is typically based on the
real-time construction of a control sequence ũl =
{ũl(k|k), ũl(k+1|k), · · · , ũl(k+Nl−1|k)} that mini-
mizes the finite horizon quadratic objective function:

ũ∗ = arg
ũl

min(‖x̃l(k+Nl |k)‖P+ (16)

+
Nl−1
∑

s=1
‖x̃l(k+ s|k)‖Q +

Nl−1
∑

s=0
‖ũl(k+ s|k)‖R),

subject to:
x̃l(k+ s+1|k) = Al x̃l(k+ s|k)+Bl ũl(k+ s|k),
x̃l(k+ s|k) ∈ Xl , s = 1, · · · ,Nl ,

ũl(k+ s|k) ∈Ul , s = 1, · · · ,Nl ,
(17)

Here Q = QT � 0, R� 0 are positive definite weight-
ing matrices, P=PT � 0 defines the terminal cost and
Nl denotes the prediction horizon for the leader. The
optimization problem (16) has to be solved subject to
the dynamic constraints (17). In the same time, other
security or performance specifications can be added
to the system trajectory. These physical limitations
(velocity, energy or forces) are stated in terms of hard
constraints on the internal state variables and input
control action as in (17). Note that the sets Xl , Ul
have to take into account the reference tracking type
of problem delineated in (16). Thus, the absolute lim-
itations have to be adjusted according to the reference
signals.

3.3 Decentralized predictive control for
the followers

In this subsection, we present a control strategy which
is a combination of MPC and Potential Field con-
trol approach. The goal is to control the agents to
achieve a formation while following the specified tra-
jectory. The repulsive potential functions introduced
in (9) produce a potential field. The negative gradient
of this potential assures a collision free behavior for
the agents. Globally, an attractive component of the
potential function aims at maintaining a given forma-
tion. In this context, we provide a practical control de-
sign method which enables the decentralized decision
making for a leader/followers group of agents. The
proposed method exhibits effective trajectory track-
ing performances while avoiding the centralized de-
sign which can be computationally demanding.
Corollary 1. Consider the agents i and j with the
associated safety regions Si, S j as defined in (1).
The agent i with the associated position pi does not
intersect agent j with the position p j if an only if
pi /∈ Si j(p j)2, where

Si j(p j), {p j}⊕S j⊕{−Si}, (18)

with i = 1, · · · ,Na, i 6= j.
Let us now assume the steering policy for each

follower agent (i.e. i 6= l in (13)) based only on local
state information from its nearest neighbors.
Definition 3 (Neighboring graph (Tanner et al.,
2007)). An undirected graph G = {V ,E} represents
the nearest neighboring relations and consists of:

- a set of vertices (nodes) V = {n1,n2, · · · ,nNa} in-
dexed by the agents in the group;

- a set of edges E = {(ni,n j) ∈ V ×V : ni↔ n j},
containing unordered pairs of nodes that repre-
sent neighboring relations.
The set of neighbors of agent i with i = 1, · · · ,Na

and i 6= l can be defined as follows:

Ni(k), { j = 1, · · · ,Na : ‖pi(k)− p j(k)‖ ≤ r, i 6= j},
(19)

where r is the radius of the ball centered in pi. Since
the agents are in motion, their relative distances can
change with time, affecting their neighboring sets
(19). For each agent i, we define an inter-agent poten-
tial function which aims to accomplish the collision
avoidance between agents, the convergence to a group
formation and following the leader. To be specific, the
following inter-agent potential function is used:

Vi(pi,vi) = βrV r
i (pi)+βaV a

i (pi,vi), ∀i ∈Ni. (20)

2This is implied by the requirement that the safety re-
gions of the agents do not intersect.



The two components of the potential function ac-
count for the objectives presented above and βr,βa are
weighting coefficients for each objective. For the ith

agent the total potential is formed by summing the po-
tentials terms corresponding to each of its neighbors.
Consequently, in our approach, the potential functions
are designed as follows:
1) V r

i (pi) denotes the repulsive potentials that agent
i senses from its neighbors:

V r
i (pi) = ∑

j∈Ni

V r
i j(pi) (21)

To implement this, the concepts introduced in
Subsection 2.2, specifically the potential func-
tions (9) is taken into account:

V r
i j(pi) = c1e−(µi j(pi)−c2)

2
, i 6= j, i 6= l, (22)

where µi j(pi) is the polyhedral function (3) in-
duced by the polyhedral set defined in (18). Note
that the repulsive component (22) takes into ac-
count the safety regions (18) associated to both
the followers and the leader.

2) V a
i (pi,vi) denotes the attractive component be-

tween agents in order to achieve a formation and
to follow the leader:

V a
i (pi,vi) = ∑

j∈Ni

V a
i j(pi,vi)+‖pl− pi‖, (23)

for all i ∈Ni and i 6= l.
The second component denotes the relative dis-
tance between the leader and the followers. The
first component V a

i j(xi) has the following form:

V a
i j(pi,vi) = log(µ2

i j(pi))+βv(vi− v j), (24)

where βv denotes a weighting coefficient for
which the agents velocities are synchronizing.

Similar with other methods from the literature, the pa-
rameters of the potential field have to be determined
experimentally. It will be seen in the simulations that
the collision avoidance is realized for the chosen pa-
rameters.

In the following, we reformulate the
optimization problem (16) for the follow-
ers, by using the potential-based cost func-
tion described in (20). A control sequence
ui = {ui(k|k),ui(k+1|k), · · · ,ui(k+N f −1|k)}
which minimizes the finite horizon nonlinear
objective function:

u∗ = arg
ui

min

(
N f

∑
s=0

Vi(pi(k+ s|k),vi(k+ s|k)

)
. (25)

Here N f denotes the prediction horizon for the fol-
lowers. In the optimization problem (25) we need to

know the future values of the neighboring graph and
the values of the state for the corresponding neigh-
bors. All these elements are time-varying and difficult
to estimate. For the ease of computation we assume
the following:

- The neighboring graph is considered to be con-
stant along the prediction horizon, that is,

Ni(k+ s|k), Ni(k) (26)

- The future values of the followers state are con-
sidered constant

x j(k+ s|k), x j(k) (27)

- An estimation of the leader’s state is provided by
the equation (15)

xl(k+ s|k), x̃l
re f (k+ s) (28)

The equations (26)–(28) represent only rough approx-
imations of the future state of the agents. Obviously,
the MPC formulation can be improved by using pre-
diction of the future state of the neighboring agents.
Where feasible, this prediction may be provided by
the agents themselves (Dunbar and Murray, 2006).
Here a simplified approach was implemented for the
followers (by assuming constant predictions) and us-
ing the reference trajectory for the leader.

4 SIMULATIONS

Consider a set of Na = 5 heterogeneous agents in
two spatial dimensions with the dynamics described
by:

Ai =


0 0 1 0
0 0 0 1
0 0 − νi

mi
0

0 0 0 − νi
mi

 , Bi =


0 0
0 0
1

mi
0

0 1
mi


(29)

where [xi yi vi
x vi

y]
T , [ui

x ui
y]

T are the state and the
input of each system. The components of the state
are: the position (xi,yi) and the velocity (vi

x,v
i
y) of

the ith agent, i = 1, · · · ,Na. The parameters mi, νi
are the mass of the agent i and the damping factor,
respectively: m1 = 45kg, m2 = 60kg, m3 = 30kg,
m4 = 50kg, m5 = 75kg, ν1 = 15Ns/m, ν2 = 20Ns/m,
ν3 = 18Ns/m, ν4 = 35Ns/m, ν5 = 23Ns/m. The ini-
tial positions and velocities of the agents are chosen
randomly. For the sake of illustration, an identical
polyhedral safety region as in (1) is associated to each
agent. We take arbitrarily l = 1 to be the leader which
has to be followed by the rest of the agents i= 1, . . . ,4.



Figure 2: Potential filed in a workspace with 5 agents.

(a) (b)

Figure 3: (a) The reference trajectory and the time evolu-
tion of the leader along the trajectory. (b) Trajectory track-
ing of the leader/followers formation at different time in-
stances with their safety regions (leader in red, followers in
magenta).

Figure 2 illustrates the potential filed generated for 5
agents.

For the leader we generate through flatness meth-
ods, state and input references (12) and for both types
of agents we use MPC in order to construct the control
action. A quadratic cost function as defined in (16) is
used for the leader. Figure 3.a illustrates the refer-
ence trajectory (in blue) and the time evolution of the
leader (in red) along the trajectory. Satisfactory track-
ing performances for the given reference trajectory
are obtained with a prediction horizon Nl = 10. For
the followers we consider a potential function as the
cost function in the optimization problem (25), with
a prediction horizon N f = 2. The potential will be
constructed such that both, the following of the leader
and the maintaining of a formation are respected. The
neighborhood radius is set to r = 8m, the weighting
coefficients are βr = 1, βa = 10, c3 = 1, c4 = 0.25,
βv = 15. The effectiveness of the present algorithm is
confirmed by the simulation depicted in Figure 3.b,
where the evolution of the agents is represented at
three different time instances. The agents success-
fully reach a formation and follow the leader without
trespassing each other safety regions.

5 CONCLUSIONS

This paper presents the trajectory tracking prob-
lem of multiple agents. Convex safety regions are as-
sociated to each agent in order to solve the collision
avoidance problem. First, the notion of polyhedral
function is recalled and further introduced in a poten-
tial function which accounts for the associated safety
region. Second, in real-time, a receding horizon con-
trol design and a leader/followers strategy are adopted
for driving the agents into a formation with collision
free behavior.
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