
HAL Id: hal-00684819
https://centralesupelec.hal.science/hal-00684819

Submitted on 5 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Off-policy Learning in Large-scale POMDP-based
Dialogue Systems

Lucie Daubigney, Matthieu Geist, Olivier Pietquin

To cite this version:
Lucie Daubigney, Matthieu Geist, Olivier Pietquin. Off-policy Learning in Large-scale POMDP-based
Dialogue Systems. ICASSP 2012, Mar 2012, Kyoto, Japan. pp.4989-4992. �hal-00684819�

https://centralesupelec.hal.science/hal-00684819
https://hal.archives-ouvertes.fr


OFF-POLICY LEARNING IN LARGE-SCALE POMDP-BASED DIALOGUE SYSTEMS

Lucie Daubigney1,3, Matthieu Geist1 and Olivier Pietquin1,2 ∗
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ABSTRACT

Reinforcement learning (RL) is now part of the state of the art in

the domain of spoken dialogue systems (SDS) optimisation. Most

performant RL methods, such as those based on Gaussian Processes,

require to test small changes in the policy to assess them as improve-

ments or degradations. This process is called on policy learning.

Nevertheless, it can result in system behaviours that are not accept-

able by users. Learning algorithms should ideally infer an optimal

strategy by observing interactions generated by a non-optimal but

acceptable strategy, that is learning off-policy. Such methods usually

fail to scale up and are thus not suited for real-world systems. In this

contribution, a sample-efficient, online and off-policy RL algorithm

is proposed to learn an optimal policy. This algorithm is combined to

a compact non-linear value function representation (namely a multi-

layers perceptron) enabling to handle large scale systems.

Index Terms— Spoken Dialogue Systems, Reinforcement

Learning

1. INTRODUCTION

Spoken dialogue systems (SDS) are now commonly used for ad-

dressing various tasks like appointment scheduling, troubleshooting,

tutoring, etc. When building an SDS, efficiency and naturalness are

of great importance since SDS are interacting with humans who can

be quickly annoyed when speaking to a machine. To obtain those

characteristics, the dialogue manager (DM) of the SDS - responsi-

ble for taking decisions about what to say and when - should have

an adapted behaviour which takes the user into account. More diffi-

culty is brought by the speech recognizer and semantic analyser of

the SDS which respectively transcripts and analyses what the user

said. Indeed, the two components are error-prone which makes the

actual user goal partially observable by the DM.

Handcrafting a strategy that will lead to the achievement of the

task so as to satisfy the user, becomes rapidly untractable when the

task is realistic. Indeed, it requires to identify all the possible sit-

uations which can be encountered during the course of a dialogue.

So solutions have been proposed to automatically search for opti-

mal strategies. We focus on those based on reinforcement learning

(RL) [1]. RL is a machine learning technique that has been suc-

cessfully applied to SDS optimisation [2, 3, 4, 5]. The idea of these

algorithms is to learn an optimal strategy from interactions between

the SDS and users, so as to optimise a numerical value (reward) re-

lated to user satisfaction. The optimal value function from which the

optimal strategy can be derived is the one that associates the highest
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possible cumulative reward to each dialogue situation. Finding the

optimal strategy thus resumes to the problem of learning the opti-

mal value function. The major drawback of standard RL methods

used so far in the field of SDS optimisation is to be very data de-

manding. The required number of actual interactions could not be

collected in a tractable way. For more than one decade, this issue

has been addressed by simulating dialogues so as to artificially gen-

erate enough data [6, 4, 7]. But this method introduces additional

modeling bias which can lead to inadequacy of the learnt strategy

with the behaviour of real users [8].

Efficient online algorithms have been proposed recently [9, 10].

These works report the use of online and on-policy algorithms re-

quiring to permanently changing and testing the policy to learn.

These changes to the policy made during learning are visible to the

user which may cause problems in real applications at the early stage

of learning where the changes in the policy can lead to very bad be-

haviours of the dialogue manager. Moreover, these methods are

based on linear approximations of the value function which makes

their practical use in large-scale systems difficult. To scale-up, the

dialogue context has to be represented in a compact way [11] which

may lead to approximation errors.

In this paper, we propose to use the Kalman Temporal Differ-

ences (KTD) algorithm [12] to achieve efficient online, off-policy

learning [13] in large-scale system. We also propose to use a com-

pact representation to estimate the value function (based on Multi-

layer Perceptron) so as to minimize the impact of approximations.

Off-policy learning will allow learning online from a behavioural

strategy which is controlled After enough interactions, the DM can

switch to the optimal strategy learnt to present it to the user.

2. DIALOGUE MANAGEMENT AS A CONTINUOUS

MARKOV DECISION PROCESS

Dialogue management (DM) is actually a sequential decision mak-

ing problem. From user acts (observations), the dialogue manager

should choose and perform system acts (actions) in order to inter-

act with the user in an efficient and natural way. User satisfaction is

quantified by a reward provided at the end of a dialogue and com-

puted as a linear combination of objective measures (such as the task

completion, the dialogue duration, etc.).

Framed like this, DM can be cast as a Partially Observable

Markov Decision Process (POMDP): decisions should be taken

according to the full history of user and system acts. This history

can be briefly and efficiently summarized into a single state by the

hidden information state paradigm [5]. Thus, DM can be cast as a

continuous state MDP [14].

Algorithms search for a policy π associating an action (a ∈
A) to each state (s ∈ S). The quality of the policy is quanti-

fied by a function called Q-function. This function associates to



each state-action pair the expected cumulative reward after having

started in this pair and then followed the policy π: Qπ(s, a) =
E[

∑
i≥0 γ

iri|s0 = s, a0 = a, π]. The factor γ is the discount

factor, (s, a) the state-action pair and (ri)i≥0 the set of obtained re-

wards. The optimal Q-function, Q∗, is defined so that for all (s, a) ∈
S × A, for all π, Q∗(s, a) ≥ Qπ(s, a). From Q∗, the optimal pol-

icy π∗, which is greedy relatively to it, can be derived: π∗(s) =
argmaxa Q

∗(s, a). Notice that the Q-function allows comparing

not only two policies but also two actions for a given state under a

fixed policy. Usually, the state-action space is too large (often con-

tinuous) to allow an exact computation of the Q-function and an ap-

proximate representation Q̂(s, a) is mandatory. The representation

is often parametric Q̂θ(s, a), with θ the set of parameters.

Two general schemes are used to compute the optimal Q-

function. First, on-policy learning improves the policy being learnt

incrementally, by iteratively computing the value of this policy then

changing the policy by making it greedy according the computed

Q-function. Because of the Markov property of the transition proba-

bilities, the evaluation phase can be done thanks to the Bellman eval-

uation equation: Qπ(s, a) = Es′|s,a[R(s, a, s′) + γQπ(s′, π(s′))].
The state s′ is reached after having followed the action a returned

by the policy π from s. This scheme is adopted by the GPTD al-

gorithm used in [9]. The results provided by this algorithm will

serve as a point of comparison for the experiments presented in this

paper. Notice that the Bellman evaluation equation is linear which

is mandatory for using Gaussian Processes (GP). GP constrain the

parametrisation Q̂π
θ (s, a) to be linear as well.

The other scheme is off-policy learning. This method con-

sists in directly computing the optimal value function Q∗(s, a)
using the non-linear Bellman optimality equation: Q∗(s, a) =
Es′|s,a[R(s, a, s′) + γmaxb∈A Q∗(s′, b)]. The KTD frame-

work [12] handling non-linearities, this equation can be solved

directly and efficient off-policy learning is made possible [13]. In

this paper, we propose to take advantage of this to use a non-linear

parametrisation for Q∗
θ(s, a) to obtain a compact representation of

the optimal value function and to scale-up to a richer state represen-

tation.

3. Q-FUNCTION APPROXIMATION

The Q-function (optimal or not) has to be approximated by Q̂θ(s, a)
since the state space S is continuous and Q : S × A → R. The

representation for the Q-function can be linear or non-linear.

In the linear case, the Q-function is represented by Q̂θ(s, a) =
θTΦ(s, a),where Φ(s, a) is a feature vector of size N (number of

parameters) so that Φ = [φ1(s, a)...φN (s, a)]T is a predefined set

of basis functions and θ are the associated weights.

If a non-linear representation is chosen, the Q-function can be

represented by Q̂θ(s, a) = fθ(s, a), with fθ being non-linear in the

parameters θ. In this paper, we used an MLP which is known to be

able to approximate any function if containing enough neurons on

hidden layers. The vector θ thus contains the synaptic weights of the

MLP.

We define H as the hypothesis space generated by the features

Φ(s, a) or by fθ(s, a). The H space has to be rich enough to contain

the Q-function but the number of parameters should not be too high

because of risks of a poor capacity of generalisation and computa-

tional costs.

4. EXPERIMENT

The results presented in the next section have been obtained with the

CamInfo system [5], a large scale SDS developed to provide tourists

informations about the Cambridge city (UK). The user request can

contain up to 12 different attributes. All the results have been ob-

tained with simulated users [15] because of the difficulty of having

real data and because of the high variability between users possibly

provided. This is not necessarily the case when only a sample of

users is available. Speech understanding error are also simulated.

During the learning phase, a reward of +20 is given to the sys-

tem at the end of the dialogue if the DM managed to satisfy the user

request. A penalty of −1 is given at each system turn. The initial

state space is built as described in [5]. A state is a vector containing

two continuous variables (representing the 2-best confidence scores

in the list of hypotheses of what the user said provided by the speech

and semantic analysers) and two discrete ones (representing an hy-

pothesis on the user goal and the user action associated with the top

confidence score).

The results have been obtained by first letting the DM learn an

estimation of the Q-function, Q̂learnt(s, a). In the GPTD case, the

Q-function estimation is improved at each step of the learning while

in the KTD case, an estimation of the optimal Q-function is directly

derived. Then the Q-function learnt will be used to test the greedy

strategy πlearnt = argmaxa Q̂learnt(s, a). With sufficient train-

ing data, the two algorithms are assumed to give the same optimal

strategy: πlearnt should be equal to π∗. On the graphs presented,

the average cumulated rewards got while using πlearnt is plotted for

different sizes of training sets.

The learning phase supposes to use a behavioural strategy to ex-

plore the state space (issue known as the exploration/exploitation

dilemma). The KTD and GPTD algorithms provide an estimation

of the Q-function and some uncertainty information about the qual-

ity of the estimation (σ̂Q) [16, 9]. An approach where the agent

makes a safe compromise between exploiting the already known

information or exploring the state space has been studied in [17]

on the same SDS and gave encouraging results. It will thus be

used here. This approach is called bonus-greedy (inspired by [18])

and the choice of the next action is made according to: ai+1 =

argmaxa(Q̂i(si+1, a) +
βσ̂Qi

(si+1,a)

β0+σ̂Qi
(si+1,a)

).

5. RESULTS

The GPTD algorithm using a linear parametrisation based on a dic-

tionary built during the learning phase [19] is compared to KTD us-

ing at first a linear parametrisation and then a non-linear one.

First, the comparison is made in an almost noisyless environ-

ment (the recognition error rate is set to 10%). The number of pa-

rameters is about 300 for the GPTD algorithm and 144 for the KTD

one. The vector of parameters for the latest, defined for all (s, a) ∈
S×A is: ΦT (s, a) = [δa,a1

φT (s, a1), ..., δa,a12
φT (s, a12)], with

φT (s, a) = [1, ϕ1
1, ϕ

1
2, ϕ

1
3, ϕ

2
1, ϕ

2
2, ϕ

2
3, I1, I2](s, a) and δa,a′ = 1

if a = a′ else δa,a′ = 0. Three Gaussians ϕ are used per contin-

uous dimension and two integers, I1, I2 are used for discrete ones.

The DM can choose actions among 12 meta-actions (a1, a2, ..., a12)

which can result into 22 different actual actions for the user (see [5]).

The results on Fig. 1(a) show that KTD outperforms GPTD.

KTD policy results in nearly 2.5 turns less per dialogue. In both

cases, the solution found is imperfect because of the compression of

the state space as explained in [5]. The speech and semantic ana-

lyzers return a list of hypotheses with a confidence score associated.

Some information is extracted from the pool of hypotheses to be

given to the DM since all the hypotheses cannot be taken into ac-

count. But in the GPTD setting described in [9], information is also

lost because some clustering of the state space is performed. It is not



the case with KTD where all the states encountered are taken into

account for the estimation of the Q-function.

On Fig. 1(b), the average frequency of each of the actions per-

formed by the dialogue manager during the testing phase is shown.

The “Others” action regroups 7 others actions which are not used

here. By studying the actions proposed, the differences seen in the

graphes can be explained and the two algorithms compared. The

two policies found do not propose the same main action: GPTD

asks for the user to select between two propositions (“Select2” ac-

tion) while it provides the user with direct information in KTD (“In-

form” action). GPTD asks for the user to repeat quite oftenly (“Re-

qRepeat” action) while KTD prefers to ask for explicit confirmation

(“ExplConfReq” action). It is easier to recognize a yes/no answer

than a complete sentence. KTD asks sometimes for new information

while implicity confirming another (“ImplConfReq” action) which

can shorten the length of the dialogue. GPTD proposes sometimes

partially right solution (“Deny” action) which is linked to the use of

the “Select2” action.
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Fig. 1. GPTD and KTD with linear parametrisation comparison.

A non-linear parametrisation based on a Multi Layers Percep-

tron (MLP) is now introduced. One hidden layer of 8 neurons is used

(NH1
= 8). The number of input neurons of the MLP is determined

by the fact that to parts of each pair (s, a) ∈ (S ×A) must be asso-

ciated a unique binary combination, given that no metric is defined

over the action space. The number of inputs, NI is: for the state

space, 2 neurons for the continuous components (2 top scores), 6 for

the recognized goals, 22 for the user actions; for the action space, 12
neurons are needed. So NI = 2+6+22+12 = 42. The output layer

of the MLP contains one neuron (the value of the Q-function). The

number of parameters is: NI ·NH1
+(NH1

+1)·1 = 42·8+9 = 345.

The parametrisation based on an MLP is interesting since even

if the input space is bigger, the number of parameters needed to cor-

rectly represent the function to estimate does not become huge. For

example, if a discrete value taking N different values is added to

the state space, the number of parameters is multiplied by N while

with the neural network approach here, only NH1
·N parameters are

added to the previous parametrisation. In the case of a continuous

variable, only one input neuron is added. This property can be used

to increase the state space size and enrich the state representation. It

will thus avoid losing some easily available information.

A continuous dimension is thus added by taking into account the

third confidence score as well as a discrete dimension which is the

user action associated with the second top confidence score. The new

state space has now six components. The number of inputs is NI =
42+22+1 = 65 so the number of parameters is: 65 · 8+9 = 529.

To compare, if a RBF approach was used, the number of parameters

would be about (1 + 33) · 6 · 22 · 22 · 12 = 975.744, with only 3
Gaussians in each of the continuous dimensions.

The performance of the KTD approach in an environment with

little noise (error recognitition rate set to 10%), with this non-linear

parametrisation and either the initial state space or the new state

space has been compared to the GPTD one in Fig. 2(a). The GPTD

approach is used with the initial state space because of its unability

to scale up. The results obtained with the KTD algorithm are better

than the one got with GPTD considering that sufficient training data

are provided.When an MLP is used, the curve steps because of the

intrinsic property of the MLP: during the learning, the Q-function

is either not approximated (when not enough training data are pro-

vided) or correctly approximated (after a sufficient number of data

are provided). The difference when information is added to the state

space is not obvious. Adding information when there is little noise

is not very interesting since the speech and semantic analysers are

confident with what they recognize. So the list of hypotheses they

make is not very long and all the information is contained in the very

top ones. In Fig. 2(b) are compared the frequencies of the actions

returned by the DM while testing the three policies. The histograms

are quite similar to those obtained in Fig. 1(b).

Adding information should be more interesting in noisy situa-

tions since the list of hypotheses should be longer and the confi-

dence score associated should be more uniformly distributed among

hypotheses. For that reason, a learning has been made in a very

noisy situation (recognition rate sets to 50%). The average number

of parameters in GPTD approach is about 700. This number which

is the size of a dictionary built online, is bigger in noisy environ-

ments. This dictionary is larger in that case since a wider part of the

state space is visited. The results are presented Fig. 3. While there

was no remarkable difference between the runs when little noise was

set, now a difference exists. In Fig. 3(a), the MLP approach with

initial state space is still better than the GPTD approach. Now in

the case where additional information is brought, the KTD approach

with enriched state space gives better results: the average length of

a dialogue is shorten by 2 turns. In Fig. 3(b), the frequencies of the

actions proposed are presented. The trend between the GPTD and

the KTD algorithms are the same than in the little noisy environ-

ment. But explicit requests are more frequent when less information

is present.

6. CONCLUSION

In this paper, we proposed the use of a Kalman Temporal Differ-

ences based algorithm [12] to learn efficiently in an off-policy man-

ner a strategy for a large scale dialogue system. A linear parametri-

sation has fisrt been used to represent the Q-function. Then, because

the KTD framework is able to handle non-linear parametrisations,
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Fig. 2. GPTD and KTD (with non-linear parametrisation) compari-

son (10% recognition errors).

it has been associated to a compact value function approximator in

the form of a Multi Layer Perceptron. Thanks to this compact rep-

resentation, the dialogue state representation could be enriched to

include additional information about the distribution of confidence

scores over hypothesis. It is interesting since by taking more infor-

mation into account, less modeling bias is introduced. This enriched

state representation showed to outperform current algorithms like the

Gaussian Process Temporal Differences algorithm and more robust

dialogue strategies could be computed.

In the future, richer state representations will be tested since the

increase in the number of parameters is not prohibitive in the case of

a MLP-based value function approximation.
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