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Abstract. We study the impact of asynchronism on parallel iterative al-
gorithms in the particular context of local clusters of workstations includ-
ing GPUs. The application test is a classical PDE problem of advection-
diffusion-reaction in 3D. We propose an asynchronous version of a pre-
viously developed PDE solver using GPUs for the inner computations.
The algorithm is tested with two kinds of clusters, a homogeneous one
and a heterogeneous one (with different CPUs and GPUs).
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1 Introduction

Scientific computing generally involves a huge amount of computations to obtain
accurate results on representative data sets in reasonable time. This is why it is
important to take as much advantage as possible of any new device which can be
used in the parallel systems and bring a significant gain in performances. In that
context, one of our previous works was focused on the use of clusters of GPUs
for solving PDEs [19]. The underlying scheme is a two-stage iterative algorithm
in which the inner linear computations are performed on the GPUs [18]. Impor-
tant gains were obtained both in performance and energy consumption. Since
the beginning of parallelism, several works related to asynchronism in parallel
iterative algorithms (see for example [7, 10, 2]) have shown that this algorithmic
scheme could be a very interesting alternative to classical synchronous schemes
in some parallel contexts. Although a bit more restrictive conditions apply on
asynchronous parallel algorithms [5], a wide family of scientific problems sup-
port them. Moreover, contexts in which this algorithmic scheme is advantageous
compared to the synchronous one have also been identified. As asynchronism
allows an efficient and implicit overlapping of communications by computations,
it is especially well suited to contexts where there is a significant ratio of commu-
nication time relatively to the computation time. This is for example the case
in large local clusters or grids where communications through the system are
expensive compared to local accesses.



Our motivation for conducting the study presented in this paper comes from
the fact that a local cluster of GPUs represents a similar context of costly commu-
nications according to computations. Indeed, the cost of data transfers between
the GPU memory and the CPU memory inside each machine is added to the
classical cost of local communications between the machines. So, we propose in
this work to study the interest of using asynchronism in our PDE solver in that
specific context.

In fact, our long term objective is to develop auto-adaptive multi-algorithms
and multi-kernels applications in order to achieve optimal executions according
to a user defined criterion such as the execution time, the energy consumption,
or the energy-delay product [15]. We aim at being able to dynamically choose
between CPU or GPU kernels and between synchronous or asynchronous dis-
tributed algorithms, according to the nodes used in a cluster with heterogeneous
CPUs and GPUs.

The test application used for our experiments in this study is the classical
advection-diffusion-reaction problem in a 3D environment and with two chemical
species (see for example [17]). Two series of experiments have been performed,
one with a homogeneous cluster and another one with a heterogeneous cluster
with two couples of CPU-GPU. Both computing performances and energy con-
sumption have been measured and analyzed in function of the cluster size and
the cluster heterogeneity.

The following section presents the algorithmic scheme of our iterative PDE
solver together with the implementation sketch of the asynchronous version.
Then, the experiments are presented and the results are discussed in Section 3.

2 Asynchronous PDE Solver

It is quite obvious that over the last few years, the classical algorithmic schemes
used to exploit parallel systems have shown their limit. As the most recent sys-
tems are more and more complex and often include multiple levels of parallelism
with very heterogeneous communication links between those levels, one of the
major drawbacks of the previous schemes has become their synchronous nature.
Indeed, synchronizations may noticeably degrade performances in large or hi-
erarchical systems, even for local systems (i.e. physically close nodes connected
through a fast local network).

Since the very first works on asynchronous iterations [9, 20, 4], the interest of
those schemes has increased in the last few decades [5, 8, 1, 13, 14]. Although they
cannot be used for all problems, they are efficiently usable for a large part of
them. In scientific computing, asynchronism can be expressed only in iterative
algorithms. We recall that iterative methods perform successive approximations
toward the solution of a problem (notion of convergence) whereas direct methods
give the exact solution within a fixed number of operations. Although iterative
methods are generally slower than direct ones, they are often the only known
way to solve some problems. Moreover, they generally present the advantage of
being less memory consuming.



The asynchronous feature consists in suppressing any idle time induced by the
waiting for the dependency data to be exchanged between the computing units
of the parallel system. Hence, each unit performs the successive iterations on its
local data with the dependency data versions it owns at the current time. The
main advantage of this scheme is to allow an efficient and implicit overlapping
of communications by computations. On the other hand, the major drawbacks
of asynchronous iterations are: a more complex behavior which requires a spe-
cific convergence study, and a larger number of iterations to reach convergence.
However, the convergence conditions in asynchronous iterations are verified for
numerous problems and, in many computing contexts, the time overhead in-
duced by the additional iterations is largely compensated by the gain in the
communications [2]. In fact, as partly mentioned in the introduction, as soon as
the frequency of communications relatively to computations is high enough and
the communication costs are larger than local accesses, an asynchronous version
may provide better performances than a synchronous version.

2.1 Multisplitting-Newton algorithm

There are several methods to solve PDE problems, each of them including differ-
ent degrees of synchronism/asynchronism. The method used in this study is the
multisplitting-Newton [12] which allows for a rather important level of asynchro-
nism [21]. In that context, we use a finite difference method to solve the PDE
system. Hence, the system is linearized, a regular discretization of the spatial
domain is used and the Jacobian matrix of the system is computed at the begin-
ning of each simulation time step. The Euler equations are used to approximate
the derivatives. Since the size of the simulation domain can be huge, the domain
is split and homogeneously distributed among several nodes of a cluster. Each
node solves a part of the resulting linear system and sends the relevant updated
data to the nodes that need them. The algorithmic scheme of the method is as
follows:

– Initialization:

• Rewriting of the problem under a fixed point problem formulation:
x = T (x), x ∈ R

n where T (x) = x−F ′(x)−1F (x) and F ′ is the Jacobian

• We get F ′ ×∆x = −F with F ′ a sparse matrix (in most cases)

• F ′ and F are homogeneously distributed over the computing units

– Iterative process, repeated for each time step of the simulation:

• Each unit computes a different part of ∆x using the quasi-Newton algo-
rithm over its sub-domain as can be seen in Fig. 1

• The local elements of x are directly updated with the local part of ∆x

• The non-local elements of x come from the other units using messages
exchanges

• F is updated by using the entire vector x
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Fig. 1. Local computations associated with the sub-domain of one unit.

2.2 Inner linear solver

The method described above is a two-stage algorithm in which a linear solver
is needed in the inner stage. In fact, most of the time of the algorithm is spent
in that linear solver. This is why we chose to use the most powerful elements
of the parallel system on that part. Thus, the linear computations have been
placed on the GPUs. Due to their regularity, those treatments are very well
suited to the SIMD architecture of the GPU. Hence, on each computing unit,
the linear computations required to solve the partial system are performed on
the local GPU while all the algorithmic control, non-linear computations and
data exchanges between the units are done on the CPU.

The linear solver has been implemented both on CPU and GPU, using the
biconjugate gradient algorithm [11]. This linear solver was chosen because it per-
forms well on non-symmetric matrices (on both convergence time and numerical
accuracy), it has a low memory footprint, and it is relatively easy to imple-
ment. At very early stages of development, we also tried to use the Bi-CGSTAB
algorithm [22] and local preconditioners (Jacobi and SSOR), but this provided
very little or no gain in terms of computing time and numerical accuracy, so we
decided to keep the first, simpler solution.

GPU implementation Several aspects are critical in a GPU: the regularity of
the computations, the memory which is of limited amount and the way the data
are accessed. In order to reduce the memory consumption of our sparse matrix,
we have used a compact representation, depicted in Fig. 2, similar to the DIA
(diagonal) format [16] in BLAS [6], but with several additional advantages. The
first one is the regularity of the structure which allows us to do coalesced memory
accesses most of the time. The second one is that it provides an efficient access
to the transpose of the matrix as well as the matrix itself since the transpose is
just a re-ordering of the diagonals. That last feature is essential as it is required
in the biconjugate gradient method.

In order to be as efficient as possible, the shared memory has been used as
a cache memory whenever it was possible in order to avoid the slower accesses
to the global memory of the GPU. The different kernels used in the solver are
divided to reuse as much data as possible at each call, hence minimizing transfers
between the global memory and the registers. To get full details on those kernels,
the reader should refer to [18].
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Fig. 2. Compact and regular sparse matrix representation.

2.3 Asynchronous aspects

In the asynchronous version, computing the state of the system (i.e. the concen-
tration of the two chemical species across the space) at a given time of evolution
(the EDP is time-dependent) is performed asynchronously. This typically in-
volves solving several linear systems on each node, with some communications
between each of these inner iterations. However, once this has been done, one
synchronization is still required before beginning the next simulation time step,
as illustrated in Fig. 3.
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Fig. 3. Asynchronous iterations inside each time step of the computation.

In practice, the main differences with the synchronous version lie in the sup-
pression of some barriers and in the way the communications between the units
are managed. Concerning the first aspect, all the barriers between the inner iter-
ations inside each time step of the simulation are suppressed. The only remaining
synchronization is the one between each time step as pointed out above.

The communications management is a bit more complex than in the syn-
chronous version as it must enable sending and receiving operations at any
time during the algorithm. Although the use of non-blocking communications
seems appropriate, it is not sufficient, especially concerning receives. This is
why a multi-threaded programming is required. The principle is to use sepa-
rated threads to perform the communications, while the computations are con-
tinuously done in the main thread without any interruption, until convergence
detection. In our version, we used non-blocking sends in the main thread and
an additional thread to manage the receives. It must be noted that in order to
be as reactive as possible, some communications related to the control of the
algorithm (the global convergence detection) may be initiated directly by the



receiving thread (for example to send back the local state of the unit) without
requiring any process or response from the main thread.

Subsequently to the multi-threading, the use of mutex is necessary to pro-
tect the accesses to data and some variables in order to avoid concurrency and
potentially incoherent modifications.

Another difficulty brought by the asynchronism comes from the convergence
detection. To ensure the validity of the convergence detection, the simple global
reduction of local states of the units must be replaced by some specific mecha-
nisms. We have proposed a decentralized version of such a detection in [3]. The
most general scheme may be too expensive in some simple contexts such as local
clusters. So, when some information about the system are available (for example
bounded communication delay), it is often more pertinent to use a simplified
mechanism whose efficiency is better and whose validity is still ensured in that
context. Although both general and simplified schemes of convergence detection
have been developed for this study, the performances presented in the following
section are related to the simplified scheme which gave the best performances.

3 Experimental results

The platform used to conduct our experiments is a set of two clusters hosted by
SUPELEC in Metz. The first one is composed of 15 machines with Intel Core2
Duo CPUs running at 2.66GHz, 4GB of RAM and one Nvidia GeForce 8800GT
GPU with 512MB per machine. The operating system is Linux Fedora with
CUDA 2.3. The second cluster is composed of 17 machines with Intel Nehalem
CPUs (4 cores + hyperthreading) running at 2.67GHz, 6GB RAM and one
Nvidia GeForce GTX 285 with 1GB per machine. The OS is the same as the
previous cluster. In all the experiments, our program has been compiled with
the sm 11 flag to be compatible with both kinds of GPUs, and using OpenMPI
1.4.2 for message passing. Concerning the interconnection network, both clusters
use a Gigabit Ethernet network. Moreover, they are connected to each other and
can be used as a single heterogeneous cluster via the OAR management system.

In that hardware context, two initial series of experiments seemed particu-
larly interesting to us. The first one consists in running our application for several
problem sizes on one of the homogeneous clusters. We chose the most recent one,
with the Nehalem CPUs and GTX 285 GPUs. The second series of experiments
is similar to the first one except that instead of using only one cluster, we used
the two clusters to obtain a heterogeneous system with 32 nodes.

The results are presented in Table 1 and Table 3. The problem size indicated
in the left column corresponds to the number of spatial elements in the 3D
domain. As we have two chemical species, for a volume of 503 elements, the global
linear system is a square matrix with 2×503 lines and columns. Fortunately, the
local nature of dependencies in the advection-diffusion-reaction problem implies
that only 9 diagonals in that matrix are non-zero.

The results obtained in that context are interesting but not as good as could
be expected. The decrease of the gain (last column in the tables) when the



Speed up
Pb size Sync Async

Async/Sync
Gain (%)

50×50×50 16.52 14.85 1.11 10.10
100×100×100 144.52 106.09 1.36 26.59
150×150×150 392.79 347.40 1.13 11.55
200×200×200 901.18 866.31 1.04 3.87
250×250×250 1732.60 1674.30 1.03 3.36

Table 1. Execution times (in seconds) with the homogeneous cluster (17 machines).

problem size increases is quite natural as the ratio of communications relatively
to the computations decreases and the impact of synchronizations becomes less
preponderant over the overall performances. However, the rather limited max-
imal gain is a bit deceiving. In fact, it can be explained, at least partially, by
the relatively fast network used in the cluster, the rather small amount of data
exchanged between the nodes and the homogeneity of the nodes and loads. In
such a context, it is clear that the synchronous communications through the
Gigabit Ethernet network are not so expensive compared to the extra iterations
required by the asynchronous version. Also, it can be deduced that although the
GPU ↔ CPU data transfers play a role in the overall performances, their impact
on our PDE solver is less important than one could have thought at first glance.

Two additional experiments have been done with the same cluster but with
less processors in order to observe the behavior of our PDE solver when the
number of processors varies. The results are provided in Table 2.

9 Machines of the newer cluster

Speed up
Pb size Sync Async

Async/Sync
Gain (%)

50×50×50 39.68 25.81 1.54 34.95
100×100×100 249.63 200.25 1.25 19.78
150×150×150 714.85 635.78 1.12 11.06
200×200×200 1599.01 1617.28 0.99 -1.14

14 Machines of the newer cluster

Speed up
Pb size Sync Async

Async/Sync
Gain (%)

50×50×50 20.95 17.83 1.17 14.89
100×100×100 182.85 132.35 1.38 27.62
150×150×150 486.69 442.16 1.10 9.15
200×200×200 1101.29 1029.61 1.07 6.51

Table 2. Execution times (in seconds) with 9 and 14 homogeneous machines.

Those results confirm the general trend of gain decrease when the problem
size increases. It can also be observed that for smaller clusters, the limit of gain
brought by asynchronism is reached sooner, which is not surprising according to
the previous considerations.

Concerning the second context of use, the heterogeneous cluster, the results
presented in Table 3 are quite unexpected.



Speed up
Pb size Sync Async

Async/Sync
Gain (%)

100×100×100 53.21 52.01 1.02 2.25
150×150×150 155.13 164.05 0.94 -5.75
200×200×200 322.11 395.11 0.81 -22.66

Table 3. Execution times (in seconds) with the heterogeneous cluster (15 + 17 ma-
chines).

In fact, the heterogeneity of the machines should imply different computation
speeds and the synchronizations should induce a global slow down imposed by
the slowest machine. Nevertheless, the results tend to show that the difference
in the powers of the machines is not large enough to induce a sufficiently per-
ceptible unbalance between them. Moreover, it seems that the overhead of the
asynchronism, due to the additional iterations, is rapidly more important than
the gain in the communications, leading to a loss in performances.

Also, another point that may explain the degraded performances of the asyn-
chronous version in the heterogeneous cluster is that the GPU cards used in the
older cluster do not fully support double precision real numbers. Thus, as previ-
ously mentioned, the program is compiled to use only single precision numbers,
which divides the data size by a factor two and then also the communications
volumes, reducing even more the impact of the communications on the overall
execution times.

As can be seen in the first two series of experiments, there are some fluctua-
tions in the gains with the homogeneous cluster and rather deceiving results with
the heterogeneous cluster, which denote a complex behavior of this kind of algo-
rithm according to the context of use. Those observations imply additional ex-
periments to identify the frontier of gain between synchronism and asynchronism
in function of the number of processors and the problem size. Such experiments
are presented below.

The first aspect addressed in our additional experiments is the evolution of
the execution times according to the number of machines taken from the two
available GPU clusters for a fixed problem size. As can be seen in Fig. 4, both
surfaces are quite similar at first sight. However, there are some differences which
are emphasized by the speedup distribution according to the sequential version,
presented in Fig. 5. There clearly appears that the asynchronous version provides
a more regular evolution of the speedup than the synchronous one. This comes
from the fact that the asynchronous algorithm is more robust to the degradations
of the communications performances. Such degradations appear when the num-
ber of processors increases, implying a larger number of messages transiting over
the interconnection network and then a more important congestion. Thus, the
asynchronism puts back the performance decrease due to slower communications
in the context of a heterogeneous GPU cluster.

In order to precisely identify the contexts of use in which the asynchronism
brings that robustness, we have plotted in Fig. 6 the speedup of the asynchronous
GPU algorithm according to its synchronous counterpart.



Fig. 4. Execution time of our PDE solver on a 100 × 100 × 100 problem, with the
heterogeneous GPU cluster, with synchronous (left) and asynchronous (right) schemes.

Fig. 5. Speedup of our PDE solver on a 100×100×100 problem, with the heterogeneous
GPU cluster, with synchronous (left) and asynchronous (right) schemes, compared to
the sequential version.

First of all, we have the confirmation that asynchronism does not always bring
a gain. As already mentioned, this comes from that fact that when the ratio of
communications time over computations time is negligible, the impact of com-
munications over the overall performances is small. So, on one hand the implicit
overlapping of communications by computations performed in the asynchronous
version provides a very small gain. On the other hand, the asynchronous ver-
sion generally requires more iterations, and thus more computations, to reach
the convergence of the system. Hence, in some contexts the computation time
of the extra iterations done in the asynchronous version is larger than the gain
obtained on the communications side. Such contexts are clearly visible on the
left part of the speedup surface, corresponding to a large pool of slow processors
and just a few fast processors.



Fig. 6. Speedup of async. vs sync.
version with the heterogeneous
GPU cluster on a 1003 problem.

As soon as the communication-times to
computation-times ratio becomes significant,
which is the case either when adding proces-
sors or taking faster ones, the gain provided
by the asynchronism over the communications
becomes more important than the iterations
overhead, and the asynchronous version be-
comes faster. In those cases, the gains ob-
tained are quite significant as they can exceed
20% of the total execution time (see Tables
1 and 2). Unfortunately, it can be observed
in the example of Fig. 6 that the separation
between those two contexts is not strictly reg-
ular and studying the relative speedup map
will be necessary in order to achieve an automatic selection of the most efficient
operating mode of this kind of PDE solver in every context of use.

4 Conclusion and perspectives

Two versions of a PDE solver algorithm have been implemented and tested
on two clusters of GPUs. The conclusion that can be drawn concerning the
interest of asynchronism in such a context of parallel system for that kind of
application is that gains are not systematic. Some interesting gains (≥ 20%)
can be observed in some contexts and our experiments have pointed out that
asynchronism tends to bring a better scalability in such heterogeneous contexts
of multi-level parallel systems. However, the frontier between the two algorithmic
schemes is not simple, implying that the optimal choice of algorithmic scheme
and hardware to use in combination requires a finer model of performance.

As far as we know, that study is among the very firsts of its kind and it
shows that this subject requires further works. The obtained results are quite
encouraging and motivate us to design a performance model of parallel iterative
algorithms on GPU clusters. That model should be based on the different activ-
ities (CPU and/or GPU computing, communications,...) during the application
execution. An obvious perspective is the auto-tuning by the precise identification
of the areas in which one of the operating modes (synchronous or asynchronous)
is better suited than the other one to a given context of number of processors
and problem size. In addition, using load-balancing in that context should also
improve performances of both versions.
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