N

N
N

HAL

open science

Multi-Target Vectorization with MTPS C++ Generic
Library

Wilfried Kirschenmann, Laurent Plagne, Stéphane Vialle

» To cite this version:

Wilfried Kirschenmann, Laurent Plagne, Stéphane Vialle. Multi-Target Vectorization with MTPS
C++ Generic Library. PARA 2010 - 10th International Conference on Applied Parallel and Scien-

tific Computing, Jun 2010, Reykjavik, Iceland. pp.336-346, 10.1007/978-3-642-28145-7 33 .

00685159

HAL Id: hal-00685159
https://centralesupelec.hal.science/hal-00685159

Submitted on 4 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://centralesupelec.hal.science/hal-00685159
https://hal.archives-ouvertes.fr

Multi-Target Vectorization With MTPS C++
Generic Library

Wilfried Kirschenmann!-3, Laurent Plagne', and Stéphane Vialle?3

! SINETICS Department, EDF R&D, FRANCE,
{wilfried.kirschenmann,laurent.plagne}Qedf.fr
2 SUPELEC - UMI 2958, FRANCE,

stephane.vialle@supelec.fr

3 AlGorille INRIA Project Team, FRANCE

Abstract. This article introduces a C++ template library dedicated
at vectorizing algorithms for different target architectures: Multi-Target
Parallel Skeleton (MTPS). Skeletons describing the data structures and
algorithms are provided and allow MTPS to generate a code with opti-
mized memory access patterns for the choosen architecture. MTPS cur-
rently supports x86-64 multicore CPUs and CUDA enabled GPUs. On
these architectures, performances close to hardware limits are observed.

Keywords: GPU, SSE, Vectorization, C++ Template Metaprogram-
ming, Performances

1 Introduction

In many scientific applications, computation time is a strong constraint. Opti-
mizing these applications for the rapidly changing computer hardware is a very
expensive and time consuming task. Emerging hybrid architectures tend to make
this process even more complex.

The classical way to ease this optimization process is to build applications
on top of High Performance Computing (HPC) libraries that are available for
a large variety of hardware architectures. Such scientific applications, whose
computing time is mostly consumed within such HPC library subroutines, then
automatically exhibit optimal performances for various hardware architectures.

However, most classical HPC libraries implement fixed APIs like BLAS which
may make them too rigid to match the needs of all client applications. In partic-
ular, classical APIs are limited to manipulate rather simple data structures like
dense linear algebra matrices. As a more complex issue, general sparse matri-
ces cannot be represented with a unified data structure and various formats are
proposed by more specialized libraries. In the extreme case, structured sparse
matrices cannot be efficiently captured by any of the classical library data struc-
tures. Several neutron transport codes developed at EDF R&D rely on such
complex matrices that another kind of library is required.

Following the model of the C++ Standard Template Library (STL), template
based generic libraries such as Blitz++ [13] provide more flexible APIs and

extend the scope of library-based design for scientific applications. Such generic
libraries allow to define Domain Specific Embedded Languages (DSELs) [2].

Legolas++ (GLASS in [11]), a basis for several HPC codes at EDF, is a C++
DSEL dedicated to structured sparse linear algebra. In order to meet EDF’s in-
dustrial quality standards, a multi-target version of Legolas++4, currently under
development, will provide a unified interface for the different target architec-
tures available at EDF, including clusters of heterogeneous nodes (i.e., with
both multi-core CPUs and GPUs). This article presents MTPS (Multi-Target
Parallel Skeletons), a C++ generic library dedicated to multi-target vectorization
that is used to write the multi-target version of Legolas+-+. Only developments
concerning a single heterogeneous node are presented here.

The next section presents the principles of Legolas++ and Section 3 in-
troduces MTPS. Its optimization strategies and the achieved performances are
discussed in Section 4. Finally, conclusions are drawn in Section 5.

2 Towards a Multi-Target Linear Algebra Library

Legolas++ is a C++ DSEL developed at EDF R&D to build structured sparse
linear algebra solvers. Legolas++ provides building bricks to describe structured
sparse matrix patterns and the associated vectors and algorithms. This library
separates the actual implementation of the Linear Algebra (LA) computationnal
kernels from the physics issues.

L=

[
(e
ri=

o

i At

o)

Fig. 1. Block Matrix Patterns. A block diagonal matrix pattern is represented on the
left while a block diagonal matrix with tridiagonal blocks is represented on the right.

Block decomposition is a common linear algebra operation that allows to
describe the sparsity pattern of a given matrix from one or several basic sparsity
patterns. For example Fig. 1(left) represents a matrix with a block diagonal
sparsity pattern that can help to identify the optimal algorithm for dealing with
this matrix. If a matrix block can itself be block-decomposed, the matrix is said
to be a multi-level block matrix. Fig. 1(right) represents such a multi-level block
matrix which is diagonal with tridiagonal blocks. Legolas++ is a C++ library
developed at EDF R&D for structured sparse linear algebra problems. The cen-
tral issue in this domain is to describe efficiently multi-level block matrices as
combinations of basic sparsity patterns. Legolas++ allows to access the block
elements of a block matrix in the same manner as if it was a simple matrix. For

w N =

T W N

example A(i,j) returns a reference to the (i,j) matrix element which can be
either a scalar if A is a matrix, or a block if A is a block matrix. In the latter case,
this block can be seen as a simple sub-matrix and provides the same interface.
This means that A(i,j) (k,1) returns a reference to the (k,1) scalar element
of the (4,j) block.

Such a block matrix naturally operates with 2D vectors. For example let us
consider the following matrix-vector product ¥ =Y + A x X where A is a block
matrix and X and Y are vectors. Legolas++ allows to implement this product as:

for (int i=0 ; i < A.nrows() ; i++4)
for (int j=0 ; j < A.ncols() ; j++)
Y[iJ+=A(1,3)*X[j];

In this case, each elementary operation Y[i]+=A(i,j)*X[j] corresponds to a
simple matrix-vector sub-product and the C++ compiler statically transforms
the previous handwritten algorithm into the following generated block algorithm:

for (int i=0 ; i < A.nrows() ; i++)
for (int j=0 ; j < A.mncols() ; j++)
for (int k=0 ; k < A(i,j).nrows() ; k++)
for (int 1=0 ; 1 < A(i,j).ncols() ; 14+4)
Y(1] [Klt=A(1,3) (o, 1) %X [3][1]:

The previous algorithm shows that the vectors X and Y, corresponding to the
block matrix A, are two-dimensional. In order to simplify the Legolas++ vocab-
ulary, one describes a block matrix like A as a 2-level Legolas++ matrix that
operates on 2D Legolas++ vectors. The main objective of the Legolas++ library
is to provide tools for the users to explicitely define their n-level matrices and
corresponding nD vectors. For instance, Fig. 2 shows the sparsity pattern of a
5-level Legolas++ matrix block that belongs to the 7-level matrix of our neutron
transport code [11,6,8].

The explicit GPU parallelization of a neutron transport code resulted in
speed-ups around 30 over the sequential Legolas++ CPU implementation [6,8].
To generalize this gain of performances to other Legolas++ based applications, a
parallel and multi-target version of Legolas++ is to be developed. As the parallel
CPU and GPU versions exhibit strong similarities, Legolas++ developments for

Fig. 2. Sparsity Pattern of a 5-level Legolas++ block matrix.

Scientific application{ Neutron Transport | | | |

Structured Sparse Linear Algebra Legolas++4

Multi-target layer

Different parallelizations TBB, CUDA, ...

Different hardware targets (CPU (thread + SSE)XGPU .'

Fig. 3. Our hourglass software architecture to achieve a multi-target Legolas++: a
minimal MTPS library adapts the code for different hardware architectures.

the different targets are factorized into an intermediate layer between Legolas+-+
and the different hardware architectures, namely MTPS (see Fig. 3). Note that
examples provided in the following of this paper correspond only to MTPS code
as the multi-target version of Legolas++ is currently under development.

3 Introduction to MTPS

3.1 Related Work

Many libraries parallelize for different architectures from a single source code.
A complete bibliography is beyond the scope of this article; only some examples
based on C++ meta-programming techniques are introduced.

Some libraries, like TrilinosNode [1], Quaff [4] or Intel TBB [12], require
their users to explicitly express the parallelism within the application by using
parallel skeletons. This expression of available parallelism can be encapsulated
into specialized and implicitly parallel STL-like containers and algorithms, as in
Thrust* and Honei [3].

Our goal is to provide implicit parallelism within Legolas++ containers and
algorithms. To ease the writing of its containers and algorithms, Legolas++
relies on MTPS which follows a parallel skeletons based approach. Then MTPS
optimizes the code for the different architectures.

As this article presents MTPS, only code using MTPS is shown. However
Legolas+-+ will hide MTPS details in its containers and algorithms so its user
do not need to be aware of MTPS.

3.2 Collections and Vectorizable Algorithms

This section introduces the notions of collection and vectorizable algorithm on
which MTPS relies.

In C++, a Plain Old Data (POD) is a data structure that is represented only
as passive collections of field values, without using encapsulation or other object-
oriented features. POD non-static data members can only be integral types or
PODs. As a POD have neither constructor nor desctructor, it can be copied

* Thrust: http://code.google.com/p/thrust/

http://code.google.com/p/thrust/

-

N

[N

or moved in memory [5]. This particularity allow MTPS to copy a POD from
one memory space to another (e.g., GPU memory space). In the following code
snippet, MyP0OD is a POD with three float data members:

struct MyPOD{ float a,b,c; };

Let a collection be a data structure containing different instances of the
same POD and f be a pure function (i.e., £ has no side effects). An algorithm
applying £ to all elements of a collection is said to be vectorizable. To parallelize
such algorithms, MTPS provides two parallel skeletons optimized for different
target architectures: map and fold which correspond to a parallel for loop and
to a parallel reduction respectively.

An algorithm applied to a set of data is wvectorizable if and only if this set
of data is considered as a collection and if the algorithm can be decomposed as
a pure function applied to each element of the collection. We say that an algo-
rithm is vectorizable in reference to a given collection. For instance, an algorithm
operating on each row of a matrix is vectorizable only if the matrix is considered
as a collection of rows. The same algorithm is not wvectorizable if the matrix
is considered as a collection of columns: the matrix must be transformed (i.e.,
transposed). Two algorithms vectorizable in reference to the same collection are
said to be in the same vectorial context. On the contrary, if two consecutive algo-
rithms are not vectorizable in reference to the same collection, a context switch
(the matrix transposition in our example) is required. In a distributed memory
system, context switches correspond to communications.

3.3 Linear Algebra Hello World of MTPS: saxpy

This section presents how to use MTPS to implement the saxpy operation and
to execute it efficiently on different target architectures. The saxpy operation is
part of the BLAS interface and its C implementation is:

float *X, *Y, a;
for(int i=0; i<N; 4++i) Y[i]+=axX[i];

First, the iteration-dependent data are gathered in a POD XYData whose
members correspond to X[i] and Y[i]. The types of the two members (float)
are passed as template arguments to MTPS: :POD and their names (x and y) are
given in the Fields enum:

struct XYData: public MTPS::POD<float, float>{
enum Fields{x, y};

s

Second, a collection of XYData elements, xyCol, is built using MTPS con-
tainers. Optimized containers are provided as member of the class correspond-
ing to the target architecture. Two levels of parallelism are available on CPUs:
thread parallelism and SIMD parallelism. The choice for each level is made
by passing two arguments to the CPU template class. Thread can be one of
MTPS: :Sequential, MTPS: :OMP (openMP) or MTPS: : TBB (Intel TBB). SIMD can

be one of MTPS: :Scalar (no SIMD instruction generated) or MTPS: : SSE (SIMD
instruction generated using SSE intrinsics). On CUDA-enabled GPUs, only the
SIMD parallelism is provided.

1 //typedef MIPS::GPU::CUDA Target; // To use the GPU

2

3 //typedef MIPS:: Sequential Thread; // Single threaded

4 //typedef MTPS::TBB Thread; // TBB parallelism

5 typedef MTPS::0MP Thread; // OpenMP parallelism
6 //typedef MIPS:: Scalar SIMD; // Disable SIMD units
7 typedef MTPS::SSE SIMD; // Enable SSE units

8 typedef MTPS::CPU<Thread, SIMD> Target; // To use the CPU
9
10 Target :: collection<XYData> xyCol(N);

Third, the function that is to be applied to all elements of the collection
must be written as a functor class: AxpyOp. The coefficient a is common for all
elements of the collection and is stored as a member of the Axpy0Op functor class:

1 struct AxpyOp{

2 float a_;

3 template <template <class> class View>

4 INLINE void operator () (View<XYData> xy) const {
5 typedef View<XYData> XYV,

6 int x = XYV::x;

7 xy(XYV::y)t+=a_*xxy(x);

s }

9 };

As XYData elements may not be stored identically on different target archi-
tecture, AxpyOp: : operator () does not take an XYData as argument. A View is
provided instead. XYData members can be accessed with the operator () of the
View which takes an int as argument. This int identifiy the data member that
is to be accessed; either X[i] or Y[i] in our exemple. Elements of the Fields
enum can be used either to initialize an int (line 7) or directly (line 8). The
declaration of AxpyOp: :operator () must be preceeded by the INLINE macro
which defines target-dependent keywords (e.g. __device__ for CUDA).

Finally, the functor is passed to the map and fold parallel skeletons provided
by the collection container:

1 AxpyOp axpyOp; axpyOp.a_=...;
2 xyCol.map (axpyOp);

3 ...

4 Dot0Op dotOp;

5 float dot = xyCol.fold(dot0Op);

Although more verbose and harder to use than the approaches presented in
Section 3.1, this formalism allow MTPS to be the only library at our knowledge
that optimizes the data layout for different architectures as Section 4 will show.

4 Optimization of Performances

For each architecture, the specific optimizations required to enable good perfor-
mances will be presented. The implementation of a more complex example will
then be discussed.

4.1 Multi-Target Performance Optimizations

Parallelizing a vectorizable algorithm is straightforward. However, achieving good
performances on different hardware architectures is not: modifications of the
collection data structure may be required. Indeed, achieving efficient usage of
memory bandwidth on a given hardware architecture requires specific access
patterns [7]. Fig. 4 shows a block-diagonal matrix of 8 TriDiagonal Symmetric
Matrix blocks (TDSM) of size 4 (left). Assuming that this matrix is considered
as a collection of TDSM blocks in reference to an algorithm, Fig. 4 shows how
to store it on three different architectures to optimize the access pattern (right):

— on CPU (top), maximizing data locality is required to avoid cache misses.
As the TDSM blocks are independent, data locality only matters inside a
TDSM block. Hence, the best performances are achieved when each TDSM
block is stored in a contiguous chunk of memory;

— on GPU (bottom), memory accesses have to be coalesced to achieve good
performances (see the CUDA programming guide [10]). This implies that the
accesses made by two threads ¢ and ¢ + 1 must correspond to two elements
at index j and j + 1. As the same function is applied in a SIMD fashion to
the different TDSM blocks, all elements A are accessed at the same time and
they have to be stored in a contiguous chunk of memory;

— using the SSE units (middle) requires to pack the data into vectors containing
4 independent elements that have to be accessed together. Although a GPU
ordering would fill this need, this would break the data locality and imply
CPU cache misses. Finally, an intermediate storage between the two previous
is optimal.

Performances achieved thanks to this optimization will be shown in Sec-
tion 4.3. This optimization is made in MTPS collection container. To construct
a collection, MTPS user must define both the size per POD-element of each field
(4 for the diagonal field on Fig. 4) and the number of POD-elements. Using this
information, MTPS optimizes the storage for each target architecture.

As a context corresponds to a storage pattern, a context switch imply a data
reordering. For instance, switching a collection of matrix rows to a collection
of matrix columns modifies the effective storage (i.e. the matrix is transposed).
MTPS provides some switch skeletons.

4.2 Implementation of a Linear System Resolution

The example presented in this section corresponds to a basic operation that
represents the major part of the execution time of a neutron transport code [6,8].

0 s s o o S — — — CPU
1 e 01234567
2 | IN_SEE SEE_san)
3 D IAIBICIDIAIBICID CPU (SSE)
4 / L Jl ’ |
0-3 4-7
5
6 — e— —— el Y
7j$yt A B C D

Fig. 4. The storage of the diagonal is adapted by MTPS for the target architecture.

Let A be a block-diagonal matrix with TDSM blocks. The AX = B linear system
can be seen as a collection of smaller block systems ax = b that can be solved
independently. To solve one ax = b system, the matrix a is factorized in-place
with a LDLT decomposition and a forward and backward substitution is then
applied on x. Only the code for the factorization is shown here.

First, let us introduce TData which represents a TDSM block. TData elements
are stored in two vectors corresponding to the diagonal and the lower diagonal:

1 struct TData: public MTPS::POD<float, float>{

2 enum Fields{diag, low};

3 typedef typename MTPS::POD<float,float >::Shape Shape;
4 static Shape createShape(int size){

5 Shape out;

6 out[diag] = size; out [low] = size—1;

7
8

IS

The Shape type of line 5 contains the effective sizes of the two fields. All
elements of a collection have the same shape.

Second, to build a collection of TData, one has to provide both the number
of TData elements and their shape. With these elements, the storage pattern of
tCol can be optimized according to the target architecture (see Fig. 4):

1 TData:: Shape s=TData::createShape(size);
2 Target :: collection<TData> tCol(N, s);

Third, the TLDLtOp functor class that factorizes the matrix a in-place using
a LDLT decomposition has to be provided:

1 struct TLDLtOp{

2 template <template <class> class View>

3 INLINE void operator () (View<TData> a) const{
4 typedef View<TData> TV;

5 int low = TV::low, diag = TV::diag;

6 typename TV::template Type<low>::Type low_i_1;
7 int size = a.shape() [diag];

8 for (int i =1 ; i < size ; i++){

9 a(low, i—1)=a(low, i—1)/a(diag, i-1);

13
14
15

a(diag, i)—=a(diag, i—1)*a(low, i—1)*a(low, i—1);

}s
TLDLtOp op;
tCol.map (op);

The elements of a field are accessed by passing their index as the second argument
of the view operator (). If no index is provided as in the line 8 of the AxpyOp
example of Section 3.3, the first element is returned. Line 7 shows how the type
of the field elements can be retrieved.

4.3 Performances

Table 1 shows the performances obtained to compute the solution of the AX =
B system from Section 4.2 with A having 10° blocks of size 100x100. The
matrix and vector are directly constructed on the target architecture and do
not require further reordering to fit the target architecture. Speed-ups take the
sequential scalar CPU version as reference. CPU tests are run on a machine
with two 2.933 GHz Intel X5670 hexa-core processors. GPU tests are run on a
Nvidia Quadro C2050 card. Both architectures were launched in 2010. On CPU,
icpc 11.1 and g++ 4.5 provide the same performances. On GPU, nvcc 3.2 has
been used. Computation performances are given in GFlops. Data throughput is
given in GB/s and takes into account the effective data transfers to and from
the memory. Consequently, an element remaining in the cache memory between
two loads is considered to have been loaded only once.

For each architecture, the achieved performances are compared to the ex-
pected performances corresponding to the best observed performances on the
given architecture. Expected computational power are measured with large BLAS
matrix-matrix multiplications (sgemm): 11.2 GFlops with one CPU core and
126.5 GFlops with the 12 CPU cores using Intel MKL. The MKL uses the SSE
units. As these units can execute 4 single precision floating point operations,
we define expected computational performances without the SSE units as %
of the SSE performances (i.e., 2.8 GFlops and 31.6 GFlops respectively). On
GPU, the expected computational power measured is 435 GFlops. On CPU, the
expected memory throughputs are measured with an extended version of the
stream benchmark [9]. This version adds a new subroutine containing 9 memory
accesses (instead of 3 for the Triad routine) and shows 12.4 GB/s for single
threaded execution and 35.0 GB/s for the parallel execution using openMP.
On GPU, the expected memory throughput is measured with the CUDA SDK
bandwidth benchmark on GPU: 86.3 GB/s.

To provide comparable results in spite of the hardware differences, the spec-
ifications of the hardware have been taken into account. For the computational
power, the difference relies in the number of cycles to evaluate a floating point
division: on GPU, 1 cycle is required but 15 are required on CPU. Thus, on
CPU, the division is considered as 15 floating point operations. For the memory

throughput, only accesses to the main memory are counted. In other words, ac-
cesses to a piece of data that have already been loaded in cache are considered as
free. On CPU, 3 accesses are saved whereas no accesses are saved on GPU. Eval-
uating the computational power and the memory throughputs this way allow us
to make fair comparison to the expected performances.

The performances of a code on a given architecture are limited either by the
computational power or by the memory throughput. Bold figures in Table 1
correspond to the limiting factor for the corresponding target architecture. On
CPU, when no or few parallelism is used, the performances are limited by the
computational power: the performances achieved are between 75% and 93% of
the expected computational performances. When both the threading parallelism
and the SIMD parallelism are enabled, the performances are limited by the
memory throughput: almost 100% of the best observed throughput is obtained.
On GPU, all the available parallelism is used and the performances are thus
limited by the memory throughput: 95% of the best observed throughput is
reached.

Table 1. Performances of MTPS for the TDSM example. Computation are carried out
in single precision floating point.

Time |Speed| Computational Power Data Throughput

Thread |SIMD (ms) | Up GFlops[EXpected[%Exp. GB/s [Expected[%Exp.
sequential scalar||131.9 1.0 2.5 2.8 88 1.7 12.4 14
d SSE || 37.3| 35| 87 12| 78| 6.0 24| 48
intel TBB scalar|| 12.1] 11. 27.0 31.6 85 18.5 35.0 53
SSE 6.6 | 20. 49.4 126.5 39 33.9 35.0 97

openMP scalar|| 11.1] 12. 29.4 31.6 93 20.1 35.0 57
P SSE 6.5 20. 50.1 126.5 40 344 35.0 98

[CUDAC [41[32 [159] 435 | 4] 818] 863 95]

The limitation of the performances by the memory throughput shows the
importance of optimizing the memory accesses. Finally, Table 1 shows that by
abstracting the memory access pattern to the target architecture the the perfor-
mances of a given code can near the hardware limits on different architectures.

5 Conclusions and Perspectives

We have presented MTPS, a C++ generic library simplifying the parallelization
and the optimization of wvectorizable algorithms for different architectures. Al-
though MTPS semantics and syntax remain complex, the end user should not
be aware of this complexity: MTPS is designed to be generated, especiallly with
the C++ template metaprogramming approach. Finaly, an algorithm written
once with MTPS can be compiled to be executed on the SSE units of multicore
CPUs or on CUDA-enabled GPUs and obtain performances close to hardware
limits: more than 95% of peak performances were observed.

For further developments of MTPS, the design of an new version of Lego-
las++ on top of MTPS will allow to validate the set of skeletons provided by
MTPS, especially concerning the context switches. The implementation of a neu-
tron transport solver [6,8] with this version of Legolas++ will automaticaly
provide a multi-target version of this solver. Efforts will be made to keep the
portability of the performances currently available with MTPS.

Acknowledgement: authors want to thank Region Lorraine and ANRT for
supporting this research.

References

1. Baker, C.G., Carter Edwards, H., Heroux, M.A., Williams, A.B.: A light-weight
API for Portable Multicore Programming. In: PDP 2010: Proceedings of The 18th
Euromicro International Conference on Parallel, Distributed and Network-Based
Computing. IEEE Computer Society, Washington, DC, USA (2010)

2. Czarnecki, K., Odonnell, J.T., Striegnitz, J., Walid, Taha: DSL Implementation
in MetaOCaml, Template Haskell, and C++. LNCS: Domain-Specific Program
Generation 3016(2), 51-72 (2004)

3. Dyk, D.V., Geveler, M., Mallach, S., Ribbrock, D., Géddeke, D., Gutwenger, C.:
HONEI: A collection of libraries for numerical computations targeting multiple
processor architectures. Computer Physics Communications 180(12), 25342543
(2009)

4. Falcou, J., Sérot, J., Chateau, T., Lapresté, J.T.: Quaff: efficient C++ design for
parallel skeletons. Parallel Computing 32(7-8), 604—-615 (2006)

5. I1SO: ISO/IEC 14882:2003: Programming languages — C++. International Orga-
nization for Standardization, Geneva, Switzerland (2003), (§3.9)

6. Kirschenmann, W., Plagne, L., Ploix, S., Pongot, A., Vialle, S.: Massively Parallel
Solving of 3D Simplified Px Equations on Graphic Processing Units. In: Proceed-
ings of Mathematics, Computational Methods & Reactor Physics (May 2009)

7. Kirschenmann, W., Plagne, L., Vialle, S.: Multi-target C++ implementation of par-
allel skeletons. In: POOSC ’09: Proceedings of the 8th workshop on Parallel/High-
Performance Object-Oriented Scientific Computing. ACM, New York, USA (2009)

8. Kirschenmann, W., Plagne, L., Vialle, S.: Parallel sp, on multi-core cpus and
many-core gpus. Transport Theory and Statistical Physics 39(2), 255-281 (2010)

9. McCalpin, J.D.: Memory Bandwidth and Machine Balance in Current High Per-
formance Computers. IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter pp. 19-25 (dec 1995)

10. NVIDIA: NVIDIA CUDA C Programming Guide 3.1 (2010)

11. Plagne, L., Pongot, A.: Generic Programming for Deterministic Neutron Transport
Codes. In: Proceedings of Mathematics and Computation, Supercomputing, Reac-
tor Physics and Nuclear and Biological Applications. Palais des Papes, Avignon,
France (September 2005)

12. Reinders, J.: Intel threading building blocks. O’Reilly & Associates, Inc., Se-
bastopol, CA, USA (2007)

13. Veldhuizen, T.L.: Arrays in Blitz++. In: ISCOPE ’98: Proceedings of the Sec-
ond International Symposium on Computing in Object-Oriented Parallel Environ-
ments. pp. 223-230. Springer-Verlag, London, UK (1998)

	Multi-Target Vectorization With MTPS C++ Generic Library

