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Abstract This paper deals with the problem of estimating the volume of the excursion set of a function

f : Rd → R above a given threshold, under a probability measure on R
d that is assumed to be known. In

the industrial world, this corresponds to the problem of estimating a probability of failure of a system.

When only an expensive-to-simulate model of the system is available, the budget for simulations is

usually severely limited and therefore classical Monte Carlo methods ought to be avoided. One of the

main contributions of this article is to derive SUR (stepwise uncertainty reduction) strategies from a

Bayesian-theoretic formulation of the problem of estimating a probability of failure. These sequential

strategies use a Gaussian process model of f and aim at performing evaluations of f as efficiently as

possible to infer the value of the probability of failure. We compare these strategies to other strategies

also based on a Gaussian process model for estimating a probability of failure.

Keywords Computer experiments · Sequential design · Gaussian processes · Probability of failure ·
Stepwise uncertainty reduction

1 Introduction

The design of a system or a technological product has to take into account the fact that some design

parameters are subject to unknown variations that may affect the reliability of the system. In particular,

it is important to estimate the probability of the system to work under abnormal or dangerous operating

conditions due to random dispersions of its characteristic parameters. The probability of failure of a
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system is usually expressed as the probability of the excursion set of a function above a fixed threshold.

More precisely, let f be a measurable real function defined over a probability space (X,B(X),PX), with

X ⊆ R
d, and let u ∈ R be a threshold. The problem to be considered in this paper is the estimation of

the volume, under PX, of the excursion set

Γ := {x ∈ X : f(x) > u} (1)

of the function f above the level u. In the context of robust design, the volume α := PX(Γ ) can be viewed

as the probability of failure of a system: the probability PX models the uncertainty on the input vector

x ∈ X of the system—the components of which are sometimes called design variables or factors—and

f is some deterministic performance function derived from the outputs of a deterministic model of the

system1. The evaluation of the outputs of the model for a given set of input factors may involve complex

and time-consuming computer simulations, which turns f into an expensive-to-evaluate function. When f

is expensive to evaluate, the estimation of α must be carried out with a restricted number of evaluations

of f , generally excluding the estimation of the probability of excursion by a Monte Carlo approach.

Indeed, consider the empirical estimator

αm :=
1

m

m∑

i=1

1{f(Xi)>u} , (2)

where the Xis are independent random variables with distribution PX. According to the strong law of

large numbers, the estimator αm converges to α almost surely when m increases. Moreover, it is an

unbiased estimator of α, i.e. E(αm) = α. Its mean square error is

E
(
(αm − α)2

)
=

1

m
α
(
1− α

)
.

If the probability of failure α is small, then the standard deviation of αm is approximately
√

α/m. To

achieve a given standard deviation δα thus requires approximately 1/(δ2α) evaluations, which can be

prohibitively high if α is small. By way of illustration, if α = 2×10−3 and δ = 0.1, we obtain m = 50000.

If one evaluation of f takes, say, one minute, then the entire estimation procedure will take about 35

days to complete. Of course, a host of refined random sampling methods have been proposed to improve

over the basic Monte Carlo convergence rate; for instance, methods based on importance sampling with

cross-entropy (Rubinstein and Kroese, 2004), subset sampling (Au and Beck, 2001) or line sampling

(Pradlwarter et al., 2007). They will not be considered here for the sake of brevity and because the

required number of function evaluations is still very high.

Until recently, all the methods that do not require a large number of evaluations of f were based

on the use of parametric approximations for either the function f itself or the boundary ∂Γ of Γ .

The so-called response surface method falls in the first category (see, e.g., Bucher and Bourgund, 1990;

Rajashekhar and Ellingwood, 1993, and references therein). The most popular approaches in the second

category are the first- and second-order reliability method (FORM and SORM), which are based on

a linear or quadratic approximation of ∂Γ around the most probable failure point (see, e.g., Bjerager,

1990). In all these methods, the accuracy of the estimator depends on the actual shape of either f or ∂Γ

1 Stochastic simulators are also of considerable practical interest, but raise specific modeling and computational

issues that will not be considered in this paper.
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Sequential design of computer experiments for the estimation of a probability of failure 3

and its resemblance to the approximant: they do not provide statistically consistent estimators of the

probability of failure.

This paper focuses on sequential sampling strategies based on Gaussian processes and kriging, which

can been seen as a non-parametric approximation method. Several strategies of this kind have been

proposed recently in the literature by Ranjan et al. (2008), Bichon et al. (2008), Picheny et al. (2010)

and Echard et al. (2010a,b). The idea is that the Gaussian process model, which captures prior knowledge

about the unknown function f , makes it possible to assess the uncertainty about the position of Γ given a

set of evaluation results. This line of research has its roots in the field of design and analysis of computer

experiments (see, e.g., Sacks et al., 1989; Currin et al., 1991; Welch et al., 1992; Oakley and O’Hagan,

2002, 2004; Oakley, 2004; Bayarri et al., 2007). More specifically, kriging-based sequential strategies for

the estimation of a probability of failure are closely related to the field of Bayesian global optimization

(Mockus et al., 1978; Mockus, 1989; Jones et al., 1998; Villemonteix, 2008; Villemonteix et al., 2009;

Ginsbourger, 2009).

The contribution of this paper is twofold. First, we introduce a Bayesian decision-theoretic framework

from which the theoretical form of an optimal strategy for the estimation of a probability of failure can be

derived. One-step lookahead sub-optimal strategies are then proposed2, which are suitable for numerical

evaluation and implementation on computers. These strategies will be called SUR (stepwise uncertainty

reduction) strategies in reference to the work of D. Geman and its collaborators (see, e.g. Fleuret and

Geman, 1999). Second, we provide a review in a unified framework of all the kriging-based strategies

proposed so far in the literature and compare them numerically with the SUR strategies proposed in

this paper.

The outline of the paper is as follows. Section 2 introduces the Bayesian framework and recalls the

basics of dynamic programming and Gaussian processes. Section 3 introduces SUR strategies, from the

decision-theoretic underpinnings, down to the implementation level. Section 4 provides a review of other

kriging-based strategies proposed in the literature. Section 5 provides some illustrations and reports

an empirical comparison of these sampling criteria. Finally, Section 6 presents conclusions and offers

perspectives for future work.

2 Bayesian decision-theoretic framework

2.1 Bayes risk and sequential strategies

Let f be a continuous function. We shall assume that f corresponds to a computer program whose output

is not a closed-form expression of the inputs. Our objective is to obtain a numerical approximation of

the probability of failure

α(f) = PX{x ∈ X : f(x) > u} =

∫

X

1f>u dPX , (3)

where 1f>u stands for the characteristic function of the excursion set Γ , such that for any x ∈ X,

1f>u(x) equals one if x ∈ Γ and zero otherwise. The approximation of α(f) has to be built from a set

of computer experiments, where an experiment simply consists in choosing an x ∈ X and computing

2 Preliminary accounts of this work have been presented in Vazquez and Piera-Martinez (2007) and Vazquez

and Bect (2009).
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the value of f at x. The result of a pointwise evaluation of f carries information about f and quantities

depending on f and, in particular, about 1f>u and α(f). In the context of expensive computer exper-

iments, we shall also suppose that the number of evaluations is limited. Thus, the estimation of α(f)

must be carried out using a fixed number, say N , of evaluations of f .

A sequential non-randomized algorithm to estimate α(f) with a budget of N evaluations is a

pair (XN , α̂N ),

XN : f 7→ XN (f) = (X1(f), X2(f), . . . , XN (f)) ∈ X
N , α̂N : f 7→ α̂N (f) ∈ R+ ,

with the following properties:

a) There exists x1 ∈ X such that X1(f) = x1, i.e. X1 does not depend on f .

b) Let Zn(f) = f(Xn(f)), 1 ≤ n ≤ N . For all 1 ≤ n < N , Xn+1(f) depends measurably3 on In(f),
where In = ((X1, Z1) , . . . , (Xn, Zn)).

c) α̂N (f) depends measurably on IN (f).

The mapping XN will be referred to as a strategy, or policy, or design of experiments, and α̂N will be

called an estimator. The algorithm (XN , α̂N ) describes a sequence of decisions, made from an increasing

amount of information: X1(f) = x1 is chosen prior to any evaluation; for each n = 1, . . . , N − 1, the

algorithm uses information In(f) to choose the next evaluation point Xn+1(f); the estimation α̂N (f)

of α(f) is the terminal decision. In some applications, the class of sequential algorithms must be further

restricted: for instance, when K computer simulations can be run in parallel, algorithms that query

batches of K evaluations at a time may be preferred (see, e.g. Ginsbourger et al., 2010). In this paper

no such restriction is imposed.

The choice of the estimator α̂N will be addressed in Section 2.4: for now, we simply assume that

an estimator has been chosen, and focus on the problem of finding a good strategy XN ; that is, one

that will produce a good final approximation α̂N (f) of α(f). Let AN be the class of all strategies XN

that query sequentially N evaluations of f . Given a loss function L : R × R → R, we define the error

of approximation of a strategy XN ∈ AN on f as ǫ(XN , f) = L(α̂N (f), α(f)). In this paper, we shall

consider the quadratic loss function, so that ǫ(XN , f) = (α̂N (f)− α(f))2.

We adopt a Bayesian approach to this decision problem: the unknown function f is considered as

a sample path of a real-valued random process ξ defined on some probability space (Ω,B,P0) with

parameter in x ∈ X, and a good strategy is a strategy that achieves, or gets close to, the Bayes risk

rB := infXN∈AN
E0 (ǫ(XN , ξ)), where E0 denotes the expectation with respect to P0. From a subjective

Bayesian point of view, the stochastic model ξ is a representation of our uncertain initial knowledge

about f . From a more pragmatic perspective, the prior distribution can be seen as a tool to define a

notion of a good strategy in an average sense. Another interesting route, not followed in this paper, would

have been to consider the minimax risk infXN∈AN
maxf E0 (ǫ(XN , ξ)) over some class of functions.

Notations. From now on, we shall consider the stochastic model ξ instead of the deterministic

function f and, for abbreviation, the explicit dependence on ξ will be dropped when no there is no

risk of confusion; e.g., α̂N will denote the random variable α̂N (ξ), Xn will denote the random variable

Xn(ξ), etc. We will use the notations Fn, Pn and En to denote respectively the σ-algebra generated

by In, the conditional distribution P0 ( · | Fn) and the conditional expectation E0 ( · | Fn). Note that

3 i.e., there is a measurable map ϕn : (X×R)n → X such that Xn = ϕn ◦ In

http://dx.doi.org/10.1007/s11222-011-9241-4
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the dependence of Xn+1 on In can be rephrased by saying that Xn+1 is Fn-measurable. Recall that

En (Z) is Fn-measurable, and thus can be seen as a measurable function of In, for any random variable Z.

2.2 Optimal and k-step lookahead strategies

It is well-known (see, e.g., Berry and Fristedt, 1985; Mockus, 1989; Bertsekas, 1995) that an optimal

strategy for such a finite horizon problem4, i.e. a strategy X⋆
N ∈ AN such that E0 (ǫ(X

⋆
N , ξ)) = rB, can

be formally obtained by dynamic programming : let RN = EN (ǫ(XN , ξ)) = EN

(
(α̂N − α)2

)
denote the

terminal risk and define by backward induction

Rn = min
x∈X

En
(
Rn+1 | Xn+1 = x

)
, n = N − 1, . . . , 0. (4)

To get an insight into (4), notice that Rn+1, n = 0, . . . , N − 1, depends measurably on In+1 =

(In, Xn+1, Zn+1), so that En
(
Rn+1 | Xn+1 = x

)
is in fact an expectation with respect to Zn+1,

and Rn is an Fn-measurable random variable. Then, we have R0 = rB, and the strategy X⋆
N defined by

X⋆
n+1 = argmin

x∈X

En
(
Rn+1 | Xn+1 = x

)
, n = 1, . . . , N − 1, (5)

is optimal5. It is crucial to observe here that, for this dynamic programming problem, both the space

of possible actions and the space of possible outcomes at each step are continuous, and the state space

(X×R)n at step n is of dimension n(d+1). Any direct attempt at solving (4)–(5) numerically, over an

horizon N of more than a few steps, will suffer from the curse of dimensionality.

Using (4), the optimal strategy can be expanded as

X⋆
n+1 = argmin

x∈X

En

(
min
Xn+2

En+1 . . . min
XN

EN−1RN

∣∣∣ Xn+1 = x

)
.

A very general approach to construct sub-optimal—but hopefully good—strategies is to truncate this

expansion after k terms, replacing the exact risk Rn+k by any available surrogate R̃n+k. Examples of

such surrogates will be given in Sections 3 and 4. The resulting strategy,

Xn+1 = argmin
x∈X

En

(
min
Xn+2

En+1 . . . min
Xn+k

En+k−1 R̃n+k

∣∣∣ Xn+1 = x

)
. (6)

is called a k-step lookahead strategy (see, e.g., Bertsekas, 1995, Section 6.3). Note that both the opti-

mal strategy (5) and the k-step lookahead strategy implicitly define a sampling criterion Jn(x), Fn-

measurable, the minimum of which indicates the next evaluation to be performed. For instance, in the

case of the k-step lookahead strategy, the sampling criterion is

Jn(x) = En

(
min
Xn+2

En+1 . . . min
Xn+k

En+k−1 R̃n+k

∣∣∣ Xn+1 = x

)
.

4 in other words, a sequential decision problem where the total number of steps to be performed is known from

the start
5 Proving rigorously that, for a given P0 and α̂N , equations (4) and (5) actually define a (measurable!) strategy

X⋆
N ∈ AN is technical problem that is not of primary interest in this paper. This can be done for instance,

in the case of a Gaussian process with continuous covariance function (as considered later), by proving that

x 7→ En (Rn+1 | Xn+1(ξ) = x) is a continuous function on X and then using a measurable selection theorem.
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In the rest of the paper, we restrict our attention to the class of one-step lookahead strategies, which

is, as we shall see in Section 3, large enough to provide very efficient algorithms. We leave aside the

interesting question of whether more complex k-step lookahead strategies (with k ≥ 2) could provide a

significant improvement over the strategies examined in this paper.

Remark 1 In practice, the analysis of a computer code usually begins with an exploratory phase, during

which the output of the code is computed on a space-filling design of size n0 < N (see, e.g., Santner

et al., 2003). Such an exploratory phase will be colloquially referred to as the initial design. Sequential

strategies such as (5) and (6) are meant to be used after this initial design, at steps n0 + 1, . . . , N . An

important (and largely open) question is the choice of the size n0 of the initial design, for a given global

budget N . As a rule of thumb, some authors recommend to start with a sample size proportional to the

dimension d of the input space X, for instance n0 = 10 d ; see Loeppky et al. (2009) and the references

therein.

2.3 Gaussian process priors

Restricting ξ to be a Gaussian process makes it possible to deal with the conditional distributions Pn

and conditional expectations En that appear in the strategies above. The idea of modeling an unknown

function f by a Gaussian process has originally been introduced circa 1960 in time series analysis (Parzen,

1962), optimization theory (Kushner, 1964) and geostatistics (see, e.g., Chilès and Delfiner, 1999, and the

references therein). Today, the Gaussian process model plays a central role in the design and analysis of

computer experiments (see, e.g., Sacks et al., 1989; Currin et al., 1991; Welch et al., 1992; Santner et al.,

2003). Recall that the distribution of a Gaussian process ξ is uniquely determined by its mean function

m(x) := E0(ξ(x)), x ∈ X, and its covariance function k(x, y) := E0 ((ξ(x)−m(x))(ξ(y)−m(y))), x, y ∈
X. Hereafter, we shall use the notation ξ ∼ GP(m, k) to say that ξ is a Gaussian process with mean

function m and covariance function k.

Let ξ ∼ GP(0, k) be a zero-mean Gaussian process. The best linear unbiased predictor (BLUP)

of ξ(x) from observations ξ(xi), i = 1, . . . , n, also called the kriging predictor of ξ(x), is the orthogonal

projection

ξ̂(x;xn) :=

n∑

i=1

λi(x;xn) ξ(xi) (7)

of ξ(x) onto span{ξ(xi), i = 1, . . . , n}. Here, the notation xn stands for the set of points xn =

{x1, . . . , xn}. The weights λi(x;xn) are the solutions of a system of linear equations

k(xn, xn)λ(x;xn) = k(x, xn) (8)

where k(xn, xn) stands for the n × n covariance matrix of the observation vector, λ(x;xn) =

(λ1(x;xn), . . . , λn(x;xn))
T, and k(x, xn) is a vector with entries k(x, xi). The function x 7→ ξ̂(x;xn)

conditioned on ξ(x1) = f(x1), . . . , ξ(xn) = f(xn), is deterministic, and provides a cheap surrogate model

for the true function f (see, e.g., Santner et al., 2003). The covariance function of the error of prediction,

also called kriging covariance is given by

k(x, y;xn) := cov
(
ξ(x)− ξ̂(x;xn), ξ(y)− ξ̂(y;xn)

)

= k(x, y)−
∑

i

λi(x;xn) k(y, xi) . (9)

http://dx.doi.org/10.1007/s11222-011-9241-4
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The variance of the prediction error, also called the kriging variance, is defined as σ2(x;xn) = k(x, x;xn).

One fundamental property of a zero-mean Gaussian process is the following (see, e.g., Chilès and Delfiner,

1999, Chapter 3) :

Proposition 1 If ξ ∼ GP(0, k), then the random process ξ conditioned on the σ-algebra Fn generated

by ξ(x1), . . . , ξ(xn), which we shall denote by ξ | Fn, is a Gaussian process with mean ξ̂( · ; xn) given

by (7)-(8) and covariance k ( · , · ; xn) given by (9). In particular, ξ̂(x;xn) = E0

(
ξ(x) | Fn

)
is the best

Fn-measurable predictor of ξ(x), for all x ∈ X.

In the domain of computer experiments, the mean of a Gaussian process is generally written as a

linear parametric function

m( · ) = βTh( · ) , (10)

where β is a vector of unknown parameters, and h = (h1, . . . , hl)
T is an l-dimensional vector of functions

(in practice, polynomials). The simplest case is when the mean function is assumed to be an unknown

constant m, in which case we can take β = m and h : x ∈ X 7→ 1. The covariance function is generally

written as a translation-invariant function:

k : (x, y) ∈ X
2 7→ σ2 ρθ(x− y) ,

where σ2 is the variance of the (stationary) Gaussian process and ρθ is the correlation function, which

generally depends on a parameter vector θ. When the mean is written under the form (10), the kriging

predictor is again a linear combination of the observations, as in (7), and the weights λi(x;xn) are again

solutions of a system of linear equations (see, e.g., Chilès and Delfiner, 1999), which can be written under

a matrix form as (
k(xn, xn) h(xn)

T

h(xn) 0

)(
λ(x;xn)

µ(x)

)
=

(
k(x, xn)

h(x)

)
, (11)

where h(xn) is an l × n matrix with entries hi(xj), i = 1, . . . , l, j = 1, . . . , n, µ is a vector of Lagrange

coefficients (k(xn, xn), λ(x;xn), k(x, xn) as above). The kriging covariance function is given in this case

by

k(x, y;xn) := cov
(
ξ(x)− ξ̂(x;xn), ξ(y)− ξ̂(y;xn)

)

= k(x, y)− λ(x;xn)
T k(y, xn)− µ(x)Th(y) . (12)

The following result holds (Kimeldorf and Wahba, 1970; O’Hagan, 1978):

Proposition 2 Let k be a covariance function.

If

{
ξ | m ∼ GP(m, k)

m : x 7→ βTh(x), β ∼ U
Rl

then ξ | Fn ∼ GP
(
ξ̂( · ;xn), k( · , · ; xn)

)
,

where U
Rl stands for the (improper) uniform distribution over R

l, and where ξ̂( · ;xn) and k( · , · ; xn)

are given by (7), (11) and (12).

Proposition 2 justifies the use of kriging in a Bayesian framework provided that the covariance function

of ξ is known. However, the covariance function is rarely assumed to be known in applications. Instead,

the covariance function is generally taken in some parametric class (in this paper, we use the so-called
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Matérn covariance function, see Appendix A). A fully Bayesian approach also requires to choose a prior

distribution for the unknown parameters of the covariance (see, e.g., Handcock and Stein, 1993; Kennedy

and O’Hagan, 2001; Paulo, 2005). Sampling techniques (Monte Carlo Markov Chains, Sequential Monte

Carlo...) are then generally used to approximate the posterior distribution of the unknown covariance

parameters. Very often, the popular empirical Bayes approach is used instead, which consists in plugging-

in the maximum likelihood (ML) estimate to approximate the posterior distribution of ξ. This approach

has been used in previous papers about contour estimation or probability of failure estimation (Picheny

et al., 2010; Ranjan et al., 2008; Bichon et al., 2008). In Section 5.2 we will adopt a plug-in approach as

well.

Simplified notations. In the rest of the paper, we shall use the following simplified notations when

there is no risk of confusion: ξ̂n(x) := ξ̂(x;Xn), σ
2
n(x) := σ2(x;Xn).

2.4 Estimators of the probability of failure

Given a random process ξ and a strategy XN , the optimal estimator that minimizes E0

(
(α− α̂n)

2
)

among all Fn-measurable estimators α̂n, 1 ≤ n ≤ N , is

α̂n = En (α) = En

(∫

X

1ξ>u dPX

)
=

∫

X

pn dPX , (13)

where

pn : x ∈ X 7→ Pn {ξ(x) > u} . (14)

When ξ is a Gaussian process, the probability pn(x) of exceeding u at x ∈ X given In has a simple

closed-form expression:

pn(x) = 1 − Φ

(
u− ξ̂n(x)

σn(x)

)
= Φ

(
ξ̂n(x)− u

σn(x)

)
, (15)

where Φ is the cumulative distribution function of the normal distribution. Thus, in the Gaussian case,

the estimator (13) is amenable to a numerical approximation, by integrating the excess probability pn

over X (for instance using Monte Carlo sampling, see Section 3.3).

Another natural way to obtain an estimator of α given In is to approximate the excess indicator

1ξ>u by a hard classifier ηn : X → {0, 1}, where “hard” refers to the fact that ηn takes its values

in {0, 1}. If ηn is close in some sense to 1ξ>u, the estimator

α̂n =

∫

X

ηndPX (16)

should be close to α. More precisely,

En

(
(α̂n − α)2

)
= En

[(∫
(ηn − 1ξ>u)dPX

)2
]
≤
∫

En

(
(ηn − 1ξ>u)

2
)
dPX . (17)

Let τn(x) = Pn{ηn(x) 6= 1ξ(x)>u} = En
(
(ηn(x)− 1ξ(x)>u)

2
)
be the probability of misclassification;

that is, the probability to predict a point above (resp. under) the threshold when the true value is under

(resp. above) the threshold. Thus, (17) shows that it is desirable to use a classifier ηn such that τn is

http://dx.doi.org/10.1007/s11222-011-9241-4
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small for all x ∈ X. For instance, the method called smart (Deheeger and Lemaire, 2007) uses a support

vector machine to build ηn. Note that

τn(x) = pn(x) + (1− 2pn(x)) ηn(x) .

Therefore, the right-hand side of (17) is minimized if we set

ηn(x) = 1pn(x)>1/2 = 1ξ̄n(x)>u , (18)

where ξ̄n(x) denotes the posterior median of ξ(x). Then, we have

τn(x) = min(pn(x), 1− pn(x)).

In the case of a Gaussian process, the posterior median and the posterior mean are equal. Then, the

classifier that minimizes τn(x) for each x ∈ X is ηn = 1
ξ̂n>u

, in which case

τn(x) = Pn

(
(ξ(x)− u)(ξ̂n(x)− u) < 0

)
= 1 − Φ

(∣∣ξ̂n(x)− u
∣∣

σn(x)

)
. (19)

Notice that for ηn = 1
ξ̂n>u

, we have α̂n = α(ξ̂n). Therefore, this approach to obtain an estimator of α

can be seen as a type of plug-in estimation.

Standing assumption. It will assumed in the rest of the paper that ξ is a Gaussian process, or more

generally that ξ | Fn ∼ GP
(
ξ̂n, k( · , · ; xn)

)
for all n ≥ 1 as in Proposition 2.

3 Stepwise uncertainty reduction

3.1 Principle

A very natural and straightforward way of building a one-step lookahead strategy is to select greedily each

evaluation as if it were the last one. This kind of strategy, sometimes called myopic, has been successfully

applied in the field of Bayesian global optimization (Mockus et al., 1978; Mockus, 1989), yielding the

famous expected improvement criterion later popularized in the Efficient Global Optimization (EGO)

algorithm of Jones et al. (1998).

When the Bayesian risk provides a measure of the estimation error or uncertainty (as in the present

case), we call such a strategy a stepwise uncertainty reduction (SUR) strategy. In the field of global

optimization, the Informational Approach to Global Optimization (IAGO) of Villemonteix et al. (2009)

is an example of a SUR strategy, where the Shannon entropy of the minimizer is used instead of the

quadratic cost. When considered in terms of utility rather than cost, such strategies have also been called

knowledge gradient policies by Frazier et al. (2008).

Given a sequence of estimators (α̂n)n≥1, a direct application of the above principle using the

quadratic loss function yields the sampling criterion

Jn(x) = En

(
(α− α̂n+1)

2 | Xn+1 = x
)
. (20)

Having found no closed-form expression for this criterion, and no efficient numerical procedure for its

approximation, we will proceed by upper-bounding and discretizing (20) in order to get an expression

that will lend itself to a numerically tractable approximation. By doing so, several SUR strategies will

be derived, depending on the choice of estimator (the posterior mean (13) or the plug-in estimator (16)

with (18)) and bounding technique.
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3.2 Upper bounds of the SUR sampling criterion

Recall that τn(x) = min(pn(x), 1 − pn(x)) is the probability of misclassification at x using the optimal

classifier 1
ξ̂n(x)>u

. Let us further denote by νn(x) := pn(x) (1− pn(x)) the variance of the excess

indicator 1ξ(x)≥u.

Proposition 3 Assume that either α̂n = En (α) or α̂n =
∫
1
ξ̂n≥u

dPX. Define Gn :=
∫
X

√
γn(y)dPX

for all n ∈ {0, . . . , N − 1}, with

γn :=




νn = pn(1− pn) = τn(1− τn) , if α̂n = En (α) ,

τn = min(pn, 1− pn) , if α̂n =
∫
1
ξ̂n≥u

dPX .

Then, for all x ∈ X and all n ∈ {0, . . . , N − 1},

Jn(x) ≤ J̃n(x) := En

(
G2

n+1 | Xn+1 = x
)
.

Note that γn(x) is a function of pn(x) that vanishes at 0 and 1, and reaches its maximum at 1/2; that

is, when the uncertainty on 1
ξ̂n(x)>u

is maximal (see Figure 1).

Proof First, observe that, for all n ≥ 0, α− α̂n =
∫
Un dPX, with

Un : x ∈ X 7→ Un(x) =




1ξ(x)>u − pn(x) if α̂n = En (α) ,

1ξ(x)>u − 1
ξ̂n(x)>u

if α̂n =
∫
1
ξ̂n≥u

dPX .
(21)

Moreover, note that γn = ‖Un‖2n in both cases, where ‖ · ‖n : L2 (Ω,B,P) → L2 (Ω,Fn,P), W 7→
En
(
W 2
)1/2

. Then, using the generalized Minkowski inequality (see, e.g., Vestrup, 2003, section 10.7) we

get that ∥∥∥∫ Un dPX

∥∥∥
n

≤
∫

‖Un‖n dPX =

∫ √
γn dPX = Gn. (22)

Finally, it follows from the tower property of conditional expectations and (22) that, for all n ≥ 0,

Jn(x) = En

(
‖α− α̂n+1‖2n+1 | Xn+1 = x

)

= En

(∥∥∫ Un+1 dPX

∥∥2
n+1

∣∣∣ Xn+1 = x
)

≤ En

(
G2

n+1 | Xn+1 = x
)
.

⊓⊔
Note that two other upper-bounding sampling criteria readily follow from those of Proposition 3, by

using the Cauchy-Schwarz inequality in L2 (X,B(X),PX):

J̃n(x) ≤ En

(∫
γn+1 dPX

∣∣∣ Xn+1 = x

)
. (23)

As a result, we can write four SUR criteria, whose expressions are summarized in Table 1. Criterion

JSUR

1,n has been proposed in the PhD thesis of Piera-Martinez (2008) and in conference papers (Vazquez

and Piera-Martinez, 2007; Vazquez and Bect, 2009); the other ones, to the best of our knowledge,

are new. Each criterion is expressed as the conditional expectation of some (possibly squared) Fn+1-

measurable integral criterion, with an integrand that can be expressed as a function of the probability

http://dx.doi.org/10.1007/s11222-011-9241-4
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Fig. 1 γn as a function of pn (see Proposition 3). In both cases, γn is maximum at pn = 1/2.

of misclassification τn+1. It is interesting to note that the integral in JSUR

4 is the integrated mean square

error (IMSE)6 for the process 1ξ>u.

Remark 2 The conclusions of Proposition 3 still hold in the general case when ξ is not assumed to be a

Gaussian process, provided that the posterior median ξ̄n is substituted to posterior the mean ξ̂n.

Table 1 Expressions of four SUR-type criteria.

SUR-type sampling criterion How it is obtained

JSUR
1,n (x) = En

( (∫ √
τn+1 dPX

)2 ∣∣∣ Xn+1 = x
)

Prop. 3 with α̂n =
∫
1
ξ̂n>u

dPX

JSUR
2,n (x) = En

( (∫ √
νn+1 dPX

)2 ∣∣∣ Xn+1 = x
)

Prop. 3 with α̂n = En (α)

JSUR
3,n (x) = En

(∫
τn+1 dPX

∣∣∣ Xn+1 = x
)

Eq. (23) with α̂n =
∫
1
ξ̂n>u

dPX

JSUR
4,n (x) = En

(∫
νn+1 dPX

∣∣∣ Xn+1 = x
)

Eq. (23) with α̂n = En (α)

3.3 Discretizations

In this section, we proceed with the necessary integral discretizations of the SUR criteria to make them

suitable for numerical evaluation and implementation on computers. Assume that n steps of the algorithm

have already been performed and consider, for instance, the criterion

JSUR

3,n (x) = En

(
∫ τn+1(y)PX(dy)

∣∣∣ Xn+1 = x
)
. (24)

Remember that, for each y ∈ X, the probability of misclassification τn+1(y) is Fn+1-measurable and,

therefore, is a function of In+1 = (In, Xn+1, Zn+1). Since In is known at this point, we introduce the

6 The IMSE criterion is usually applied to the response surface ξ itself (see, e.g., Box and Draper, 1987; Sacks

et al., 1989). The originality here is to consider the IMSE of the process 1ξ>u instead. Another way of adapting

the IMSE criterion for the estimation of a probability of failure, proposed by Picheny et al. (2010), is recalled in

Section 4.2.
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notation vn+1(y;Xn+1, Zn+1) = τn+1(y) to emphasize the fact that, when a new evaluation point must

be chosen at step (n+ 1), τn+1(y) depends on the choice of Xn+1 and the random outcome Zn+1. Let

us further denote by Qn,x the probability distribution of ξ(x) under Pn. Then, (24) can be rewritten as

JSUR

3,n (x) =

∫∫

R×X

vn+1(y;x, z) Qn,x(dz)PX(dy) ,

and the corresponding strategy is:

Xn+1 = argmin
x∈X

∫∫

R×X

vn+1(y;x, z) Qn,x(dz)PX(dy) . (25)

Given In and a triple (x, y, z), vn+1(y;x, z) can be computed efficiently using the equations provided in

Sections 2.3 and 2.4.

At this point, we need to address: 1) the computation of the integral on X with respect to PX; 2)

the computation of the integral on R with respect to Qn,x; 3) the minimization of the resulting criterion

with respect to x ∈ X.

To solve the first problem, we draw an i.i.d. sequence Y1, . . . , Ym ∼ PX and use the Monte Carlo

approximation:
∫

X

vn+1(y;x, z) PX(dy) ≈ 1

m

m∑

j=1

vn+1(Yj ;x, z).

An increasing sample size n 7→ mn should be used to build a convergent algorithm for the estimation

of α (possibly with a different sequence Yn,1, . . . , Yn,mn at each step). In this paper we adopt a different

approach instead, which is to take a fixed sample size m > 0 and keep the same sample Y1, . . . , Ym

throughout the iterations. Equivalently, it means that we choose to work from the start on a discretized

version of the problem: we replace PX by the empirical distribution P̂X,n = 1
m

∑m
j=1 δYj

, and our goal

is now to estimate the Monte Carlo estimator αm =
∫
1ξ>udP̂X,n = 1

m

∑m
j=1 1ξ(Yj)>u, using either

the posterior mean En (αm) = 1
m

∑
j pn(Yj) or the plug-in estimate 1

m

∑
j 1ξ̂(Yj ;Xn)>u

. This kind of

approach has be coined meta-estimation by Arnaud et al. (2010): the objective is to estimate the value

of a precise Monte Carlo estimator of α(f) (m being large), using prior information on f to alleviate the

computational burden of running m times the computer code f . This point of view also underlies the

work in structural reliability of Hurtado (2004, 2007), Deheeger and Lemaire (2007), Deheeger (2008),

and more recently Echard et al. (2010a,b).

The new point of view also suggests a natural solution for the third problem, which is to replace

the continuous search for a minimizer x ∈ X by a discrete search over the set Xm := {Y1, . . . , Ym}.
This is obviously sub-optimal, even in the meta-estimation framework introduced above, since picking

x ∈ X\Xm can sometimes bring more information about ξ(Y1), . . . , ξ(Ym) than the best possible choice

in Xm. Global optimization algorithms may of course be used to tackle directly the continuous search

problem: for instance, Ranjan et al. (2008) use a combination of a genetic algorithm and local search

technique, Bichon et al. (2008) use the DIRECT algorithm and Picheny et al. (2010) use a covariance-

matrix-adaptation evolution strategy. In this paper we will stick to the discrete search approach, since

it is much simpler to implement (we shall present in Section 3.4 a method to handle the case of large m)

and provides satisfactory results (see Section 5).

Finally, remark that the second problem boils down to the computation of a one-dimensional integral

with respect to Lebesgue’s measure. Indeed, since ξ is a Gaussian process, Qn,x is a Gaussian probability

http://dx.doi.org/10.1007/s11222-011-9241-4
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distribution with mean ξ̂n(x) and variance σ2
n(x) as explained in Section 2.3. The integral can be com-

puted using a standard Gauss-Hermite quadrature with Q points (see, e.g., Press et al., 1992, Chapter 4)

: ∫
vn+1(y;x, z)Qn,x(dz) ≈ 1√

π

Q∑

q=1

wq vn+1(y;x, ξ̂n(x) + σn(x)uq
√
2) ,

where u1, . . . , uQ denote the quadrature points and w1, . . . , wQ the corresponding weights. Note that

this is equivalent to replacing under Pn the random variable ξ(x) by a quantized random variable with

probability distribution
∑Q

q=1 w
′
qδzn+1,q(x), where w′

q = wq/
√
π and zn+1,q(x) = ξ̂n(x) + σn(x)uq

√
2.

Taking all three discretizations into account, the proposed strategy is:

Xn+1 = argmin
1≤k≤m

m∑

j=1

Q∑

q=1

w′
q vn+1

(
Yj ; Yk, zn+1,q(Yk)

)
. (26)

3.4 Implementation

This section gives implementation guidelines for the SUR strategies described in Section 3. As said in

Section 3.3, the strategy (26) can, in principle, be translated directly into a computer program. In practice

however, we feel that there is still room for different implementations. In particular, it is important to

keep the computational complexity of the strategies at a reasonable level. We shall explain in this section

some simplifications we have made to achieve this goal.

A straight implementation of (26) for the choice of an additional evaluation point is described in

Table 2. This procedure is meant to be called iteratively in a sequential algorithm, such as that described

for instance in Table 3. Note that the only parameter to be specified in the SUR strategy (26) is Q, which

tunes the precision of the approximation of the integral on R with respect to Qn,x. In our numerical

experiments, it was observed that taking Q = 12 achieves a good compromise between precision and

numerical complexity.

To assess the complexity of a SUR sampling strategy, recall that kriging takes O(mn2) operations

to predict the value of f at m locations from n evaluation results of f (we suppose that m > n and

no approximation is carried out). In the procedure to select an evaluation, a first kriging prediction is

performed at Step 1 and then, m different predictions have to performed at step 2.1. This cost becomes

rapidly burdensome for large values of n and m, and we must further simplify (26) to be able to work on

applications where m must be large. A natural idea to alleviate the computational cost of the strategy

is to avoid dealing with candidate points that have a very low probability of misclassification, since they

are probably far from the frontier of the domain of failure. It is also likely that those points with a

low probability of misclassification will have a very small contribution in the variance of the error of

estimation α̂n − αm.

Therefore, the idea is to rewrite the sampling strategy described by (26), in such a way that the

first summation (over m) and the search set for the minimizer is restricted to a subset of points Yj

corresponding to the m0 largest values of τn(Yj). The corresponding algorithm is not described here for

the sake of brevity but can easily be adapted from that of Table 2. Sections 5.2 and 5.3 will show that

this pruning scheme has almost no consequence on the performances of the SUR strategies, even when

one considers small values for m0 (for instance m0 = 200).
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Table 2 Procedure to select a new evaluation point Xn+1 ∈ X using a SUR strategy

Require computer representations of

a) a set In = {(X1, f(X1)), . . . , (Xn, f(Xn))} of evaluation results;

b) a Gaussian process prior ξ with a (possibly unknown linear parametric) mean function and a covariance

function kθ, with parameter θ;

c) a (pseudo-)random sample Xm = {Y1, . . . , Ym} of size m drawn from the distribution PX;

d) quadrature points u1, . . . , uQ and corresponding weights w′
1, . . . , w

′
Q;

e) a threshold u.

1. compute the kriging approximation f̂n and kriging variance σ2
n on Xm from In

2. for each candidate point Yj , j ∈ {1, . . . ,m},
2.1 for each point Yk, k ∈ {1, . . . ,m}, compute the kriging weights λi(Yk; {Xn, Yj}), i ∈ {1, . . . , (n+1)}, and

the kriging variances σ2(Yk; {Xn, Yj})
2.2 compute zn+1,q(Yj) = f̂n(Yj) + σn(Yj)uq

√
2, for q = 1, . . . , Q

2.3 for each zn+1,q(Yj), q ∈ {1, . . . , Q},
2.3.1 compute the kriging approximation f̃n+1,j,q on Xm from In ∪ (Yj , f(Yj ) = zn+1,q(Yj)), using the

weights λi(Yk; {Xn, Yj}), i = 1, . . . , (n+ 1), k = 1, . . . ,m, obtained at Step 2.1.

2.3.2 for each k ∈ {1, . . . ,m}, compute vn+1 (Yk; Yj , zn+1,q(Yj)), using u, f̃n+1,j,q obtained in 2.3.1, and

σ2(Yk ; {Xn, Yj}) obtained in 2.1

2.4 compute Jn(Yj) =
∑m

k=1

∑Q
q=1 w′

q vn+1 (Yk; Yj , zn+1,q(Yj)).

3. find j⋆ = argminj Jn(Yj) and set Xn+1 = Yj⋆

Table 3 Sequential estimation of a probability of failure

1. Construct an initial design of size n0 < N and evaluate f at the points of the initial design.

2. Choose a Gaussian process ξ (in practice, this amounts to choosing a parametric form for the mean of ξ and

a parametric covariance function kθ)

3. Generate a Monte Carlo sample Xm = {Y1, . . . , Ym} of size m from PX

4. While the evaluation budget N is not exhausted,

4.1 optional step: estimate the parameters of the covariance function (case of a plug-in approach);

4.2 select a new evaluation point, using past evaluation results, the prior ξ and Xm;

4.3 perform the new evaluation.

5. Estimate the probability of failure obtained from the N evaluations of f (for instance, by using EN (αm) =
1
m

∑
j pN (Yj)).

4 Other strategies proposed in the literature

4.1 Estimation of a probability of failure and closely related objectives

Given a real function f defined over X ⊆ R
d, and a threshold u ∈ R, consider the following possible

goals:

1. estimate a region Γ ⊂ X of the form Γ = {x ∈ X
∣∣ f(x) > u};

2. estimate the level set ∂Γ = {x ∈ X
∣∣ f(x) = u};

3. estimate f precisely in a neighborhood of ∂Γ ;

http://dx.doi.org/10.1007/s11222-011-9241-4
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4. estimate the probability of failure α = PX(Γ ) for a given probability measure PX.

These different goals are, in fact, closely related: indeed, they all require, more or less explicitly, to select

sampling points in order to get a fine knowledge of the function f in a neighborhood of the level set ∂Γ

(the location of which is unknown before the first evaluation). Any strategy proposed for one of the first

three objectives is therefore expected to perform reasonably well on the fourth one, which is the topic

of this paper.

Several strategies recently introduced in the literature are presented in Sections 4.2 and 4.3, and will

be compared numerically to the SUR strategy in Section 5. Each of these strategies has been initially

proposed by its authors to address one or several of the above objectives, but they will only be discussed

in this paper from the point of view of their performance on the fourth one. Of course, a comparison

focused on any other objective would probably be based on different performance metrics, and thus could

yield a different performance ranking of the strategies.

4.2 The targeted IMSE criterion

The targeted IMSE proposed in Picheny et al. (2010) is a modification of the IMSE (Integrated Mean

Square Error) sampling criterion (Sacks et al., 1989). While the IMSE sampling criterion computes the

average of the kriging variance (over a compact domain X) in order to achieve a space-filling design,

the targeted IMSE computes a weighted average of the kriging variance for a better exploration of the

regions near the frontier of the domain of failure, as in Oakley (2004). The idea is to put a large weight

in regions where the kriging prediction is close to the threshold u, and a small one otherwise. Given In,
the targeted IMSE sampling criterion, hereafter abbreviated as tIMSE, can be written as

JtIMSE

n (x) = En

(∫

X

(
ξ − ξ̂n+1

)2
Wn dPX

∣∣∣ Xn+1 = x

)
(27)

=

∫

X

σ2 (y;X1, . . . , Xn, x) Wn(y)PX(dy), (28)

where Wn is a weight function based on In. The weight function suggested by Picheny et al. (2010) is

Wn(x) =
1

sn(x)
√
2π

exp

(
−1

2

(
ξ̂n(x)− u

sn(x)

)2
)

, (29)

where s2n(x) = σ2
ε + σ2

n (x). Note that Wn(x) is large when ξ̂n(x) ≈ u and σ2
n(x) ≈ 0, i.e., when the

function is known to be close to u.

The tIMSE criterion operates a trade-off between global uncertainty reduction (high kriging variance

σ2
n) and exploration of target regions (high weight function Wn). The weight function depends on a

parameter σε > 0, which allows to tune the width of the “window of interest” around the threshold.

For large values of σε, J
tIMSE behaves approximately like the IMSE sampling criterion. The choice of an

appropriate value for σε, when the goal is to estimate a probability of failure, will be discussed on the

basis of numerical experiments in Section 5.3.

The tIMSE strategy requires a computation of the expectation with respect to ξ(x) in (27), which

can be done analytically, yielding (28). The computation of the integral with respect to PX on X can be

carried out with a Monte Carlo approach, as explained in Section 3.3. Finally, the optimization of the

criterion is replaced by a discrete search in our implementation.
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4.3 Criteria based on the marginal distributions

Other sampling criteria proposed by Ranjan et al. (2008), Bichon et al. (2008) and Echard et al. (2010a,b)

are briefly reviewed in this section7. A common feature of these three criteria is that, unlike the SUR and

tIMSE criteria discussed so far, they only depend on the marginal posterior distribution at the considered

candidate point x ∈ X, which is a Gaussian N
(
ξ̂n(x), σ

2
n(x)

)
distribution. As a consequence, they are

of course much cheaper to compute than integral criteria like SUR and tIMSE.

A natural idea, in order to sequentially improve the estimation of the probability of failure, is to visit

the point x ∈ X where the event {ξ(x) ≥ u} is the most uncertain. This idea, which has been explored

by Echard, Gayton, and Lemaire (2010a,b), corresponds formally to the sampling criterion

JEGL

n (x) = τn(x) = 1− Φ

(∣∣u− ξ̂n(x)
∣∣

σn(x)

)
. (30)

As in the case of the tIMSE criterion and also, less explicitly, in SUR criteria, a trade-off is realized

between global uncertainty reduction (choosing points with a high σ2
n(x)) and exploration of the neigh-

borhood of the estimated contour (where
∣∣u− ξ̂n(x)

∣∣ is small).

The same leading principle motivates the criteria proposed by Ranjan et al. (2008) and Bichon et al.

(2008), which can be seen as special cases of the following sampling criterion:

JRB

n (x) := En

(
max

(
0, ǫ(x)δ − |u− ξ(x)|δ

))
, (31)

where ǫ(x) = κσn(x), κ, δ > 0. The following proposition provides some insights into this sampling

criterion:

Proposition 4 Define Gκ,δ : ]0, 1[ → R+ by

Gκ,δ(p) := E

(
max

(
0, κδ −

∣∣Φ−1(p) + U
∣∣
))

,

where U is a Gaussian N (0, 1) random variable. Let ϕ and Φ denote respectively the probability density

function and the cumulative distribution function of U .

a) Gκ,δ(p) = Gκ,δ(1− p) for all p ∈ ]0, 1[.

b) Gκ,δ is strictly increasing on ]0, 1/2] and vanishes at 0. Therefore, Gκ,δ is also strictly decreasing

on [1/2, 1[, vanishes at 1, and has a unique maximum at p = 1/2.

c) Criterion (31) can be rewritten as

JRB

n (x) = σn(x)
δ Gκ,δ

(
pn(x)

)
. (32)

d) Gκ,1 has the following closed-form expression:

Gκ,1(p) = κ
(
Φ(t+)− Φ(t−)

)

− t
(
2Φ(t) − Φ(t+)− Φ(t−)

)

−
(
2ϕ(t)− ϕ(t+)− ϕ(t−)

)
,

(33)

where t = Φ−1(1− p), t+ = t+ κ and t− = t− κ.

7 Note that the paper of Ranjan et al. (2008) is the only one in this category that does not address the problem

of estimating a probability of failure (i.e., Objective 4 of Section 4.1).
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e) Gκ,2 has the following closed-form expression:

Gκ,2(p) =
(
κ2 − 1− t2

) (
Φ(t+)− Φ(t−)

)

− 2t
(
ϕ(t+)− ϕ(t−)

)

+ t+ϕ(t+)− t−ϕ(t−),

(34)

with the same notations.

It follows from a) and c) that JRB
n (x) can also be seen as a function of the kriging variance σ2

n(x)

and the probability of misclassification τn(x) = min (pn(x), 1− pn(x)). Note that, in the computation

of Gκ,δ

(
pn(x)

)
, the quantity denoted by t in (33) and (34) is equal to

(
u− ξ̂n(x)

)
/σn(x), i.e., equal to

the normalized distance between the predicted value and the threshold.

Bichon et al.’s expected feasibility function corresponds to (32) with δ = 1, and can be computed

efficiently using (33). Similarly, Ranjan et al.’s expected improvement8 function corresponds to (32)

with δ = 2, and can be computed efficiently using (34). The proof of Proposition 4 is provided in

Appendix B.

Remark 3 In the case δ = 1, our result coincides with the expression given by Bichon et al. (2008,

Eq. (17)). In the case δ = 2, we have found and corrected a mistake in the computations of Ranjan et al.

(2008, Eq. (8) and Appendix B).

5 Numerical experiments

5.1 A one-dimensional illustration of a SUR strategy

The objective of this section is to show the progress of a SUR strategy in a simple one-dimensional case.

We wish to estimate α = PX{f > 1}, where f : X = R → R is such that ∀x ∈ R,

f(x) = (0.4x − 0.3)2 + exp
(
−11.534 |x|1.95

)
+ exp(−5(x− 0.8)2) ,

and where X is endowed with the probability distribution PX = N (0, σ2
X), σX = 0.4, as depicted in

Figure 2. We know in advance that α ≈ 0.2. Thus, a Monte Carlo sample of size m = 1500 will give a

good estimate of α.

In this illustration, ξ is a Gaussian process with constant but unknown mean and a Matérn covariance

function, whose parameters are kept fixed, for the sake of simplicity. Figure 2 shows an initial design of

four points and the sampling criterion JSUR

1,n=4. Notice that the sampling criterion is only computed at

the points of the Monte Carlo sample. Figures 3 and 4 show the progress of the SUR strategy after a

few iterations. Observe that the unknown function f is sampled so that the probability of excursion pn

almost equals zero or one in the region where the density of PX is high.

8 Despite its name and some similarity between the formulas, this criterion should not be confused with the

well-known EI criterion in the field of optimization (Mockus et al., 1978; Jones et al., 1998).
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5.2 An example in structural reliability

In this section, we evaluate all criteria discussed in Section 3 and Section 4 through a classical benchmark

example in structural reliability (see, e.g., Borri and Speranzini, 1997; Waarts, 2000; Schueremans, 2001;

Deheeger, 2008). Echard et al. (2010a,b) used this benchmark to make a comparison among several

methods proposed in Schueremans and Gemert (2005), some of which are based on the construction of

a response surface. The objective of the benchmark is to estimate the probability of failure of a so-called

four-branch series system. A failure happens when the system is working under the threshold u = 0. The

performance function f for this system is defined as

f : (x1, x2) ∈ R
2 7→ f(x1, x2) = min





3 + 0.1(x1 − x2)
2 − (x1 + x2)/

√
2;

3 + 0.1(x1 − x2)
2 + (x1 + x2)/

√
2;

(x1 − x2) + 6/
√
2;

(x2 − x1) + 6/
√
2





.

The uncertain input factors are supposed to be independent and have standard normal distribution.

Figure 5 shows the performance function, the failure domain and the input distribution. Observe that f

has a first-derivative discontinuity along four straight lines originating from the point (0, 0).

For each sequential method, we will follow the procedure described in Table 3. We generate an initial

design of n0 = 10 points (five times the dimension of the factor space) using a maximin LHS (Latin

Hypercube Sampling)9 on [−6; 6] × [−6; 6]. We choose a Monte Carlo sample of size m = 30000. Since

the true probability of failure is approximately α = 0.4% in this example, the coefficient of variation

for αm is 1/
√
mα ≈ 9%. The same initial design and Monte Carlo sample are used for all methods.

A Gaussian process with constant unknown mean and a Matérn covariance function is used as our

prior information about f . The parameters of the Matérn covariance functions are estimated on the

initial design by REML (see, e.g. Stein, 1999). In this experiment, we follow the common practice of

re-estimating the parameters of the covariance function during the sequential strategy, but only once

every ten iterations to save some computation time.

The probability of failure is estimated by (13). To evaluate the rate of convergence, we compute the

number nγ of iterations that must be performed using a given strategy to observe a stabilization of the

relative error of estimation within an interval of length 2γ:

nγ = min

{
n ≥ 0; ∀k ≥ n,

|α̂n0+k − αm|
αm

< γ

}
.

All the available sequential strategies are run 100 times, with different initial designs and Monte Carlo

samples. The results for γ = 0.10, γ = 0.03 and γ = 0.01 are summarized in Table 4. We shall consider

that n0.1 provides a measure of the performance of the strategy in the “initial phase”, where a rough

estimate of α is to be found, whereas n0.03 and n0.01 measure the performance in the “refinement phase”.

The four variants of the SUR strategy (see Table 1) have been run with Q = 12 and either m0 = 10

or m0 = 500. The performance are similar for all four variants and for both values of m0. It appears,

however, that the criterions JSUR

1 and JSUR

2 2 (i.e., the criterions given directly by Proposition 3) are

slightly better than JSUR

3 and JSUR

4 ; this will be confirmed by the simulations of Section 5.3. It also

9 More precisely, we use Matlab’s lhsdesign() function to select the best design according to the maximin

criterion among 104 randomly generated LHS designs.

http://dx.doi.org/10.1007/s11222-011-9241-4
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seems that the SUR algorithm is slightly slower to obtain a rough estimate of the probability of failure

when m0 is very small, but performs very well in the refinement phase. (Note that m0 = 10 is a drastic

pruning for a sample of size m = 30000.)

The tIMSE strategy has been run for three different values of its tuning parameter σ2
ε , using the

pruning scheme with m0 = 500. The best performance is obtained for σ2
ε ≈ 0, and is almost as good

as the performance of SUR stragies with the same value of m0 (a small loss of performance, of about

one evaluation on average, can be noticed in the refinement phase). Note that the required accuracy

was not reached after 200 iterations in 17% of the runs for σ2
ε = 1. In fact, the tIMSE strategy tends

to behave like a space-filling strategy in this case. Figure 6 shows the points that have been evaluated

in three cases: the evaluations are less concentrated on the boundary between the safe and the failure

region when σ2
ε = 1.

Finally, the results obtained for JRB and JEGL indicate that the corresponding strategies are clearly

less efficient in the “initial phase” than strategies based on JSUR

1 or JSUR

2 . For γ = 0.1, the average

loss with respect to JSUR

1 is between approximately 0.9 evaluations for the best case (criterion JRB with

δ = 2, κ = 2) and 3.9 evaluations for the worst case. For γ = 0.03, the loss is between 1.4 evaluations

(also for (criterion JRB with δ = 2, κ = 2) and 3.5 evaluations. This loss of efficiency can also be observed

very clearly on the 90th percentile in the inital phase. Criterion JRB seems to perform best with δ = 2

and κ = 2 in this experiment, but this will not be confirmed by the simulations of Section 5.3. Tuning

the parameters of this criterion for the estimation of a probability of failure does not seem to be an easy

task.

Table 4 Comparison of the convergence to αm in the benchmark example Section 5.2 for different sampling

strategies. The first number (bold text) is the average value of nγ over 100 runs. The numbers between brackets

indicate the 10th and 90th percentile.

criterion parameters γ = 0.10 γ = 0.03 γ = 0.01

JSUR
1 m0 = 500 16.1 [10–22] 25.7 [17–35] 36.0 [26–48]

m0 = 10 19.4 [11–28] 28.1 [19–38] 35.4 [26–44]

JSUR
2 m0 = 500 16.4 [10–24] 25.7 [19–33] 35.5 [25–45]

m0 = 10 20.0 [11–30] 28.3 [20–39] 35.3 [26–44]

JSUR
3 m0 = 500 18.2 [10–27] 26.9 [18–37] 35.9 [27–46]

m0 = 10 20.1 [11–30] 28.0 [20–36] 35.2 [25–44]

JSUR
4 m0 = 500 17.2 [10–28] 26.5 [20–36] 35.2 [25–45]

m0 = 10 21.4 [13–30] 28.9 [20–38] 35.5 [27–44]

JtIMSE σ2
ε = 10−6 16.6 [10–23] 26.5 [19–36] 37.3 [28–49]

σ2
ε = 0.1 15.9 [10–22] 29.1 [19–43] 50.5 [30–79]

σ2
ε = 1 21.7 [11–31] 52.4 [31–85] 79.5 [42–133](∗)

JEGL – 21.0 [11–31] 29.2 [21–39] 36.4 [28–44]

JRB δ = 1, κ = 0.5 18.7 [10–27] 27.5 [20–35] 36.6 [27–44]

δ = 1, κ = 2.0 18.9 [11–28] 28.3 [21–35] 37.7 [30–45]

δ = 2, κ = 0.5 17.6 [10–24] 27.6 [20–34] 37.1 [29–45]

δ = 2, κ = 2.0 17.0 [10–21] 27.1 [20–34] 36.8 [29–44]

(*) The required accuracy was not reached after 200 iterations in 17% of the runs



20 Author-generated postprint version. See DOI:10.1007/s11222-011-9241-4 for the published version.

Table 5 Size of the initial design and covariance parameters for the experiments of Section 5.3. The parametriza-

tion of the Matérn covariance function used here is defined in Appendix A.

d n0 σ2 ν ρ

1 3 1.0 2.0 0.100

2 10 1.0 2.0 0.252

3 15 1.0 2.0 0.363

5.3 Average performance on sample paths of a Gaussian process

This section provides a comparison of all the criteria introduced or recalled in this paper, on the basis of

their average performance on the sample paths of a zero-mean Gaussian process defined on X = [0, 1]d,

for d ∈ {1, 2, 3}. In all experiments, the same covariance function is used for the generation of the sample

paths and for the computation of the sampling criteria. We have considered isotropic Matérn covariance

functions, whose parameters are given in Table 5. An initial maximin LHS design of size n0 (also given

in the table) is used: note that the value of n reported on the x-axis of Figures 7–11 is the total number

of evaluations, including the initial design.

The d input variables are assumed to be independent and uniformly distributed on [0, 1], i.e., PX is

the uniform distribution on X. An m-sample Y1, . . . , Ym from PX is drawn one and for all, and used

both for the approximation of integrals (in SUR and tIMSE criteria) and for the discrete search of the

next sampling point (for all criteria). We take m = 500 and use the same MC sample for all criteria in

a given dimension d.

We adopt the meta-estimation framework as described in Section 3.3; in other words, our goal is to

estimate the MC estimator αm. We choose to adjust the threshold u in order to have αm = 0.02 for all

sample paths (note that, as a consequence, there are exactly mαm = 10 points in the failure region) and

we measure the performance of a strategy after n evaluations by its relative mean-square error (MSE)

expressed in decibels (dB):

rMSE := 10 log10


 1

L

L∑

l=1

(
α̂
(l)
m,n − αm

)2

α2
m


 ,

where α̂
(l)
m,n = 1

m

∑m
j=1 p

(l)
n (Yj) is the posterior mean of the MC estimator αm after n evaluations on

the lth simulated sample path (L = 4000).

We use a sequential maximin strategy as a reference in all of our experiments. This simple space-filling

strategy is defined by Xn+1 = argmaxj min1≤i≤n

∣∣Yj −Xi

∣∣, where the argmax runs over all indices j

such that Yj 6∈ {X1, . . . , Xn}. Note that this strategy does not depend on the choice of a Gaussian

process model.

Our first experiment (Figure 7 ) provides a comparison of the four SUR strategies proposed in

Section 3.2. It appears that all of them perform roughly the same when compared to the reference

strategy. A closer look, however, reveals that the strategies JSUR

1 and JSUR

2 provided by Proposition 3

perform slightly better than the other two (noticeably so in the case d = 3).

The performance of the tIMSE strategy is shown on Figure 8 for several value of its tuning parameter

σ2
ε (other values, not shown here, have been tried as well). It is clear that the performance of this strategy

improves when σ2
ε goes to zero, whatever the dimension.

http://dx.doi.org/10.1007/s11222-011-9241-4
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The performance of the strategy based on JRB

κ,δ is shown on Figure 9 for several values of its parame-

ters. It appears that the criterion proposed by Bichon et al. (2008), which corresponds to δ = 1, performs

better than the one proposed by Ranjan et al. (2008), which corresponds to δ = 2, for the same value

of κ. Moreover, the value κ = 0.5 has been found in our experiments to produce the best results.

Figure 10 illustrates that the loss of performance associated to the “pruning trick” introduced in

Section 3.4 can be negligible if the size m0 of the pruned MC sample is large enough (here, m0 has been

taken equal to 50). In practice, the value of m0 should be chosen small enough to keep the overhead

of the sequential strategy reasonable—in other words, large values of m0 should only be used for very

complex computer codes.

Finally, a comparison involving the best strategy obtained in each category is presented on Figure 11.

The best result is consistently obtained with the SUR strategy based on JSUR

1,n . The tIMSE strategy with

σ2
ε ≈ 0 provides results which are almost as good. Note that both strategies are one-step lookahead

strategies based on the approximation of the risk by an integral criterion, which makes them rather

expensive to compute. Simpler strategies based on the marginal distribution (criteria JRB
n and JEGL

n )

provide interesting alternatives for moderately expensive computer codes: their performances, although

not as good as those of one-step lookahead criterions, are still much better than that of the reference

space-filling strategy.

6 Concluding remarks

One of the main objectives of this paper was to present a synthetic viewpoint on sequential strategies

based on a Gaussian process model and kriging for the estimation of a probability of failure. The starting

point of this presentation is a Bayesian decision-theoretic framework from which the theoretical form

of an optimal strategy for the estimation of a probability of failure can be derived. Unfortunately,

the dynamic programming problem corresponding to this strategy is not numerically tractable. It is

nonetheless possible to derive from there the ingredients of a sub-optimal strategy: the idea is to focus

on one-step lookahead suboptimal strategies, where the exact risk is replaced by a substitute risk that

accounts for the information gain about α expected from a new evaluation. We call such a strategy a

stepwise uncertainty reduction (SUR) strategy. Our numerical experiments show that SUR strategies

perform better, on average, than the other strategies proposed in the literature. However, this comes at

a higher computational cost than strategies based only on marginal distributions. The tIMSE sampling

criterion, which seems to have a convergence rate comparable to that of the SUR criterions when σ2
ε ≈ 0,

also has a high computational complexity.

In which situations can we say that the sequential strategies presented in this paper are interesting

alternatives to classical importance sampling methods for estimating a probability of failure, for instance

the subset sampling method of Au and Beck (2001)? In our opinion, beyond the obvious role of the

simulation budget N , the answer to this question depends on our capacity to elicit an appropriate prior.

In the example of Section 5.2, as well as in many other examples of the literature using Gaussian processes

in the domain of computer experiments, the prior is easy to choose because X is a low-dimensional space

and f tends to be smooth. Then, the plug-in approach which consists in using ML or REML to estimate

the parameters of the covariance function of the Gaussian process after each new evaluation is likely

to succeed. If X is high-dimensional and f is expensive to evaluate, difficulties arise. In particular, our
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sampling strategies do not take into account our uncertain knowledge of the covariance parameters, and

there is no guarantee that ML estimation will do well when the points are chosen by a sampling strategy

that favors some localized target region (the neighboorhood the frontier of the domain of failure in this

paper, but the question is equally relevant in the field optimization, for instance). The difficult problem

of deciding the size n0 of the initial design is crucial in this connection. Fully Bayes procedures constitute

a possible direction for future research, as long as they don’t introduce an unacceptable computational

overhead. Whatever the route, we feel that the robustness of Gaussian process-based sampling strategies

with respect to the procedure of estimation of the covariance parameters should be addressed carefully

in order to make these methods usable in the industrial world.

Software. We would like to draw the reader’s attention on the recently published package KrigInv (Picheny and

Ginsbourger, 2011) for the statistical computing environment R (see Hornik, 2010). This package provides an

open source (GPLv3) implementation of all the strategies proposed in this paper. Please note that the simulation

results presented in this paper were not obtained using this package, that was not available at the time of its

writing.
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Fig. 2 Illustration of a SUR strategy. This figure shows the initial design. Top: threshold u = 1 (horizontal

dashed line); function f (thin line); n = 4 initial evaluations (squares); kriging approximation fn (thick line); 95%

confidence intervals computed from the kriging variance (shaded area). Middle: probability of excursion (solid

line); probability density of PX (dotted line). Bottom: graph of JSUR
1,n=4(Yi), i = 1, . . . ,m = 1500, the minimum of

which indicates where the next evaluation of f should be done (i.e., near the origin).
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Fig. 3 Illustration of a SUR strategy (see also Figures 2 and 4). This figure shows the progress of the SUR

strategy after two iterations—a total of n = 6 evaluations (squares) have been performed. The next evaluation

point will be approximately at x = −0.5

.
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Fig. 4 Illustration of a SUR strategy (see also Figures 2 and 3). This figure shows the progress of the SUR

strategy after eight iterations—a total of n = 12 evaluations (squares) have been performed. At this stage, the

probability of excursion pn almost equals 0 or 1 in the region where the density of PX is high.
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Fig. 5 Left: mesh plot of the performance function f corresponding to the four-branch series system; a failure

happens when f is below the transparent plane; Right: contour plot of f ; limit state f = 0 (thick line); sample of

size m = 3× 103 from PX (dots).



26 Author-generated postprint version. See DOI:10.1007/s11222-011-9241-4 for the published version.

1

2

3
4

5

6

7

8
9

10

11

12

13

14
15

16

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

1

2

3 4

5

6

7

8

9

10

11

12

13

14

15

16

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

1

2

3
4

5

6

7

8

9

10

11

12

13

14

15

16

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Fig. 6 The first 16 points (squares) evaluated using sampling criterion JSUR
1 (left), JtIMSE with σ2

ε = 0.1 (middle),

JtIMSE with σ2
ε = 1 (right). Numbers near squares indicate the order of evaluation. The location of the n0 = 10

points of the initial design are indicated by circles.
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Fig. 7 Relative MSE performance of several SUR strategies.
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Fig. 8 Relative MSE performance of the tIMSE strategy for several values of its parameter.
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Fig. 9 Relative MSE performance of the JRB criterion, for several values of its parameters.

rM
S
E

(d
B
)

n

rM
S
E

(d
B
)

n

rM
S
E

(d
B
)

n

JSUR
1 full line

JSUR
3 mixed line

without pruning black

pruning m0 = 50 gray

ref. black dashed line

Upper-left: d = 1

Upper-right: d = 2

Lower-left: d = 3

20 40 60 80 100

20 40 60 8010 20 30

-25

-20

-15

-10

-5

-30

-20

-10

0

-40

-20

0

Fig. 10 Relative MSE performance of two SUR criteria, with and without the “pruning trick” described in

Section 3.4. The black and gray lines are almost surimposed for each of the criterions JSUR
1 and JSUR

3 .
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Fig. 11 Relative MSE performance the best strategy in each category.
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Appendix

A The Matérn covariance

The exponential covariance and the Matérn covariance are among the most conventionally used stationary co-

variances in the literature of design and analysis of computer experiments. The Matérn covariance class (Yaglom,

1986) offers the possibility to adjust the regularity of ξ with a single parameter. Stein (1999) advocates the use

of the following parametrization of the Matérn function:

κν(h) =
1

2ν−1Γ (ν)

(
2ν1/2h

)ν
Kν

(
2ν1/2h

)
, h ∈ R (35)

where Γ is the Gamma function and Kν is the modified Bessel function of the second kind. The parameter ν > 0

controls regularity at the origin of the function. To model a real-valued function f defined over X ⊂ Rd, with

d ≥ 1, we use the following anisotropic form of the Matérn covariance:

kθ(x, y) = σ2κν





√√√√
d∑

i=1

(x[i] − y[i])2

ρ2i



 , x, y ∈ R
d (36)

where x[i], y[i] denote the ith coordinate of x and y, the positive scalar σ2 is a variance parameter (we have

kθ(x, x) = σ2), and the positive scalars ρi represent scale or range parameters of the covariance, i.e., characteristic

correlation lengths. Since σ2 > 0, ν > 0, ρi > 0, i = 1, . . . , d, we can take the logarithm of these scalars,

and consider the vector of parameters θ = {log σ2, log ν,− log ρ1, . . . ,− log ρd} ∈ Rd+2, which is a practical

parameterization when σ2, ν, ρi, i = 1, . . . , d, need to be estimated from data.

B Proof of Proposition 4

a) Using the identity Φ−1(1− p) = −Φ−1(p), we get

∣∣U + Φ−1(1− p)
∣∣ =

∣∣U − Φ−1(p)
∣∣ d
=
∣∣U + Φ−1(p)

∣∣ ,

where
d
= denotes an equality in distribution. Therefore Gκ,δ(1− p) = Gκ,δ(p).

b) Let Sp = max
(
0, κδ −

∣∣Φ−1(p) + U
∣∣). Straightforward computations show that t 7→ P (|t+ U | ≤ v) is strictly

decreasing to 0 on [0,+∞[, for all v > 0. As a consequence, p 7→ P
(
Sp < s

)
is strictly increasing to 1 on [1/2, 1[,

for all s ∈
]
0, κδ

[
. Therefore, Gκ,δ is strictly decreasing on [1/2, 1[ and tends to zeros when p → 1. The other

assertions then follow from a).

c) Recall that ξ(x) ∼ N
(
ξ̂n(x), σ2

n(x)
)
under Pn. Therefore U :=

(
ξ(x)− ξ̂n(x)

)
/σn(x) ∼ N (0, 1) under Pn, and

the result follows by substitution in (31).

The closed-form expressions of Ranjan et al.’s and Bichon and al.’s criteria (assertions d) and e)) is established

in the following sections.
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B.1 A preliminary decomposition common to both criteria

Recall that t = Φ−1(1− p), t+ = t+ κ and t− = t− κ. Then,

Gκ,δ(p) = Gκ,δ(1− p) = E

(
max

(
0, κδ −

∣∣t− U
∣∣δ
))

=

∫

κδ−|t−u|δ≥0

(
κδ − |t− u|δ

)
ϕ(u) du

=

∫ t+

t−

(
κδ − |t − u|δ

)
ϕ(u) du

= κδ
(
Φ(t+) − Φ(t−)

)
−
∫ t+

t−
|t − u|δ ϕ(u) du

︸ ︷︷ ︸
Term A

. (37)

The computation of the integral A will be carried separately in the next two sections for δ = 1 and δ = 2. For

this purpose, we shall need the following elementary results:

∫ b

a
uϕ(u)du = ϕ(a) − ϕ(b) , (38)

∫ b

a
u2ϕ(u)du = aϕ(a) − bϕ(b) + Φ(b) − Φ(a) . (39)

B.2 Case δ = 1

Let us compute the value A1 of the integral A for δ = 1:

A1 =

∫ t+

t−
|t − u|ϕ(u)du =

∫ t

t−
(t− u)ϕ(u)du +

∫ t+

t
(u− t)ϕ(u)du

= t

(∫ t

t−
ϕ(u) du−

∫ t+

t
ϕ(u) du

)

−
∫ t

t−
uϕ(u) du+

∫ t+

t
uϕ(u) du

= t
(
2Φ(t) − Φ(t−)− Φ(t+)

)
+ 2ϕ(t) − ϕ(t−)− ϕ(t+) , (40)

where (38) has been used to get the final result. Plugging (40) into (37) yields (33).

B.3 Case δ = 2

Let us compute the value A2 of the integral A for δ = 2:

A2 =

∫ t+

t−
(t − u)2ϕ(u) du

= t2
∫ t+

t−
ϕ(u) du− 2t

∫ t+

t−
uϕ(u) du+

∫ t+

t−
u2ϕ(u) du

= t2
(
Φ(t+)− Φ(t−)

)
− 2t

(
ϕ(t−)− ϕ(t+)

)

+ t−ϕ(t−)− t+ϕ(t+) + Φ(t+)− Φ(t−) , (41)

where (38) and (39) have been used to get the final result. Plugging (40) into (37) yields (34).
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32 Author-generated postprint version. See DOI:10.1007/s11222-011-9241-4 for the published version.

Au, S.K., Beck, J.: Estimation of small failure probabilities in high dimensions by subset simulation. Probab.

Engrg. Mechan. 16(4), 263–277 (2001)

Bayarri, M.J., Berger, J.O., Paulo, R., Sacks, J., Cafeo, J.A., Cavendish, J., Lin, C.H., Tu, J.: A framework for

validation of computer models. Technometrics 49(2), 138–154 (2007)

Berry, D.A., Fristedt, B.: Bandit problems: sequential allocation of experiments. Chapman & Hall (1985)

Bertsekas, D.P.: Dynamic programming and optimal control vol. 1. Athena Scientific (1995)

Bichon, B.J., Eldred, M.S., Swiler, L.P., Mahadevan, S., McFarland, J.M.: Efficient global reliability analysis for

nonlinear implicit performance functions. AIAA Journal 46(10), 2459–2468 (2008)

Bjerager, P.: On computational methods for structural reliability analysis. Structural Safety 9, 76–96 (1990)

Borri, A., Speranzini, E.: Structural reliability analysis using a standard deterministic finite element code. Struc-

tural Safety 19(4), 361–382 (1997)

Box, G.E.P., Draper, N.R.: Empirical Model-Building and Response Surfaces. Wiley (1987)

Bucher, C.G., Bourgund, U.: A fast and efficient response surface approach for structural reliability problems.

Structural Safety 7(1), 57–66 (1990)

Chilès, J.P., Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty. Wiley, New York (1999)

Currin, C., Mitchell, T., Morris, M., Ylvisaker, D.: Bayesian prediction of deterministic functions, with applications

to the design and analysis of computer experiments. J. Amer. Statist. Assoc. 86(416), 953–963 (1991)
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