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Abstract. Finding optimal controllers of stochastic systems is a partic-
ularly challenging problem tackled by the optimal control and reinforce-
ment learning communities. A classic paradigm for handling such prob-
lems is provided by Markov Decision Processes. However, the resulting
underlying optimization problem is difficult to solve. In this paper, we
explore the possible use of Particle Swarm Optimization to learn optimal
controllers and show through some non-trivial experiments that it is a
particularly promising lead.
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1 Introduction

Reinforcement Learning (RL) [12] addresses the optimal control problem. In
this paradigm, at each (discrete) time step the system to be controlled is in a
given state (or configuration). Based on this information, an agent has to choose
an action to be applied. The system reacts by stochastically stepping to a new
configuration, and an oracle provides a reward to the agent, depending on the
experienced transition. This reward is a local hint of the quality of the control,
and the aim of the agent is to choose a sequence of actions in order to maximize
some cumulative function of the rewards. A notable advantage of this paradigm
is that the oracle quantifies how the agent behaves without specifying what to
do (for example, when learning to play chess, a reward would be given for wining
the game, not for taking the queen).

The mapping from configurations to actions is called a policy (or a controller);
its quality is quantified by the so-called value function which associates to each
state an expected measure of cumulative reward from starting in this state and
following the policy. The best policy is the one with associated maximal value
function. Among other approaches, direct policy search algorithms (e.g., [1])
adopt a parametric representation of the policy and maximize the value function
(as a function of the controller’s parameters). This approach is sound, but the
underlying optimization problem is difficult. Even for simple policies, computing
the gradient of the related objective function is far from being straightforward.

In the numerical optimization community, several algorithms requiring only
to evaluate the objective function have been devised, among which one finds



genetic algorithms, particle swarm optimization and ant algorithms. These ap-
proaches involve a set of individuals (each representing a set of parameters re-
lated to the objective function of interest) that are combined, trying to reach a
global optima. Particle swarm optimization is one of these algorithms, proposed
originally by [7]. Variations of this algorithm have been proposed and a thor-
ough review can be found in [3]. It has been shown that PSO (the original or
one of its variations) performs well for optimization problems whether uni- or
multi-modal, with static or dynamic fitness and even in large search space [4].

In this article, we introduce a simple but new RL policy search algorithm
using particle swarm optimization at its core. We show that it is particularly
efficient for optimizing the parameters of controllers for three classical benchmark
problems in reinforcement learning : the inverted pendulum, the mountain car
and the acrobot. The two first problems involve noise in the evolution of the
system which introduces random fluctuations in the fitness landscape. In the
last problem, we evaluate the performence of PSO in a large search space. The
acrobot is known as being a very difficult problem in the RL community, and
most approaches fail to solve it.

2 Monte Carlo Swarm Policy Search (MCSPS)

A Markov Decision Process (MDP) is a tuple {S,A, P,R} with the state space
S, action space A, a set of Markovian transition probabilities P and a reward
function R. A policy is a mapping from states to probabilities over actions:
π : S → P(A). At each time step i, the system to be controlled is in a state si,
the agent chooses an action ai according to a policy π, ai ∼ π(.|si). It is applied
to the system which stochastically transits to si+1 according to p(.|si, ai). The
agent receives a reward ri = R(si, ai, si+1). Its goal is to find the policy which
maximizes some cumulative function of the rewards, over the long run; this is the
so-called value function. There are many ways to define a value function. The
more common one is to consider the expected discounted cumulative reward
(expectation being according to stochasticity of transitions and of the policy):
V π(s) = E[

∑∞
i=0 γ

iri|s0 = s, π], the term γ ∈ (0, 1) being the discount factor and
weighting long-term rewards. Another common criterion hold if a finite horizon
T is considered: V π(s) = E[

∑T
i=0 ri|s0 = s, π]. Another possible criterion, less

common because less convenient (from a mathematical point of view) is the
mean reward: V π(s) = limn→∞

1
nE[

∑n
i=0 ri|s0 = s, π]..

For any definition of the value function, the criterion to be optimized is the
expected value over a distribution p0 of initial states:

ρπ = E[V π(s0)|s0 ∼ p0]. (1)

The optimal policy π∗ is the one maximizing this criterion:

π∗ = argmax
π:S→P(A)

ρπ. (2)

In the considered policy search context, we make some assumptions. First,
the model (that is transition probabilities and the reward function) is unknown.



However, we assume that a simulator is available, so that we can sample trajecto-
ries according to any policy of interest (which can be a well-founded hypothesis,
depending on the problem of interest). Second, we assume that a parametric
structure is chosen for the controller beforehand: any policy πθ is parameterized
by a parameter vector θ (for example, it can be a Gibbs sampler constructed
from a radial basis function networks, and the parameters are the weights of the
kernels). The optimization problem to be solved is therefore the following:

θ∗ = argmax
θ∈Rp

ρπθ . (3)

Indeed, this is a quite difficult optimization problem. It has been proposed to
solve it using a gradient ascent [1] or cross-entropy [9], among other approaches.
As the model is unknown, the gradient should be estimated from simulation,
which causes a high variance.

In this paper, we introduce a simple idea: using a particle swarm optimizer
to solve this difficult optimization problem. Each particle holds a parameter
vector, that is a controller, and the fitness function is ρπθ . As the model is un-
known, it cannot be computed analytically. However, as a simulator is available,
it can be estimated using Monte Carlo. For example, consider the finite hori-
zon value function. One generates M trajectories, starting in a random state
s0 sampled according to p0, and a trajectory of length T is obtained by apply-
ing the policy πθ and following the system’s dynamic. From such trajectories
{(sm0 , am0 , sm1 , rm0 . . . smT , r

m
T−1)1≤m≤M}, one can compute

ρ̂πθ =
1

M

M∑
m=1

T−1∑
i=0

rmi , (4)

which is an unbiased estimate of the true fitness function ρπθ .
More precisely, we consider a swarm with N particles with a von Neumann

topology. In all the simulations presented below, we used a swarm of 5 × 5
particles. Different rules to update the position and velocity of the particles
have been proposed in the litterature (see [3] for a review). We used the basic
PSO with a constriction factor [7, 2]. Namely, we use the following equations to
update the velocity vi and position pi of a particle i:

vij = wvij + c1r1.(bij − pij) + c2r2.(lij − pij)

pi = pi + vi (5)

with w = 0.729844, c1 = c2 = 1.496180, r1, r2 are random numbers uniformly
drawn from [0, 1], bi is the best position ever found by the particle i and li the
best position ever found by one particle in the neighborhood of particle i. The
position of the particles are initialized randomly in the parameter space while
the velocities are initialized to zero. The position and velocity of the particles
are updated asynchronously. At each iteration, we need to compute the fitness of
a particle and update its position given the position and fitness of the particles
within their neighborhood. Given our problems are stochastic we evaluate the



fitness of a particle each time its position changed and also reevaluate the fitness
of its best position each time we want to change it. Each update of a particle’s
state and fitness is propagated to the neighborhoods to which the particle be-
longs. The scripts for all the simulations presented in the paper are available
online [5].

3 Results

3.1 Inverted pendulum

Problem
The inverted pendulum is a classic benchmark problem in reinforcement learn-

ing and has already been addressed with several methods (see e.g. [8]). We use
the same setting as in [8]. It consists of finding the force to apply to a cart,
on which a pendulum is anchored, in order to maintain the pendulum still at
the vertical position. The state of the system is the angle of the pendulum
relative to the upright and its angular speed (θ, θ̇), which are updated accord-

ing to the equations : θ̈ = g sin(θ)−αml sin(2θ)θ̇2/2−α cos(θ)(f+η)
4l/3−αml cos2(θ) , where g is the

gravity constant (g = 9.8m/s2), m and l are the mass and length of the pole
(m = 2.0 kg, l = 0.5 m), M the mass of the cart (M = 8.0 kg) and α = 1

m+M .
The time-step τ is set to 0.1s. The pole must be held in [−π2 ; π2 ]. An episode is
constrained to last at most 3000 iteractions. At each interaction, a reward of 0
is given until the pole exits this domain which ends the episode and leads to a
reward of −1. This reward is actually poorly informative as it is only indicating
that the pole should not fall but not that the optimal position is around 0 (which
can be induced by a cosine reward for example). The pole is initialized close to
equilibrium (θ0 ∈ [−0.1, 0.1], θ̇0 ∈ [−0.1, 0.1]). The pole-cart system is controlled
by applying a force ft ∈ {−50, 0, 50} Newtons perturbed by a uniform noise
η ∈ [−5; 5] Newtons to the cart.

The controller is defined with a radial basis function network (RBF) with 9
Gaussians and a constant term per action. The means of the basis functions are
evenly spread in [−π/4, π/4] × [−1.0, 1.0] and the standard deviation is set to
σ = 1.0. Optimizing this controller means finding 30 parameters, i.e. the ampli-
tude of the 27 basis functions and the 3 constant terms. The RBF associated to
each action defines the probability to select that action (ci and ai,j being param-

eters to be learnt): ∀i ∈ [1, 3], Pi = 1
P exp(ci +

∑9
j=1 ai,jexp(−

(θ−θj)2+(θ̇−θ̇j)2
2σ2 )),

where P is a normalizing term so that the probabilities sum to 1.0. An action is
selected with a probabilistic toss biased by these probabilities.

Experimental results
The experiment is repeated 1000 times. For each iteration of one swarm, the

fitness of a particle is evaluated using a single trajectory which makes an iteration
much faster but also much more subject to the stochasticity of the problem due
to the definition of the initial state, to the selection of the action using a random



toss and to the uniform noise added to the controller. Random fluctuations of
the fitness remains, as it was checked on some trials by evaluating several times
the fitness of a set of parameters but this is not shown here. The fitness we
report on the illustrations is the fitness of the best particle evaluated on 500
trajectories to get an accurate estimate of it. The swarm is allowed to evolve
during 200 iterations.

The average number of balancing steps of the best particle, and its standard
deviation, are plotted over the iteration of the swarms on figure 1. As shown
on the figure, all the trials converged to a good policy allowing to keep the
pendulum balancing for the 3000 time steps, the maximal length of an episode.
On average, it took approximately 50 iterations of the swarm to converge to a
very good policy.

A standard approach for policy search consists in performing a gradient as-
cent of the value function respectively to the parameters of the policy [1]. It
also requires to simulate trajectories. For this problem, unreported experiments
shows that gradient ascent took an order of 200.103 trajectories before reaching
an optimal policy. The proposed approach took an order of 1250 trajectories
to reach the same result (25 particles, 50 iterations and one simulated trajec-
tory per fitness evaluation). Meta parameters (c1, c2, w for PSO, learning rates
and forgetting factor for the gradient ascent) could certainly be better defined.
However this shows that MCPSO easily achieves state of the art policy search
performance.
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Fig. 1. Average number of balancing steps for the best particle. This average is com-
puted over the 1000 trials, and using 500 trajectories for each trial at each epoch to get
an accurate estimate of it. Please note that we plot here the number of balancing steps
and not the fitness which is more intuitive. Error bars indicate one standard deviation.
The simulation scripts are available at [5].



3.2 Mountain car

Problem
The second problem we consider is the mountain car as described in [12]. The

goal is to control a vehicle in order to escape from a valley. Given the car has a
limited power, it must swing forward and backward in the valley to reach the exit.
The state is defined as the position x ∈ [−1.2, 0.5] and velocity ẋ ∈ [−0.07, 0.07]
of the car. Three discrete actions are allowed : accelerating to the left, doing
nothing or accelerating to the right a ∈ {−1, 0, 1}. The system evolves according
to discrete time equations provided in [12, Chap 8]. The position is bounded in
the domain [−1.2, 0.5]. The cart is initialized randomly close to the worst cases,
at the bottom of the valley with a speed close to zero (x0 ∈ [−0.75,−0.25], ẋ0 ∈
[−0.02, 0.02]). When the cart’s position reaches the lower bound, the velocity
is set to 0.0. When the cart reaches the upper bound, the episode ends with a
reward of 0; the reward is set to −1 otherwise. The length of an episode is limited
to 1500 interactions. The goal of the swarm is to find a set of parameters that
maximizes the reward which is equivalent to minimizing the number of steps
necessary to escape from the valley.

The controller is defined by a set of 9 basis functions (Gaussians) plus a
constant term for each action, leading to 30 parameters to optimize. If the state
(position and velocity) is scaled in [0, 1], the centers of the basis functions are
evenly spread in [0, 1]× [0, 1] and the standard deviation set to σ = 0.3. Similar
to the inverted pendulum problem, the value of these 3 basis networks is used
as probabilities to toss an action.

Experimental results
We repeated 1000 experiments. For each experiment, the swarm is allowed

to evolve during 50 epochs (which was enough to get a good policy). At each
epoch, the fitness of a particle is evaluated using 30 trajectories (it does not
suppress the stochasticity of the fitness as we checked on some trials, but this
is not shown here). The reported fitness of the best particle is evaluated using
1000 trajectories to get an accurate estimate of it. The evolution of the average
number of steps to reach the goal of the best particles is shown on figure 2a),
with its standard deviation. The average number of steps to reach the goal for
the initial and final best particles of a typical trial are plotted on figures 2b,c.

3.3 Swing-up acrobot

Problem
The aim of the acrobot problem is to swing an under-actuated two-arm pen-

dulum, starting from a vertical position pointing down in order to reach the
vertical pointing up unstable position. The system’s state is defined by four
continuous variables (the two joints’ angle θ1, θ2 and their velocity θ̇1, θ̇2). The
system is controlled with a torque τ ∈ {−1, 0, 1} applied to the second joint. The
torque is only applied on the joint between the two segments, the system being
therefore under-actuated and solving the task requires to swing the pendulum
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Fig. 2. a) Average number of steps to reach the goal state with its standard deviation.
b) Average number of steps to reach the goal state for evenly spread initial conditions
(θ, θ̇) during a typical trial. For the illustration, this average is bounded to 200 but
reaches 1500 in the worst case (the length of an episode). c) Average number of steps
to reach the goal state for the best particle after 50 iterations.

back and forth. The system’s state evolves according to the discrete-time equa-
tions provided in [11] with the strength τ ∈ {−1, 0, 1}, time-step ∆t = 0.01s.,
θ̇1,t ∈ [−9π, 9π], θ̇2,t ∈ [−4π, 4π], m1 = m2 = 1, l1 = l2 = 1, lc1 = lc2 = 0.5,
I1 = I2 = ml2/12, g = 9.8. The state is initialized at the vertical position point-
ing down with a null speed θ1,0 = 3π/2, θ2,0 = 0, θ̇1,0 = θ̇2,0 = 0 (see fig. 3).

Controlling the acrobot is a difficult problem[10]. To ease the problem, we
considered a simplified controller which combines a RBF network with an opti-
mal Linear Quadratic Regulator (LQR) [11]. The LQR controller can maintain
the pendulum still in the vertical upward position but is unable to swing it. In
addition, the LQR controller works perfectly only in a narrow range of the state
space; for θ̇1 = θ̇2 = 0, the LQR controller stabilizes the pendulum if the initial
state is in θ2 = 0, θ1 = π/2± π/24. Therefore, the RBF controller has to swing
the pendulum in order to bring it at the vertical position with a certain speed to
allow the LQR to stabilize it. We used a continuous action defined as the tanh
of a RBF involving 4 gaussians per dimension. The RBF controller therefore
involves 44 = 256 parameters. When the pendulum is close to the goal state
(θ1 = π/2 ± π/4, θ2 = 0 ± π/4, θ̇1 = 0 ± π/2, θ̇2 = 0 ± π/2, denoted Dθ), the
controller is switched from the RBF to the LQR. It has also to be noted that the
LQR controller is not optimized in these experiments but computed before-hand
(see [11]). Better controllers could certainly be designed but the point here was
to test the ability of PSO to find the parameters in such a large parameter space.
Given the simulations are expensive, the problem is here considered determinis-
tic (no noise in the initial state nor in the chosen action).
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Fig. 3. a) Setup of the acrobot problem. Starting from the vertical pointing-down
position, the controller, influencing the pendulum through the torque τ shall bring and
keep the pendulum still in a domain close to the vertical pointing-up unstable position
b) Average number of steps the pendulum stays in the goal domain. This average is
computed over 300 repetitions of the experiment. c) Behavior of one of the best policies.

The controllers are defined as :

τ =

−K
T .θ, θ = (θ1 − π/2; θ2; θ̇1; θ̇2) if θ ∈ Dθ

2 tanh(
∑256
j=1 aje

− sin2(θ1−θj1)

2σ21
− sin2(θ2−θj2)

2σ22
− (θ̇1−θ̇1

j)2

2σ23
− (θ̇2−θ̇j2)2

2σ24 ) otherwise

(6)
with σ1 = σ2 = 0.25, σ3 = σ4 = 4.5, the centers of the gaussians being evenly
spread in [−π/4, 5π/4]× [−π/4, 5π/4]× [−9, 9]× [−9, 9].

Experimental results
We repeated the experiments over 300 trials. A simulation is allowed to run for

at most 20s. (2000 interactions). The swarm is evolving during 4000 iterations.
A reward of +1 is given each time the pendulum is in the goal region (as defined
above), and 0 otherwise. The average reward function of the iteration of the
swarm is shown on figure 3b. As we can see, the swarm does not always converge
to an optimal policy and get stuck in local minima. This is probably due to the
architecture of the controller which is certainly not optimal. In addition, during
the iteration of the algorithm, the fitness tends to stay on ”plateau”. There are
nevertheless policies that are close to optimal as for example the one depicted
on figure 3c. This example illustrates that PSO is able to optimize controllers
even in large parameter space but the controller can be improved.



4 Discussion

Particle Swarm Optimization is an efficient algorithm for solving optimization
problems. In addition to the different problems on which it has been applied
before, we have shown here that it reveals to be very efficient to optimize the
parameters of controllers solving challenging optimal control problems. It is also
a very convenient algorithm if we compare it to the gradient-based policy search
algorithm since we do not have to compute the gradient of the policy nor do we
need it to be computable. Moreover, PSO is less prone to local optimum and
converges more quickly than gradient-based approaches. A lack of the current
approach is that it requires a simulator. However, in some cases, only data sam-
pled according to a fixed behaviorial policy are available. To extend the current
approach to this case, we envision to replace the Monte Carlo estimation of the
fitness function by value function approximation [6]. Ultimately, on can envision
to design an online algorithm, with an agent learning to control optimally the
system while interacting with it.
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