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Robust deconvolution-based methods using sparsity constraint and sparse regularization achieve high spatial reso-
lutions in aeroacoustic imaging in low Signal-to-Noise Ratio (SNR). But sparse prior and model parameters should
be further optimized to obtain super resolution and be robust to sparsity constraint. In this paper, we propose a
Robust Approach with Bayesian Sparse Regularization in Aeroacoustic Imaging (RABSRAI) to detect both po-
sitions and powers of near-field wideband uncorrelated sources in poor SNR case, and simultaneously estimate
background noise. The Bayesian interpretation is applied to select the sparse prior and regularization parameter in
stead of knowing source number or SNR. On simulated and wind tunnel data, proposed approach is compared with
the beamforming,DAMAS, Diagonal Remove DAMAS, Robust DAMAS with sparsity constraint (SC-RDAMAS),
Covariance Matrix Fitting (CMF) and CLEAN.

1 Introduction

Nowadays aeroacoustic imaging has become a standard
technique for mapping the location and strength of aeroa-
coustic sources with microphone arrays. It provides insight
into noise generating mechanisms, which is used for design-
ing quieter vehicles and machinery. In this paper, we aim
to investigate near-field wideband aeroacoustic imaging on
vehicle surface in wind tunnel test based on the 2D Non-
Uniform microphoneArray (NUA). The beamformingmethod
is simple and fast, but its spatial resolution and dynamic range
are limited due to high sidelobes. The MUSIC greatly im-
proves resolutions, but its resolution requires high S NR and
source number. Though the Near-field Acoustic Hologram
(NAH) provides good resolution over entire frequency band,
but it is limited by hologram size and can not work well with
sparse antenna array. The CLEAN [8] iteratively extracts
peak sources from a beamforming image, but it could not
separate sources from severe noises. The Deconvolution Ap-
proach for Mapping of Acoustic Source (DAMAS) method
[1] becomes a breakthrough and is successfully applied in
wind tunnel test, however, it is sensitive to noise and suf-
fers from slow convergence. The DAMAS2 and DAMAS3
accelerate the DAMAS by using the invariant point spread
function (PSF) which inevitably harms resolutions. The Co-
variance Matrix Fitting (CMF) method [9] works better than
the above, but is not feasible to use it due to its huge variable
dimensionality. Recently the Robust DAMAS with Sparse
Constraint (SC-RDAMAS) [2] achieves super spatial resolu-
tion and estimates noise variance, but sparsity constraint on
total source power is hard to determine in poor SNR. Above
all, most of classical methods suffers at least one of these
drawbacks: poor spatial resolutions, sensitive to background
noise, need for source number and high computational cost.

To overcomemost of above drawbacks, proposed approach
is to exploit the sparsity of source spatial distributions by ap-
plying Bayesian framework. Our novelties are that we apply
Double Exponential model as spatial sparse prior to obtain
super resolutions in poor SNR, and with the help of Bayesian
interpretation, regularization parameter is determined based
on the forward model error and prior model parameter. By
comparing with the state-of-art methods on simulations and
real data, the advantages of proposed approach are robust to
noise, super resolution, wide dynamic range of power estima-
tions and feasible to use in near-field wideband aeroacoustic
source imaging for vehicle surface in wind tunnel test based
on 2D NUA array.

This paper is organized as follows: In Section 2, formula-
tion of aeroacoustic imaging is briefly introduced. Then our
approach is proposed in Section 3. Performance comparisons
on simulations and real data are illustrated in Section 4 and
Section 5. Finally conclusions are made in Section 6.

2 Formulation of aeroacoustic imaging

2.1 Assumptions

Four necessary assumptions are made: Sources are punc-
tual, temporally uncorrelated; noise is Additive Gaussian White
Noise (AGWN), independent and identically distributed (iid);
sensors are omnidirectional with unitary gain; and reverber-
ations could be negligible in the anechoic wind tunnel.

2.2 Forward propagation model

Consider M antenna sensors and K near-field wideband
sources s∗ = [s∗1, · · · , s

∗
K]. And the scanning plane consists

of N (N >> M > K) scanning points s = [s1, · · · , sN]T at
positions p = [p1, · · · ,pN]T with pn being 3D coordinate
of the point n. Each scanning point could be regarded as a
potential source. The total snapshots T0 of each sensor is
divided into T segments, where each segment consists of L
snapshots. Each segment is then converted into L narrow
frequency bins by Discrete Fourier Transform. Thus for the
segment i ∈ [1, T ] and single frequency fl, l ∈ [1, L], the ob-
served vector zi( fl) = [zi1( fl), · · · , ziM( fl)]T at antenna array
is modeled:

zi( fl) = A(p, fl)si( fl) + ei( fl) (1)

where ei( fl) = [ei1( fl), · · · , eiM( fl)]T denotes the AGWN noise,
and A(p, fl) = [a(p1, fl), · · · ,a(pN , fl)] is M × N near-field
steering matrix, with steering vector:

a(pn, fl) = [
1

rn,1
e− j2π flτn,1 , · · · ,

1
rn,M

e− j2π flτn,M ]T (2)

where τm,n is the propagation time from the source n to an-
tenna m, and rn,m is the propagation distance during τm,n. Ac-
tual rn,m and τn,m will be corrected according to the refraction
in the wind tunnel in Section 5.

2.3 Classical inverse solutions

2.3.1 Near-field beamforming

For the given location pn and single frequency fl, the
steering vector a(pn, fl) is short as an. An estimate of source
power yn locating at the scanning point n can be obtained by
the beamforming as:

yn =
ãH

n R̂ãn

‖ãn‖
2

(3)

where operator (·)H denotes the conjugate transpose; ‖ · ‖ is
the vector norm; and the beamforming coefficient ãn is:

ãn = [rn,1e− j2π flτn,1 , · · · , rn,Me− j2π flτn,M ]T (4)
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and R̂ = 1
T

∑T
i=1 zi( fl)zi( fl)H is the estimation of observed

covariance matrix R, with R being modeled into:

R = E{zi( fl)zi( fl)
H} = AXAH

+ σ2I (5)

where σ2 is the noise variance; I is the identical matrix; op-
erator E{·} denotes the mathematical expectation; and X =

E{ssH} is the source correlation matrix, which is diagonal for
uncorrelated sources with x = diag(X) standing for source
power vector.

2.3.2 DAMAS [1] and its improved methods

When total snapshot segment is large enough T >> 1, we
get R̂ ≈ R. By neglecting noise in Eq.(5), the DAMAS [1]
method is deduced as:

y = Cx (6)

where x = [x1, · · · , xN]T ; y = [y1, · · · , yN]T , and power

transferring matrix C has the coefficient (PSF) cn,q =
‖ãH

n aq‖
2

‖ãn‖
2

with n, q = 1, · · · ,N. Its iterative non-negative solution is:

x̂n = yn −

⎡⎢⎢⎢⎢⎢⎢⎣
n−1∑

q=1

cnq x̂q +

N∑

q=n+1

cnq x̂q

⎤⎥⎥⎥⎥⎥⎥⎦ , x̂n ≥ 0 (7)

The DAMAS is a powerful technique to deconvolve the beam-
forming result. However, the biggest drawback is that it is
not robust to noise pollution. Several methods improve its
robustness. Diagonal Removal (DR) DAMAS [1] constrains
diag{R̂} = 0 to suppress noise interference, but DR technique
harms weak sources; instead of deconvolving the beamform-
ing result, the CMF with sparsity constraint [9] directly esti-
mates observed covariance matrix R and noise variance σ2,
however, its variable matrix is too large to solve, so the CMF
converges very slowly; the SC-RDAMAS method [2] esti-
mates the noise variance to improve robustness, and applies
sparsity constraint on total source power to achieve super
spatial resolutions, but sparsity constraint is not easily de-
termined in very poor SNR.

3 Proposed approach

3.1 Bayesian sparse regularization
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Figure 1: Generalized Gaussian family

Sparsity fact reveals that sources sparsely lay out on ob-
ject surface, and the source number is rather fewer than the
scanning points. Many literatures have explored sparse dis-
tribution prior such as discussed in [7]. Formonopole sources,

we select a distribution with a sharp summit and short tail
among Generalized Gaussian family GG(x) with respect to
�1 regularization. For uncorrelated centralized variable x, the
prior model based on GG(x) is expressed:

p(x) =
N∏

n

GG(xn|γ, β) ∝ exp

⎡⎢⎢⎢⎢⎢⎣−γ
N∑

n

|xn|
β

⎤⎥⎥⎥⎥⎥⎦ (8)

where probability density function (PDF) of GG(xn|γ, β) is

GG(xn|γ, β) =
βγ

2Γ(1/β)
exp
[
−γ|xn|

β
]

(9)

where Γ(·) represents the Gamma function, and γ and β con-
trol PDF pattern. Particularly, when β = 1, we get the Double
ExponentialDE(x) model as:

p(x) =
N∏

n

DE(xn|γ) ∝ exp
[
−γ‖x‖1

]
(10)

Four examples of GG(x) family and their −ln[GG(x)] func-
tions are illustrated on Figure 1. For cases 0 < β < 1, it is
of great interest to enforce sparsity, but its −ln[GG(x)] func-
tion is not convex. The Double Exponential model is sparse
enough, and its −ln[GG(x)] function is convex. For source
powers x, non-negative condition is combined with Double
Exponential prior.

After determining source spatial distribution prior, we con-
sider the likelihood p(y|x, σ2). In forward propagationmodel
of Eq.(1), the system error ξ = [ξ1, · · · , ξN] is modeled by:

ξ = y −Cx − σ21N (11)

ξ denotes the residue part, who consists of estimation errors
and unpredictable parts in forward model. Generally ξ is
supposed to be Gaussian ξ ∼ N(0, σ2

ξ
). Thus the likelihood

p(y|x, σ2) is deduced into:

p(y|x, σ2) =
1

(2πσ2
ξ
)N/2

exp

⎡⎢⎢⎢⎢⎢⎣−
‖y −Cx − σ21N‖

2

2σ2
ξ

⎤⎥⎥⎥⎥⎥⎦ (12)

According to the Bayes’ rule, the Joint Maximum A Posteri-
ori (JMAP) criterion is expressed as:

JJMAP(x, σ2) = −ln[p(y|x, σ2)p(x)p(σ2)] (13)

For simplicity, we take Jeffreys prior for p(σ2) ∼ 1
σ2 . Substi-

tuting Eq.(10) and Eq.(12) into Eq.(13), we get JMAP crite-
rion by omitting small terms as follows:

JJMAP(x, σ2) ∝ ‖y −Cx − σ21N‖
2
+ α‖x‖1 (14)

Where regularization parameter is

α = 2σ2
ξγ (15)

with

σ2
ξ = Tr(R̂) − ‖x‖1 − Mσ2 (16)

where Tr(R̂) denotes total power of observed signals. When
σ2 becomes bigger, Tr(R̂) consequently increases and σ2

ξ
is

inevitably lager. Due to power conservation, equation (16)
means that the residual power σ2

ξ
equals the total received

power minus original source powers and noise power. There-
fore regularization parameter α is the function of ‖x‖1 and
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σ2. Moreover, equation (14) means that larger the system
error σ2

ξ
is, less accurate the forward model becomes, there-

fore the more we need to enforce sparse distribution prior by
increasing α. Generally �1-norm for enforcing sparsity and
noise variance estimation are discussed in many literatures
such as [3] and [4]. However, instead of source number esti-
mation or subspace separation, we apply the Bayesian frame
to jointly estimate the source power x and noise variance σ2.
The Eq.(14) is a convex criterion and can be solved alterna-
tively for x and σ2. In our proposed approach in Eq.(14),
the Bayesian interpretation is applied to select proper sparse
prior to enforce ponctuel sources and achieve super spatial
resolution, and the regularization parameter is inherently de-
termined without knowing exact SNR or source number.

3.2 Wideband estimation

In wind tunnel experiment, aeroacoustic sources are gen-
erated by the friction and collision between the car and wind
flow. Physically, different car parts with various sizes pro-
duce vibrations with different frequencies. Therefore aeroa-
coustic sources are near-field wideband signals. Consider the
frequency range [ fmin, fmax] consisting of L frequency bins.
Let x̂( fl) be the estimation of x( fl) in lth frequency bin.
Then source powers xwb over wideband [ fmin, fmax] can be
estimated by x̂wb =

1
L

∑ fmax

fl= fmin
x̂( fl).

4 Simulation

In this part, we compare proposed approach with some of
the state-of-art methods in strong background noise (S NR =
0dB) based on real wind tunnel configurations at single fre-
quency f = 2500Hz. There are 64 2D NUA array on vertical
plane, whose averaging array aperture is d = 2m with longer
horizontal aperture, as shown in Figure 4a. For NUA array,
it yields almost the same performance as the uniform array
with more sensors does as discussed in [5]. The distance be-
tween source plane and array is around R = 4.50m, thus the
beamforming resolution at f = 2500Hz is ΔB ≈ λR/d =
31cm. For scanning step, we choose Δx = 5cm to satisfy
Δx/ΔB < 0.2 for any f < 3500Hz, which avoids the spa-
tial aliasing in the DAMAS [1]. The propagation speed is
c0 ≈ 340m/s. Results are illustrated by decibel (dB) images
and section profiles.

In Figure 3a, five uncorrelated complex sources (K = 5)
are spaced 15cm−20cm (3−4 pixels) from the center source,
as shown in Figure 3a. Their source powers are from −9.71
to 4.27dB (x∗1 < x∗2 < · · · < x∗5) with 14dB dynamic range.
The background noise variance is −1.25dB (σ2

= 0.75), and
the averaging S NR = 0dB.

Figure 3 shows that the beamforming just gets a very
confused image due to its low resolutions at 2500Hz; the
DAMAS fails to distinguish weak sources due to its sensi-
tivity to noise; the DR-DAMAS detects strong sources and
removes the noise interference, but it also eliminates weak
source; the CLEAN gets better spatial resolutions, but still
sensitive to noise; the CMF well estimates the noise vari-
ance and finds out all sources, but its resolutions are not high
enough; the SC-RDAMAS works faster and better than the
CMF, but proposed approach outperforms the others. It not
only better locates all sources, but also well estimates noise
variance. In the proposed approach, γ = 1 inDE(x) model is

selected as Figure 1a shown. And the influence of regulariza-
tion parameter in S NR = 0 are shown in Figure 2: thanks to
noise estimation, proposed approach can achieve relatively
small power image reconstruction error δ2 even if α is very
small. As shown in Table 1, proposed approach has the min-
imal averaging power estimation error Δx∗ = 1

K ||x̂
∗

k − x∗k ||1

with x∗ = diag{E[s∗s∗H]} and δ2 =
‖x−x̂‖2

‖x‖2
.
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δ
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Figure 2: Regularization parameter influence in proposed

approach, power image reconstruction error δ2 =
‖x−x̂‖2

‖x‖2

Table 1: Power estimation error and noise variance estimation σ̂2.

Powers x∗1 x∗2 x∗3 x∗4 x∗5 Δx∗ δ2 σ̂2

Beamforming 9.30 7.57 1.49 1.02 0.45 3.97 115 -

CLEAN 4.24 1.36 2.98 0.52 0.12 1.80 1.46 -

DAMAS 1.00 1.00 1.00 1.00 0.30 0.86 0.06 -

DR-DAMAS 1.00 0.44 0.14 0.10 0.11 0.36 0.03 -

CMF 0.48 0.35 0.23 0.22 0.26 0.31 0.09 0.74

SC-RDAMAS 0.54 0.45 0.09 0.08 0.12 0.26 0.02 0.74

Proposed 0.32 0.43 0.09 0.02 0.07 0.19 0.01 0.75

5 Real data

Figure 4 shows configurations of wind tunnel S2A [6].
The scanning region is 135×470cm2. There are T0 = 524288
snapshots, T = 204 segments, L = 2560 snapshots per seg-
ment. Wideband is 2400Hz−2600Hz with B = 21 frequency
bins. The results are shown by normalized dB images with
10dB span. For corrections of propagation time τn,m and dis-
tance rn,m, we apply equivalent source that antenna m seems
to receive the signal from equivalent source n′ along a direct
line dn′,m during the same propagation time τn′ ,m, as if there
is no wind influence, as shown in Figure 4b.

After corrections, Figure 5a illustrates that the beamform-
ing just gives an fuzzy image of strong sources around the
front wheel, rearview mirror and back wheel; in Figure 5b,
the DAMAS greatly improve spatial resolutions of the beam-
forming result, however it gets many false targets in the air;
the DR-DAMAMS well eliminates most of false targets, but
it envitably removes weak sources on the front light, front
cover, and side windows; Figure 5d shows that the CLEAN
overcomes drawbacks of the DAMAS and DR-DAMAS, but
unexpected strong points are detected on the ground; in Fig-
ure 5e, the SC-RDAMAS obtains a result as good as the
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(c) DAMAS with 5000 iterations
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(d) DR-DAMAS with 5000 iterations
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(h) Proposed

Figure 3: Acoustic imaging of 17 × 27 pixels 2500Hz under the conditions of
background noise σ2

= 0.75, averaging S NR = 0dB and dynamic range 14dB.

CLEAN, but false alarms under the car body are still so many;
Figure 5f shows the proposed approach not only suppress the
noise and obtain more precise power levels and positions
than the above methods, but also discovers weak sources
around two wheels and the mirror, as well as removes most
of false targets under the cars and in the air.

Figure 6 illustrates the detail of rear mirror part. Con-
sistently in previous simulation, the beamforming just gives
3 strong sources with narrow dynamic range of powers; the
DAMAS improves the resolutions, but unexpected interfer-
ence could not be removed; the DR-DAMAS overcomes strong
interference, but the resolutions on rear mirror are not high
enough; the CMF and SC-RDAMAS achieve almost the same

(a) Wind tunnel S2A [6]. (b) Overlook and wind tunnel effect.

Figure 4: Configurations of wind tunnel S2A.

results, much better than the above; but some interferences
are still existing; fortunately proposed approach clearly re-
moves unexpected false alarms and better detects sources
around rear mirror and on the front wheel with wide dynamic
range as color map shown in Figure 6f.

Based on the effectiveness at single frequency, we give
the comparisons on wideband data at 2400−2600Hz, as Fig-
ure 7 illustrated. Each method obtains a better result than
the corresponding in Figure 5, since the real sources are en-
forced and the flashing false targets are suppressed over the
wideband average. Above all, proposed approach in Figure
7d enforces the sparse distribution and extracts more accu-
rate source positions and powers both for the strong sources
around the front wheel and weak ones on the mirror and back
wheel.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

−10

−8

−6

−4

−2

0

(a) Beamforming

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

−10

−8

−6

−4

−2

0

(b) DAMAS with 5000 iterations

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

−10

−8

−6

−4

−2

0

(c) DR-DAMAS with 5000 iterations

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

−10

−8

−6

−4

−2

0

(d) CLEAN

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

−10

−8

−6

−4

−2

0

(e) SC-RDAMAS

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

−10

−8

−6

−4

−2

0

(f) Proposed

Figure 5: Whole vehicle at f = 2500Hz, 10dB span.
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(b) DAMAS 5000 iterations
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(c) DR-DAMAS 5000 iterations
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(e) SC-RDAMAS

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

(f) Proposed

Figure 6: Rearview mirror part at f = 2500Hz, 10dB span

6 Conclusions

We propose a Robust Approach with Bayesian Sparse
Regularization in Aeroacoustic Imaging (RABSRAI) to de-
tect positions and powers of near-field wideband uncorre-
lated sources in poor SNR case, and simultaneously estimate
background noise. Bayesian interpretation is investigated for
sparse spatial distribution prior and regularization parame-
ter without knowing source number or SNR. The advantages
of our method are robust to noise, wide dynamic range of
power estimation, super resolutions and feasible to use based
on 2D NUA array in wind tunnel test. Proposed method is
compared with the state-of-art methods on simulations and
experiment data. For future works, we are investigating a
Bayesian inference approach to adaptively estimate hyper-
parameter in forward model and prior models.
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