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Abstract— This paper analyses the stability of the synchronized 

state in Cartesian networks of identical all-digital phase-locked 
loops (ADPLLs) for clock distribution applications. Such 
networks consist in Cartesian grids of digitally-controlled 
oscillator nodes, where each node communicates only with its 
nearest neighbors. Under certain conditions, we show that the 
whole network may synchronize both in phase and frequency. A 
key aspect of this study lies in the fact that, in the absence of an 
absolute reference clock, the loop-filter in each ADPLL is 
operated on the irregular rising edges of the local oscillator and 
consequently, does not use the same operands depending on 
whether the local clock is leading or lagging. Under simple 
assumptions, these networks of so-called “self-sampled” all-digital 
phase-locked-loops (SS-ADPLLs) can be described as piecewise-
linear systems, the stability of which is notoriously difficult to 
establish, The main contribution of this paper is a simple design 
rule that must be met by the coefficients of each loop-filter in 
order to achieve synchronization in a Cartesian network of 
arbitrary size. Transient simulations indicate that this necessary 
synchronization condition may also be sufficient for a specific 
(but important) class of SS-ADPLLs. A synthesis of the different 
approaches that have been conducted in the study of the 
synchronization of SS-ADPLLs is also done.  

I. INTRODUCTION 

N LARGE-SCALE synchronous systems-on-chips (SOCs), 
clock distribution systems of synchronized oscillators [1-2] 

are an alternative approach to classical tree-like clock 
distribution methods [3-4]. In such systems, a network of 
synchronized oscillators deals with the distribution of time and 
frequency over a wide geographical area. The goal of the 
designer of the network is then to guarantee that the time and 
frequency scales of all the clocks are aligned after a finite time. 
The subject of synchronization - and, more generally, the 
subject of consensus - has received considerable interest in 
past years: good entry points are [5], mostly dedicated to 
natural synchronization phenomena, and [6-7], more 
specifically devoted to network synchronization.  
 The system considered here is composed of N nodes of 
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identical all-digital phase-locked loops (ADPLLs), each of 
which may be regarded as an oscillator trying to match the 
phase of its neighbors. With such an oscillator at the core of 
each synchronous area of a SOC, the synchronization between 
all neighboring synchronous areas can be guaranteed, and thus 
the synchronization of the entire system. This approach solves 
some of the problems inherent to the traditional approaches 
(e.g. H-tree), which suffer among others from poor scalability 
and high skew. The reliability of this approach was established 
in 1995 by Pratt and Nguyen [1]. An implementation was 
proposed by Gutnik and Chandrakasan [2] in 2000. 
Nevertheless, the PLL implemented by them suffered from the 
drawbacks associated with the use of analog techniques. The 
HODISS project, funded by the ANR ARFU program, aims at 
pursuing the work in [1] and [2] by performing a clock 
distribution system based on a fully digital design flow, in 
order to be easily integrated, compatible with the functional 
digital blocks of the chips and to benefit from the noise-
immunity of digital components.  
The present work is the continuation of some previous papers 
in which so-called “self-sampled” ADPLLs (SS-ADPLLs) 
were introduced [8-9]. A typical SS-ADPLL can be broken 
down into three components: a digital phase detector (DPD), a 
digital filter and a digitally-controlled oscillator (DCO) (Fig. 
1). The DPD outputs a signal which is proportional to the time 
difference between the rising edges of the local clock and of 
the neighbor clock. Its main characteristic is that, in the 
absence of an absolute reference clock, the loop filter is 
operated on the rising edges of the local time-varying clock. 
Consequently, the loop filter does not use the same operands 
depending on whether the local clock is leading or lagging: for 
example, when the local clock leads, the output of the DPD is 
updated after the loop filter is operated (Fig. 2), because the 
rising edge of the neighbor clock has not been received yet. In 
this respect, our work differs from many recent works on the 
subject of ADPLLs, such as [10-12], which are focused on the 
nonlinearity of the DPD and neglect the influence of the 
sequencing of events, as opposed to [8-9,13].  

In the current study, which synthesizes and extends our 
previous works to Cartesian networks of arbitrary size, we 
investigate what filter coefficients to choose in order to ensure 
stability and, hence, synchronization. It has been shown in [8-
9], that the study of the synchronization of one SS-ADPLL, or 
of a network of such devices, breaks down to the study of the 
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Fig. 1 - Block-diagram of a self-sampled PLL. 
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Fig. 2. - When the local clock leads, the output of the DPD is updated on 
a rising edge of the reference clock, after the filter is operated. 

 
stability of a piecewise-linear system (PLS), parameterized by 
the coefficients of the loop filter and the number of nodes in 
each line and column of the Cartesian network. There usually 
exists no analytical means of deriving necessary and sufficient 
conditions for the stability of such a family of PLS. On the 
other hand, given an individual of this family, one may test for 
its stability in different ways. In our previous work, we have 
explored two of these methods, neither of which proves 
completely satisfactory. The first approach is through transient 
simulation of the PLS, which can easily be performed for a 
network of arbitrary size. However, it is only possible to 
establish stability in this manner for a given finite set of initial 
conditions. The second approach is based on the construction 
of a piecewise-quadratic Lyapunov function (PQLF) [14-15]. 
For a given PLS, one may solve a system of linear matrix 
inequalities (LMIs) to determine whether a PQLF exists, in 
which case the system is stable. However, there are several 
problems with this approach: first of all, the existence of a 
PQLF is only a sufficient condition for the stability of a PLS. 
For example, there are several cases of stable SS-ADPLLs for 
which no PQLF can be constructed, as shown in [9]. 
Moreover, solving the system of LMIs becomes 
computationally intensive as the size of the network increases.  
The main contribution of this paper is the derivation of a 
necessary condition for the stability of a Cartesian network of 
SS-ADPLLs. In the case when the loop filter is a discrete PI 
filter, parameterized by two coefficients, we show how to 
determine the region of the parameter-space in which the 
coefficients must be chosen as a prerequisite for stability, 
regardless of network size. This results in simple design rules, 
which can easily be extended to more general filters. This 
necessary condition may or may not be sufficient, depending 
on the particular type of SS-ADPLL being used.  
In section II, the general model of a single SS-ADPLL and its 
governing equations are presented. In particular, we show how 
differing implementations of the loop filter result in different 
system dynamics. Section III is dedicated to Cartesian 
networks of SS-ADPLLs. It is shown that the filter coefficients 
must satisfy a certain condition in order for the network to be 
stable. Interestingly, this condition is independent of network 
size. In section IV, the validity of our theoretical results is 
illustrated with simulation results.  

II.  GENERAL MODEL OF SS-ADPLLS 

An SS-ADPLL is represented in Fig. 1. It is composed of a 

digital phase detector (DPD), a digital loop filter and a 
digitally-controlled oscillator (DCO). Throughout this paper, it 
is assumed that the loop filter is a proportional-integral (PI) 
filter. The use of a PI filter in a classical PLL design makes it 
possible to synchronize both in frequency and in phase [16]. 
The PI filter is driven by the rising edges of the output of the 
DCO (the local clock). The DPD is assumed to be linear and 
outputs a code proportional to the value of the corresponding 
timing error, i.e. to the time elapsed between a rising edge of 
the reference clock and a rising edge of the local clock. Note 
that this description is valid only when the PLL is close to 
synchronization: however, this assumption is not restrictive for 
studying the stability of the synchronized state, since we are 
only interested in small perturbations of the synchronized 
state. In practice, the DPD has a saturating characteristic, 
which ensures that the PLL behaves as a bang-bang PLL far 
from synchronization and, thus, has a wide lock-in range. A 
detailed description of these building blocks can be found in 
[17]. For the study of the single SS-ADPLL, it is supposed that 
the input signal comes from a regular reference clock.  

A. Governing equations 

Let [ ]nt r  and [ ]nt i  designate the time at which the nth  

rising edge of the reference clock and the DCO output 
respectively happen. We can write: 

 
[ ] [ ] rrr Tntnt +=+1 , (1) 

where rT  is the period of the reference clock, and, knowing 

that the output of the PI filter [ ]nyi  is updated at time [ ]nt i : 

[ ] [ ] [ ]nygTntnt iiii ⋅++=+1  (2) 

where iT  is the period of the DCO internal clock and g  is a 

multiplicative coefficient. Note that, in the present case, it is 
the period of the DCO which is controlled, not its frequency. 
Indeed, although modeling a PLL as a frequency controlled 
oscillator is the traditional way to proceed, the analysis 
presented here is carried out completely in the time domain, 
allowing an easy mathematical modeling of all the blocks in 
the real SS-ADPLL to be implemented for the HODISS 
project.  

Now, it is clear that if [ ] [ ]ntnt ri <  (i.e. if the local clock is 

leading), the timing error  

[ ] [ ] [ ]ntntne irri −=  (3) 
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cannot be known at time [ ]nt i  (Fig. 2). In order to update the 

value of [ ]nyi  at every rising edge of the local clock, it is then 

necessary to provide the PI filter with an estimation [ ]neri

�
 of 

[ ]neri , whenever the local clock is leading. Throughout this 

study, it is assumed that  

[ ] [ ]1ˆ −= nene riri ,  (4) 

which is possible since [ ]1−neri  is always known at time 

[ ]nt i . Depending on the practical implementation of the filter 

(see Appendix A), the control quantity [ ]nyi  is either 

governed by: 

[ ] [ ] [ ] [ ]11 21 −++−= neCnCnyny ririii ε  (5-a) 

or 
[ ] [ ] [ ] [ ]11 21 −++−= nCnCnyny riii εε , (5-b) 

where [ ] [ ] [ ]
[ ]�

�
� ≤

=
otherwise     ˆ

0 if    

ne

nene
n

ri

riri
riε  (6) 

and 1C  and 2C  are the filter coefficients. Equation (5-a) 

corresponds to the implementation shown in Fig. A2-a (filter 
type I), (5-b) corresponds to the implementation shown in Fig. 
A2-b (filter type II). Note that in an ideal PI filter, not 
accounting for self-sampling, the control quantity would be 
governed by:  

[ ] [ ] [ ] [ ]11 21 −++−= neCneCnyny ririii . (5-c) 

From (1) and (2), we have:  

[ ] [ ] [ ]nygTTnene iirriri ⋅−−+=+1  (7) 

and one may then eliminate iy  from (5-a) to obtain:  

[ ] [ ] [ ] [ ] [ ]1121 21 −−−=−+−+ neKnKnenene ririririri ε , (8-a) 

or from (5-b) to obtain: 

[ ] [ ] [ ] [ ] [ ]1121 21 −−−=−+−+ nKnKnenene ririririri εε  (8-b) 

where 11 CgK ⋅=  and 22 CgK ⋅= . Note that (8-a) (resp. (8-b)) 

may be recast as two (resp. four) separate linear equations 
where only [ ]1 +neri  and its past values appear, each equation 

corresponding to a possible value of [ ]nriε  and [ ]1 −nriε . 

These autonomous equations may also be rewritten in the 
classical state-space PLS form:  

[ ] [ ]nn k xAx =+1  (9) 

where [ ] [ ] [ ] [ ][ ]T
ririri nenenen 21 −−=x  and kA  is the state 

matrix of the kth cell of state-space. The transition diagrams 
from cell to cell are represented in Fig. 3 for both types of 
filter.  

The synchronization of type I and type II SS-ADPLLs has 
been addressed in [8-9]. Sub-sections II-B and II-C give a 
summary of the main results that can be found in these papers. 

B. Synchronization analysis for a single SS-ADPLL 

A single SS-ADPLL synchronizes when [ ]neri  goes to zero 

or, equivalently, when the piecewise-linear systems (PLSs) 

defined by (8-a) or (8-b) are asymptotically stable. Thus, it is 
of interest for the designer to determine the stability domain of 
the PLL, defined as the region of the ( )21, KK  plane for which 

(8-a) or (8-b) is stable. 
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Fig. 3. Transition diagrams of type I (3-a)  and type II (3-b) SS-ADPLLs. 
 

1) Type I SS-ADPLLs 
In [8], the following sufficient stability conditions on 1K  

and 2K  were established for (8-a): 
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However, transient simulations showed that these conditions, 
based on analytical considerations, were rather conservative. 
Another approach, based on the averaging of (8-a), led to an 
over-estimation of the stability domain. More precisely, a so-
called “average system” was defined by replacing [ ]nriε  in (8-

a) by:  

[ ] [ ] [ ]( )1
2

1~ −+= nenen riririε .  (11) 

The resulting system is linear and its stability can be assessed 
from the position of its poles. The stability domains obtained 
with the three approaches are represented in Fig. 4-a. 

Note that the stability of a PLS with one (or more) unstable 
cell cannot be assessed with PQLFs, unless, by construction, 
the PLS leaves the unstable cell(s) immediately after entering 
it [9,14-15]. Hence PQLFs cannot be used to determine the 
stability domain of type I SS-ADPLLs, because the equation 
governing the system in cell 2 (Fig. 3-a), corresponding to 

[ ] 0 >neri , is unstable and there is no guarantee that the 

system will bounce back into cell 1 immediately after entering 
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cell 2. General results concerning the use of PQLFs are 
summed up in Appendix B. 

(a)

 
(b) 

 
 

Fig. 4. Stability domain of a single type I (4-a) or type II (4-b) SS-ADPLL. 
The dark grey areas are obtained by transient simulations and the light gray 
areas are derived by calculating the poles of the average systems. In (4-a), the 
black area is the one defined by (10) whereas in (4-b), it is calculated through 
PQLFs. The dashed lines are the limits of the stability domain of an ideal 
ADPLL governed by (5-c). 
 

2) Type II SS-ADPLLs 
The study of the stability of a single type II SS-ADPLL is 

more involved than that of a type I SS-ADPLL: we have been 
unable to derive analytical bounds for the filter coefficients. 
However, PQLFs can be used to derive sufficient stability 
conditions for type II SS-ADPLLs: although the equations of 
cell 2 and cell 4 can be shown to be unstable, the system 
leaves these two cells immediately after entering them.  

The stability domains of type II SS-ADPLLs determined by 
PQLFs (as explained in Appendix C), by transient simulation 
and by averaging are represented in Fig. 4-b. Once more, we 
find that the sufficient stability conditions established through 
PQLFs are rather conservative, whereas the averaging 
approach leads to over-estimate the stability domain of the 
system. 

C. Synchronization analysis for an autonomous network of two 
SS-ADPLLs 

Although the results concerning the synchronization of 
single type I or type II SS-ADPLLs with an outside reference 
clock are rather inconclusive, we showed in [8-9] that small 
autonomous networks of two identical SS-ADPLLs are much 
simpler to study. For example, suppose the reference clock is 
replaced by another SS-ADPLL of the same type (say type I), 
as shown in Fig. 5. One of the PLLs is then governed by (8-a), 
whereas the other is governed by: 

[ ] [ ] [ ] [ ] [ ]1121 21 −−−=−+−+ neKnKnenene iririririr ε , (12) 

where the same conventions as above are used. Now it is clear 
that: 

[ ] [ ]nene irri −=  ,  (13) 

and also, from (6), that:  

[ ] [ ] [ ] [ ]1  - −+= nenenn ririirri εε .  (14) 

Thus, subtracting (12) from (8-a) yields a single linear 
equation governing rie : 

[ ] [ ] [ ] [ ] [ ]1
22

121 1
2

1 −��
�

�
��
	

A +−−=−+−+ ne
K

Kne
K

nenene ririririri

. (15) 
It is then very simple to determine the roots of the 
characteristic polynomial of (15) and establish the conditions 
under which this small network synchronizes. 

We show in section III that, in some way, this remarkable 
linearization property can be extended to Cartesian networks 
of arbitrary size. 

III.  SYNCHRONIZATION OF CARTESIAN NETWORKS OF SS-
ADPLLS OF ARBITRARY SIZE 

1) Framework 
An autonomous Cartesian network of SS-ADPLLs consists 

in a rectangular (two-dimensional) grid of self-sampled nodes, 
each node being connected to at most 4 neighbors. A typical 
network and node are represented in Fig. 6. The output of the 
DPD of the kth node on the nth rising edge of the local clock 

[ ]ntk  is equal to: 

[ ] [ ]B
∈

=
kVl

lk
k

k n
V

n εε 1
, (16) 

with  

[ ] [ ] [ ]
[ ]�

�
�

−
≤

=
otherwise      1

0 if    

ne

nene
n

lk

lklk
lkε , (17) 

[ ] [ ] [ ] [ ]nentntne klkllk −=−= ,  (18) 

where kV  is the set of the indices of the nodes in a 

neighborhood of the kth node and kV  is the cardinal of kV , 

i.e. kV  is equal to 2 for corner nodes, 3 for edge nodes and 4 

otherwise. From (17) and (18), the following fundamental 
equality can be derived: 
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Fig. 5. An autonomous network of two SS-ADPLLs 
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Fig. 6. Two Cartesian  networks of 4 or 9 SS-ADPLLs. At each node, the total error is defined as the mean value of the outputs of the DPDs. 

 

 

[ ] [ ] [ ] [ ]1  - −+= nenenn lklkkllk εε . (19) 

Let us also define [ ]n�  a vector whose kth coordinate is [ ]nkε  

and [ ]ne , a vector whose kth coordinate is 

[ ] [ ]B
∈

=
kVl

lk
k

k ne
V

ne
1

. (20) 

Each SS-ADPLL uses [ ]nkε  (16) to update the local filter 

output at time [ ]ntk , as in section II. One may then assemble 

the equations governing the whole network and find, for type I 
SS-ADPLLs:  

[ ] [ ] [ ] [ ] [ ]( )1121 21 −+−=−+−+ nKnKnnn e�Leee , (21-a) 

and, for type II SS-ADPLLs: 

[ ] [ ] [ ] [ ] [ ]( )1121 21 −+−=−+−+ nKnKnnn ��Leee  (21-b) 

where L  is the normalized Laplacian matrix of the network, 
defined as: 

�
�
�

��
�

�

∈−
=

=

otherwise0

 if
1

 if1

k
k

kl Vl
V

lk

L . (22) 

More generally, given an arbitrary loop filter with one pole in 
zero (in order to ensure phase synchronization), it will always 
be possible to write the equations governing the network in the 
form: 

[ ] [ ] [ ]

[ ] [ ] ��
�

�
��
	

A
−+−

=−+−+

BB
==

Q

q
q

P

p
p qnKpnK

nnn

0

'

0

121

e�L

eee

.  (23) 

For a network of I  lines and J  columns, a node number k  

being given, we can unambiguously define the line index ki  

and the column index kj  so that  

kk jJik +−= )1(  (24) 

where { }Iik ,...,1∈ , { }Jjk ,...,1∈ . 

Let us define a vector v  of size IJ , such that:  

( ) k

ji

k Vv kk +−= 1 .  (25) 

For example, for the 3-by-3 network of Fig. 6, we have:  

[ ]232343232 −−−−=Tv .  (26) 

Finally, we introduce the “master equation” of the network 
governing the quantity:  

[ ] [ ]nnE T ev= .  (27),  

as:  

Definition 1 - The master equation of the network is the scalar 
equation obtained by projecting the governing equations of 
the network ((21-a), (21-b) and more generally (23)) on 
v (25). 

This master equation is a restriction of the original PLS to a 
one-dimensional subspace, to which it stays confined if the 
initial state vector [ ]0e  is collinear to v . Hence, it is clearly 

necessary that the master equation be stable for the whole PLS 
to be stable.  

Now, we shall prove that, for a network of SS-ADPLLs, the 
master equation is in fact linear. It is then straightforward to 
find a necessary condition for the stability of the whole 
network, by computing the roots of its characteristic 
polynomial. We shall then demonstrate the following theorem: 

Theorem 1 - The master equation of an autonomous 
Cartesian network of identical SS-ADPLLs is linear. A 
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necessary condition for the stability and the synchronization 
of the network is then that the roots of the characteristic 
polynomial of the master equation are within the unit circle. 

2) Proof of Theorem 1 
The proof is organized as follows. First, we prove the 

following property: 

Property 1 - Tv  is the left eigenvector of the normalized 
Laplacian matrix associated to the eigenvalue 2=λ . 

Then, we establish: 

Property 2 - In an autonomous Cartesian network of identical 
SS-ADPLLs verifying (19), the following equality holds: 

[ ] [ ] [ ]( )1
2

1 −+= nEnEnT
�v .   

If Properties 1 and 2 hold, the projection of (21-a), (21-b) or, 
more generally, (23) on v  then results in a linear equation 
governing [ ]nE , from which a necessary stability condition 
can be inferred, as explained in sub-section III-1, thus proving 
Theorem 1. 

a) Proof of Property1 

Let Lvu TT = . We have: 

( ) kl

IJ

k
k

ji

kl

IJ

k
kl LVLvu kkBB

=

+

=

−==
11

1 .  (28) 

From (22), the only non-vanishing terms under the sum sign 
correspond to the values lk =  or kVlk ∈/ . Now we note 

that, in a Cartesian network, if kVl ∈ , we are in one of the 

following to cases: 

1±= kl ii   

or 

1±= kl jj . 

Hence we find that, if kVl ∈ : 

( ) ( ) kkll jiji ++ −−=− 11 . (29) 

Thus (28) becomes: 

( ) ( )

( )
�
�
�

�

�

�
�
�

	

A
+−=

−−−=

B

B

∈
=

+

∈
=

++

IJ

Vlk
k

l

ji

IJ

Vlk
k

ji

l

ji

l

k

ll

k

kkll

V

Vu

/
1

/
1

11

11

.  (30) 

Now the last term on the right-hand side is the cardinal of lV , 

so that we have: 

 ( ) ll

ji

l vVu ll 212 =−= +
.  (31) 

This completes the first step of the proof. It is notable that the 
eigenvalues of the normalized Laplacian matrix of a Cartesian 

network are necessarily inferior to 2 [18]. Thus, Tv  is the 

eigenvector associated to the largest eigenvalue of the 
normalized Laplacian. 

b) Proof of Property 2 

The second step of the proof is straightforward, but rather 
tedious. First, we shall show that:  

[ ] [ ] 0)1(
1

=+−=B B
= ∈

+
IJ

k Vl
kllk

ji

k

kk nnS εε .  (32) 

Let kL  (resp. kC ) be the set of the indices of the nodes in the 

neighborhood and on the same line (resp. column) as node k . 
It is clear that:  

kkk CLV �= .  (33) 

Thus, S  may be rewritten: 

[ ] [ ]

[ ] [ ]nn

nnS

kl

IJ

k Cl
lk

ji

kl

IJ

k Ll
lk

ji

k

kk

k

kk

εε

εε

+−+

+−=

B B

B B

= ∈

+

= ∈

+

1

1

)1(

)1(

. (34) 

Letting LS  (resp. CS ) be the sum over the lines (resp. 

columns), i.e. the first (resp. second) sum on the right-hand 
side of (34), we have: 

[ ] [ ]

( ) [ ] ( ) [ ]
( )

( ) [ ] ( ) [ ]( )
( )

B

B B B

BB B

B B

=

= = ∈
+−+−

= = ∈
+−+−

+

= ∈

+

Θ−=

+−−=

+−=

+−=

+−

+−

I

i
i

i

I

i

J

j Ll
ljJijJil

ji

I

i

J

j Ll
ljJijJil

ji

kl

IJ

k Ll
lk

ji
L

jJi

jJi

k

kk

nn

nn

nnS

1

1 1
,11,

1 1
,11,

1

)1(

)1()1(

)1(

)1(

1

1

εε

εε

εε

 (35) 

Now, one may expand 
iΘ : 

( ) ( ) [ ] ( ) ( ) [ ]( )}
( ) ( ) [ ] ( ) ( ) [ ]( )
( ) ( ) [ ] ( ) ( ) [ ]( )
( ) ( ) [ ] ( ) ( ) [ ]( )
( ) ( ) [ ] ( ) ( ) [ ]( )

( ) ( ) ( ) [ ] ( ) ( ) [ ]( )
( ) ( ) ( ) [ ] ( ) ( ) [ ]( )

( ) ( ) ( ) [ ] ( ) ( ) [ ]( )} Jjnn

Jj
nn

nn

j
nn

nn

j
nn

nn

jnn

JJiJJiJJiJJi
J

JJiJJiJJiJJi
J

JJiJJiJJiJJi
J

JiJiJiJi

JiJiJiJi

JiJiJiJi

JiJiJiJi

JiJiJiJi

i

=+−+

−=
�C

�
D
E

+−+

+−
+

+

=
�C

�
D
E

+−

+−

=
�C

�
D
E

++

++

=+−
=Θ

+−−+−−+−+−

+−−+−−+−+−
−

−+−−+−−+−−+−
−

+−+−+−+−

+−+−+−+−

+−+−+−+−

+−+−+−+−

+−+−+−+−

1,1111,1

1,1111,1
1

21,1111,21
1

41,3131,41

31,2121,31

31,2121,31

21,1111,21

21,1111,21

1

1
1

1

...

3

2

1

εε

εε

εε

εε
εε

εε
εε

εε

 (36) 
and find that every line of (36) is cancelled out by the 
following one. Hence, 0=Θ i

 and 0=LS . Similarly, one 

may show that 0=CS , which proves (32).  
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Now, we may complete the rest of the proof by writing:  

[ ] [ ]

[ ]B B

B

= ∈

+

=

+

−=

−=

IJ

k Vl
lk

ji

IJ

k
kk

jiT

k

kk

kk

n

nVn

1

1

)1(

)1(

ε

ε�v

.  (37) 

Using (32), we may rewrite (37) as:  

[ ] [ ] [ ]B B
= ∈

+ −−=
IJ

k Vl
kllk

jiT

k

kk nnn
1

)1(
2

1 εε�v ,  (38) 

which simplifies, using (19) ,into: 

[ ] [ ] [ ]

[ ] [ ]

[ ] [ ]( )1
2

1

1
1

)1(
2

1

1)1(
2

1

1

1

−+=

�
�

�

�

�
�

	

A
−+−=

−+−=

B B

B B

= ∈

+

= ∈

+

nEnE

nene
V

V

nenen

IJ

k Vl
lklk

k

k
ji

IJ

k Vl
lklk

jiT

k

kk

k

kk
�v

. (39) 

This completes the second part of the proof. 

3) Discussion 
Before illustrating these results, we stress the fact that the 

master equations obtained by projection of the network 
equations on v  are independent of the number of lines and 
columns in the network. They only depend on the transfer 
function of the loop filter and its practical implementation. 

2 1 

5 4 3 

7 6 

[ ]2224222 −−−−=Tv  

 

Fig. 7. An incomplete Cartesian network of 7 SS-ADPLLs with the 
corresponding vector vT. 

Furthermore, it is quite simple to extend Theorem 1 to 
incomplete Cartesian networks, i.e. Cartesian network with 
one or more nodes missing (Fig. 7) and thus to establish the 
following corollary:  

Corollary 1  - Theorem 1 holds for any incomplete 
autonomous Cartesian network of identical SS-ADPLLs.  

Properties 1 and 2 are unchanged by the incompleteness of the 
network, the only difference being in the proof of Property 2, 
where one must pay attention to the presence of “holes” in 

iΘ .  

Finally, suppose we have chosen to predict the timing error 
in a more elaborate way, according to: 

[ ]
[ ] [ ]

[ ]�
�

�
�

�

−

≤
=
B
=

otherwise      

0 if    

1i

I

lki

lklk

lk inea

nene
nε . (40) 

Fundamental equality (19) then becomes: 

[ ] [ ] [ ] [ ]B
=

−+=
I

lkilkkllk ineanenn
1i

  - εε , (41) 

It is then possible to derive a master equation using Property 
1 and the following property:  

Property 3 - In an autonomous Cartesian network of 
identical SS-ADPLLs verifying (41), the following equality 
holds: 

[ ] [ ] [ ] �
�

�
�
	

A −+= B
=

I

i
T inEanEn

1i2

1
�v . 

The proof of Property 3 is almost the same as that of Property 
2, except it is (41) (as opposed to (19)) which is injected into 
(38), the previous part of the proof being independent of which 
fundamental equality is verified.  

IV.  ILLUSTRATIONS AND RESULTS 

A. Master equations of  type I and type II SS-ADPLLs 

Let us, as an illustration, derive the master equations of type 
I and type II SS-ADPLLs. The projection of (21-a) on v  leads 
to: 

[ ] [ ] [ ] [ ] [ ]1121 21 −−−=−+−+ nKnKnEnEnE TT LevL�v . (42) 

Using Property 1, (42) becomes: 

[ ] [ ] [ ] [ ] [ ]122121 21 −−−=−+−+ nEKnKnEnEnE T
�v . (43) 

Using Property 2, the master equation of type I SS-ADPLLs 
can then be derived from (43): 

[ ] [ ] [ ]
[ ] ( ) [ ]12

121

211 −+−−
=−+−+

nEKKnEK

nEnEnE
 (44-a) 

Similarly, for type II SS-ADPLLs, we obtain: 

[ ] [ ] [ ]
[ ] ( ) [ ] [ ]21

121

2211 −−−+−−
=−+−+

nEKnEKKnEK

nEnEnE
 (44-b) 

Incidentally, it is always possible to find a network of ideal 
ADPLLs, i.e. which are not self-sampled, with the same 
topology as the original one, whose master equation is the 
same as that of the self-sampled network. For example, (44-a) 
and (44-b) are also the master equations (i.e. the projections on 
v ) of the networks governed by: 

 

[ ] [ ] [ ]

[ ] [ ]��
�

�
�
�
	

A
−��

�

�
��
	

A ++−

=−+−+

1
22

121

1
2

1 n
K

Kn
K

nnn

eeL

eee

 (45-a) 

and 
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[ ] [ ] [ ]

[ ] [ ] [ ]��
�

�
�
�
	

A
−+−��

�

�
��
	

A +
+−

=−+−+

2
2

1
22

121

2211 n
K

n
KK

n
K

nnn

eeeL

eee

.  (45-b) 

It is also interesting to notice that the resulting ideal networks 
are in fact the “average networks”, as defined in sub-section II-
B-1, which can be obtained from (21-a) or (21-b) by replacing 
in these equations [ ]n�  by: 

[ ] [ ] [ ]( )1
2

1~ −+= nnn ee� . (46) 

Whether some properties of the original self-sampled network 
can be derived from those of the associated “average network” 
remains to be demonstrated.  

 
Fig. 8. Stability domain (grey area) of the master equation of networks of type 
I (8-a) or type II (8-b) SS-ADPLLs, determined by finding the roots of the 
characteristic polynomials of (44-a) and (44-b). 
 

B. General master equation 

More generally, assuming the general form (23) and timing 
error prediction (40), the master equation is found to be: 

[ ] [ ] [ ]
[ ] [ ] [ ]BBBB

= ===
−−+−+−

=−+−+
P

p

I

i
pi

Q

q
q

P

p
p ipnEKaqnEKpnEK

nEnEnE

0 10

'

0

2

121

. (47) 

As in IV-A, the corresponding “average network” could be 
obtained by substituting in (23) [ ]n�  by: 

[ ] [ ] [ ] �
�

�
�
	

A −+= B
=

I

i inann
1i2

1~ ee� .  (48) 

C. Stability domains of autonomous networks of type I and 
type II SS-ADPLLs 

The stability domains derived from the characteristic 
polynomials of (44-a) and (44-b) are represented in Fig. 8. It is 
remarkable that the stability domains derived from the 
transient simulation of (21-b) or from solving the LMIs of 
Appendix B yield exactly the same results, regardless of the 
network size. This suggests that the stability of (44-b) is a 
necessary and sufficient condition for the synchronization of 
autonomous Cartesian networks of type II SS-ADPLLs. 
Furthermore, it is simple to verify that the average network 
(45-b) also has the same stability domain. 

On the other hand, the results obtained with type I SS-
ADPLLs from simulation depend on the size of the network: 
for small networks of 2 or 4 SS-ADPLLs, the stability domain 
given by simulation or PQLFs does indeed coincide with the 
one derived from (44-a). However, as the network size 
increases, the actual stability domain becomes smaller than 
predicted with the master equation (Fig. 9). The Matlab code 
used for the transient simulation of the different networks is 
given in Appendix D. If the norm of E_N_MINUS_1 is small 
after a sufficient number of edges (depending on the size of the 
network and the values of 1K  and 2K ), the network is 

assumed to be stable.  

D. Transient behaviour of networks of type I and type II SS-
ADPLLs  

Transient simulations of networks of 4 SS-ADPLLs (as 
depicted in Fig. 6) are now performed. First, a network 
composed of type I SS-ADPLLs is simulated. The coefficients 
of the PI filter are chosen as 6.11 =K  and 4.12 −=K , in 

order to enforce a strong correction while remaining stable. 
The total error of each node, calculated from (21-a) is 
represented in Fig. 10, along with that of the “average 
network” (45-a), launched from the same initial conditions. 
The results show that, although the two networks seem to 
synchronize in the same amount of time, their transient 
behaviour is quite dissimilar. As 1K  and 2K  decrease, the 

responses of both networks become more alike (but their 
settling time increases).  

On the other hand, the response of a network of type II SS-
ADPLLs (21-b) is very similar to that of the corresponding 
“average network” (45-b), even for large values of 1K  and 

2K . A typical response is plotted in Fig. 11, for 8.01 =K  and 

7.02 −=K . 

These observations and those of sub-section IV-C lead us to 
the conclusion that the average network is a good basis for the 
design of networks of type II SS-ADPLLs. Its behaviour is 
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Fig. 9 - Stability domains of complete Cartesian networks of (from left to right) of 9, 16 or 256 type I SS-ADPLLs. All networks have the same number of lines 
and columns. The dashed lines represent the limits of the stability domain derived from the master equation (44-a). 

 

 

Fig. 10 - Total errors in a network of 4 type I SS-ADPLLs (black bold lines) 
compared with the total errors of the corresponding average system (colored 

dashed lines). 

 
Fig. 11. Total errors in a network of 4 type II SS-ADPLLs (black bold lines) 
compared with the total errors of the corresponding average system (colored 
dashed lines). 

 

very close to that of the self-sampled network (same stability 
domain, similar transient behaviour) and it has the great 
advantage of being linear. Thus, all the classical tools from 
linear analysis (stability margins, for example) can be used as 
a first step in the design, and their results tested afterwards 
with transient simulations of the actual SS-ADPLL networks. 

V. CONCLUSION 

The study of the stability of a clock distribution network 
based on SS-ADPLLs was described in this paper. We showed 
that (networks of) SS-ADPLLs can be modeled as piecewise-
linear systems. Three approaches were tested in order to 
determine their stability (or synchronization) domains. The 
most rigorous approach, based on PQLFs, is quite costly in 
computing effort and requires a huge amount of bookkeeping, 
even for networks of moderate size. Moreover, it cannot be 
applied as is to all sorts of SS-ADPLLs and yields only 
sufficient stability conditions. The most straightforward 
approach, based on transient simulation of the network, yields 
some results which may be dependent on the initial conditions 
of the system. The third approach, which is the main 
contribution of this paper, may seem quite limited: it relies on 
a particular network topology (Cartesian), is valid for 
autonomous networks only and it yields necessary (not 
sufficient) stability conditions. However, it does provide us 
with a very simple tool (the so-called master equation) to 
determine, as a starting point, the limits of the domain in which 
the filter coefficients must be chosen to ensure stability. 
Furthermore, our study indicates that the properties (not only 
stability, but also settling time) of Cartesian networks of type-
II SS-ADPLLs can safely be derived from those of the 
corresponding average network. A rigorous demonstration of 
this property remains yet to be established. 

The study of non-autonomous networks of SS-ADPLLs and 
of the influence of the nonlinearity of the characteristic of the 
DPD is the subject of ongoing work.  
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Fig. A1. Detailed block-diagram of an SS-ADPLL. 
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Fig. A2 - Implementation of type I (a) and type II (b) PI filters. 
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APPENDIX A - IMPLEMENTATION OF TYPE I AND TYPE II  SS-
ADPLLS 

A detailed schematic of an SS-ADPLL is shown in Fig. A1. 
The DPD consists in an edge detector and in a time-to-digital 
converter (TDC). The edge detector delivers two binary 
signals: Measure (equal to 0 when a measure is being 
performed, to 1 otherwise) and Sign (equal to 1 when the local 
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clock is leading, to 0 otherwise). The output (Absolute error) 
of the TDC is then multiplied by Sign to obtain the Error 
signal, which is updated when Measure goes to 1.  

Type I and type II filters can then be implemented as shown 
in Fig. A2. Note that, in order to implement type I filters in a 
network of PLLs, the 2K  branch must be reproduced a 

number of times equal to the number of neighbouring nodes, 
which makes this solution less attractive. One should also note 
that in both cases the value of the output iy  changes only on 

the rising edges of the local clock. If this were not so (for 
example, if all clocked blocks were operated on edges of the 
Measure signal), (2) would no longer hold. The behaviour of 
the filter would be simplified, but that of the DCO would be 
much more complex. 

APPENDIX B - PIECEWISE-QUADRATIC STABILITY OF PLSS 

A classical approach to the determination of the stability of 
nonlinear systems is via Lyapunov functions. A Lyapunov 
function is a positive function of the states of a system whose 
value decreases along all the possible trajectories of the 
system. The existence of a Lyapunov function is a sufficient 
condition for proving the stability of an autonomous system. 
Except in the most trivial cases, there exists no generic method 
to construct or check for the existence of such a function. 
However, in the particular case of PLSs, the problem of 
finding a Lyapunov function can be broken down into several 
sub-problems.  

A discrete-time PLS can be represented for its analysis by: 

[ ] [ ]nn i xAx =+1 , iS∈x  (B-1) 

where nR∈x  is the state of the system, { } n
Iii RS ⊂∈  is a 

partition of the state-space in a number of closed polyhedral 
subspaces, I  is the set of the indices of the subspaces and iA  

the matrix of the thi  local model of the system. Let us also 
define Ω  the set representing all the possible transitions from 
one region to another, i.e.: 

[ ] [ ]{ }ijSnSnji ji ≠∈+∈=Ω ,1,, xx  (B-2) 

In some cases, it is possible to prove the stability of PLSs by 
finding a common quadratic Lyapunov function (CQLF), i.e. a 

function Pxxx TV =)( , 0>= TPP , such that 

0<− PPAA i
T

i , Ii ∈∀  (B-3) 

Determining the existence of a CQLF can be done by 
solving the set (B-3) of linear matrix inequalities (LMIs), 
which can be achieved with software such as Matlab.  

However, many PLSs are stable, even though no CQLF 
exists. It may then be possible to prove stability by 
constructing piecewise-quadratic Lyapunov functions [14-15], 

xPxx i
T

iV =)( , Ii ∈ , so that the following relaxed stability 

conditions:  

0<+− iiii
T
i MPAPA , Ii ∈∀  (B-4) 

are satisfied, where iM  is a matrix such that 0≥xMx i
T , 

iS∈∀ x , which can be constructed as follows. Since the cells 

iS  are polyhedral, it is easy to build for each of them a matrix 

iE such that xE i  has non-negative entries iS∈∀ x . Then, for 

any positive matrix iU  (i.e. any matrix with non-negative 

entries):  

0≥xEUEx ii
T
i

T , iS∈∀ x  (B-5) 

and iM  can then be chosen as ii
T
ii EUEM = . The main result 

in Feng's work [14] applied to discrete-time PLSs is 
summarized in the following theorem. 

Theorem (Feng) 

Consider the discrete-time PLS (B-1). If there exist some 
symmetric matrices iP , iU , iW and ijQ , Iji ∈,  such that 

iU , iW , and ijQ  are positive and the following LMIs are 

respected: 

Iiii
T
ii ∈−<   ,  0 EUEP , (B-6-a) 

Iiii
T
iiii

T
i ∈<+−   ,  0EWEPAPA , (B-6-b) 

{ } Ω∈<+− jiiij
T
iiij

T
i ,  ,  0EQEPAPA . (B-6-c) 

then the origin of the PLS is asymptotically stable. Moreover, 
the function: 

xPxx i
TV =)( , iS∈x  (B-7) 

is a Lyapunov function for the system. Qualitatively, (B-6-a) 

enforces the positiveness of xPx i
T  for iS∈x . Equation (B-6-

b) guarantees that some energy is lost while the system resides 
in iS . Finally, (B-6-c) ensures that some energy is also lost as 

the system moves from one cell to the other. 

APPENDIX C - APPLICATION OF PQLF TO TYPE II  SS-ADPLLS  

A single type II SS-ADPLL is governed by (8-b), which can 
be rewritten in state-space form as (9), with:   
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� −−−
=
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1A ,  (C-1-a) 
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001

12 21

4

F
F
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�

�

�
�
�

�

� −−−
=

KK

A .  (C-1-d) 

For a given couple ( )21, KK , one may try to solve the LMIs 

(B-6) and thus establish the stability of the system. Some 
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proper care must be taken to remove unfeasible LMIs. For 
example,  2A  always has an eigenvalue whose modulus is 

larger than 1. Thus, it is impossible to satisfy (B-6-b) for  
2=i . However, by construction, the system cannot reside in 

2S  for more than one time step. Thus, the corresponding LMI 

does not have to be satisfied. The same goes for 4S . The 

remaining matrix inequalities can easily be solved with 
Matlab.  

One of the main difficulties in using this approach resides in 
the bookkeeping effort that must be made to rule out 
unfeasible LMIs from the original set. As shown above, this is 
fairly simple in the case of a single SS-ADPLL. Unfortunately, 
the number of cells in the state-space increases exponentially 
with the size of the network, making it exceedingly hard to 
keep track of all possibilities, even for moderate network sizes. 

APPENDIX D - MATLAB CODE FOR TRANSIENT SIMULATION 

Define :  
•  N_EDGES, maximum number of rising edges (i.e. 

maximal simulation duration) 
•  N_NODES, number of nodes in the network 
•  LAP, normalized Laplacian L of the network 
•  K1 and K2, the tested values of 1K  and 2K  

•  PERIODS, column vector containing the values of 
the nominal periods of the DCOs 

•  T_START, column vector containing the moment of 
the first rising edge of each DCO 

•  TYPE, type of PLL, may be ’I’or ’II’ in the following 
code 

Execute :  
% Define network adjacency matrix ADJ 
ADJ=eye(N_NODES)-LAP ;  
%Initialize network 
T_N_MINUS_1=T_START; 
% Define DCO inputs at edge N 
Y=zeros(N_NODES,1); 
EPSILON_N=zeros(N_NODES,1); 
% Define total error of each node at edge N-1 
E_N_MINUS_1=zeros(N_NODES,1);  
T_N=T_N_MINUS_1+T0; 
T_OLD=T_N_MINUS_1(:,ones(1,N_NODES)); 
% Define error between all the nodes at edge N-1 
ERRORS_OLD=T_OLD'-T_OLD; 
DT=zeros(1,N_NODES); 
N=1; 
%Loop over edges 
while N<N_EDGES, 

T_NEW=T_N (:,ones(1,N_NODES)); 
% Define error between all the nodes at edge N 
ERRORS_NEW=T_NEW'-T_NEW; 
%Define M so that M(i,j)=1 if node i is leading 
%with respect to node j  
M=ERRORS_NEW>0;  
if strcmp(TYPE,’II’) 

E_N_MINUS_1=EPSILON_N; 

else 
E_N_MINUS_1=sum(A.*ERRORS_OLD,2); 

end 
EPSILON_N=sum(A.*(M.*ERRORS_OLD+(1-
M).*ERRORS_NEW),2); 
% Update DCO input 
Y=Y+K1*EPSILON_N+K2*E_N_MINUS_1;  
DT=T0+Y; 
T_N=T_N+DT; 
ERRORS_OLD=ERRORS_NEW; 
N=N+1; 

end 


