
HAL Id: hal-00695843
https://centralesupelec.hal.science/hal-00695843

Submitted on 5 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synchronization Analysis of Networks of Self-sampled
All-Digital Phase-Locked Loops

Jean-Michel Akre, Jérôme Juillard, Dimitri Galayko, Eric Colinet

To cite this version:
Jean-Michel Akre, Jérôme Juillard, Dimitri Galayko, Eric Colinet. Synchronization Analysis of Net-
works of Self-sampled All-Digital Phase-Locked Loops. IEEE Transactions on Circuits and Systems
Part 1 Fundamental Theory and Applications, 2012, 59 (4), pp.708-720. �10.1109/TCSI.2011.2169745�.
�hal-00695843�

https://centralesupelec.hal.science/hal-00695843
https://hal.archives-ouvertes.fr

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— This paper analyses the stability of the synchronized

state in Cartesian networks of identical all-digital phase-locked
loops (ADPLLs) for clock distribution applications. Such
networks consist in Cartesian grids of digitally-controlled
oscillator nodes, where each node communicates only with its
nearest neighbors. Under certain conditions, we show that the
whole network may synchronize both in phase and frequency. A
key aspect of this study lies in the fact that, in the absence of an
absolute reference clock, the loop-filter in each ADPLL is
operated on the irregular rising edges of the local oscillator and
consequently, does not use the same operands depending on
whether the local clock is leading or lagging. Under simple
assumptions, these networks of so-called “self-sampled” all-digital
phase-locked-loops (SS-ADPLLs) can be described as piecewise-
linear systems, the stability of which is notoriously difficult to
establish, The main contribution of this paper is a simple design
rule that must be met by the coefficients of each loop-filter in
order to achieve synchronization in a Cartesian network of
arbitrary size. Transient simulations indicate that this necessary
synchronization condition may also be sufficient for a specific
(but important) class of SS-ADPLLs. A synthesis of the different
approaches that have been conducted in the study of the
synchronization of SS-ADPLLs is also done.

I. INTRODUCTION

N LARGE-SCALE synchronous systems-on-chips (SOCs),
clock distribution systems of synchronized oscillators [1-2]

are an alternative approach to classical tree-like clock
distribution methods [3-4]. In such systems, a network of
synchronized oscillators deals with the distribution of time and
frequency over a wide geographical area. The goal of the
designer of the network is then to guarantee that the time and
frequency scales of all the clocks are aligned after a finite time.
The subject of synchronization - and, more generally, the
subject of consensus - has received considerable interest in
past years: good entry points are [5], mostly dedicated to
natural synchronization phenomena, and [6-7], more
specifically devoted to network synchronization.
 The system considered here is composed of N nodes of

Manuscript received March 29, 2011. This work was supported by the

French National Agency of Research (ANR) through the HODISS project.
J. M. Akré and J. Juillard are with E3S, SUPELEC, Plateau de Moulon, 3

rue Joliot-Curie, 91190 Gif-sur-Yvette, France (e-mail:
jerome.juillard@supelec.fr, jean-michel.akre@supelec.fr).

D. Galayko is with LIP6, UPMC, Université Paris 6, 4, place Jussieu
75252 Paris cedex 05, France (e-mail: dimitri.galayko@lip6.fr).

E. Colinet is with CEA-LETI, MINATEC, 17 rue des martyrs, 38054
Grenoble cedex 9, France (e-mail: eric.colinet@cea.fr).

identical all-digital phase-locked loops (ADPLLs), each of
which may be regarded as an oscillator trying to match the
phase of its neighbors. With such an oscillator at the core of
each synchronous area of a SOC, the synchronization between
all neighboring synchronous areas can be guaranteed, and thus
the synchronization of the entire system. This approach solves
some of the problems inherent to the traditional approaches
(e.g. H-tree), which suffer among others from poor scalability
and high skew. The reliability of this approach was established
in 1995 by Pratt and Nguyen [1]. An implementation was
proposed by Gutnik and Chandrakasan [2] in 2000.
Nevertheless, the PLL implemented by them suffered from the
drawbacks associated with the use of analog techniques. The
HODISS project, funded by the ANR ARFU program, aims at
pursuing the work in [1] and [2] by performing a clock
distribution system based on a fully digital design flow, in
order to be easily integrated, compatible with the functional
digital blocks of the chips and to benefit from the noise-
immunity of digital components.
The present work is the continuation of some previous papers
in which so-called “self-sampled” ADPLLs (SS-ADPLLs)
were introduced [8-9]. A typical SS-ADPLL can be broken
down into three components: a digital phase detector (DPD), a
digital filter and a digitally-controlled oscillator (DCO) (Fig.
1). The DPD outputs a signal which is proportional to the time
difference between the rising edges of the local clock and of
the neighbor clock. Its main characteristic is that, in the
absence of an absolute reference clock, the loop filter is
operated on the rising edges of the local time-varying clock.
Consequently, the loop filter does not use the same operands
depending on whether the local clock is leading or lagging: for
example, when the local clock leads, the output of the DPD is
updated after the loop filter is operated (Fig. 2), because the
rising edge of the neighbor clock has not been received yet. In
this respect, our work differs from many recent works on the
subject of ADPLLs, such as [10-12], which are focused on the
nonlinearity of the DPD and neglect the influence of the
sequencing of events, as opposed to [8-9,13].

In the current study, which synthesizes and extends our
previous works to Cartesian networks of arbitrary size, we
investigate what filter coefficients to choose in order to ensure
stability and, hence, synchronization. It has been shown in [8-
9], that the study of the synchronization of one SS-ADPLL, or
of a network of such devices, breaks down to the study of the

Synchronization Analysis of Networks of Self-
Sampled All-Digital Phase-Locked Loops

J. M. Akré, J. Juillard, D. Galayko, and E. Colinet, Member, IEEE

I

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

Discrete
filter

DCO DPD

Reference
clock

Local
clock

Fig. 1 - Block-diagram of a self-sampled PLL.

Local
clock

Reference
clock

DPD
output

Fig. 2. - When the local clock leads, the output of the DPD is updated on
a rising edge of the reference clock, after the filter is operated.

stability of a piecewise-linear system (PLS), parameterized by
the coefficients of the loop filter and the number of nodes in
each line and column of the Cartesian network. There usually
exists no analytical means of deriving necessary and sufficient
conditions for the stability of such a family of PLS. On the
other hand, given an individual of this family, one may test for
its stability in different ways. In our previous work, we have
explored two of these methods, neither of which proves
completely satisfactory. The first approach is through transient
simulation of the PLS, which can easily be performed for a
network of arbitrary size. However, it is only possible to
establish stability in this manner for a given finite set of initial
conditions. The second approach is based on the construction
of a piecewise-quadratic Lyapunov function (PQLF) [14-15].
For a given PLS, one may solve a system of linear matrix
inequalities (LMIs) to determine whether a PQLF exists, in
which case the system is stable. However, there are several
problems with this approach: first of all, the existence of a
PQLF is only a sufficient condition for the stability of a PLS.
For example, there are several cases of stable SS-ADPLLs for
which no PQLF can be constructed, as shown in [9].
Moreover, solving the system of LMIs becomes
computationally intensive as the size of the network increases.
The main contribution of this paper is the derivation of a
necessary condition for the stability of a Cartesian network of
SS-ADPLLs. In the case when the loop filter is a discrete PI
filter, parameterized by two coefficients, we show how to
determine the region of the parameter-space in which the
coefficients must be chosen as a prerequisite for stability,
regardless of network size. This results in simple design rules,
which can easily be extended to more general filters. This
necessary condition may or may not be sufficient, depending
on the particular type of SS-ADPLL being used.
In section II, the general model of a single SS-ADPLL and its
governing equations are presented. In particular, we show how
differing implementations of the loop filter result in different
system dynamics. Section III is dedicated to Cartesian
networks of SS-ADPLLs. It is shown that the filter coefficients
must satisfy a certain condition in order for the network to be
stable. Interestingly, this condition is independent of network
size. In section IV, the validity of our theoretical results is
illustrated with simulation results.

II. GENERAL MODEL OF SS-ADPLLS

An SS-ADPLL is represented in Fig. 1. It is composed of a

digital phase detector (DPD), a digital loop filter and a
digitally-controlled oscillator (DCO). Throughout this paper, it
is assumed that the loop filter is a proportional-integral (PI)
filter. The use of a PI filter in a classical PLL design makes it
possible to synchronize both in frequency and in phase [16].
The PI filter is driven by the rising edges of the output of the
DCO (the local clock). The DPD is assumed to be linear and
outputs a code proportional to the value of the corresponding
timing error, i.e. to the time elapsed between a rising edge of
the reference clock and a rising edge of the local clock. Note
that this description is valid only when the PLL is close to
synchronization: however, this assumption is not restrictive for
studying the stability of the synchronized state, since we are
only interested in small perturbations of the synchronized
state. In practice, the DPD has a saturating characteristic,
which ensures that the PLL behaves as a bang-bang PLL far
from synchronization and, thus, has a wide lock-in range. A
detailed description of these building blocks can be found in
[17]. For the study of the single SS-ADPLL, it is supposed that
the input signal comes from a regular reference clock.

A. Governing equations

Let []nt r and []nt i designate the time at which the nth

rising edge of the reference clock and the DCO output
respectively happen. We can write:

[] [] rrr Tntnt +=+1 , (1)

where rT is the period of the reference clock, and, knowing

that the output of the PI filter []nyi is updated at time []nt i :

[] [] []nygTntnt iiii ⋅++=+1 (2)

where iT is the period of the DCO internal clock and g is a

multiplicative coefficient. Note that, in the present case, it is
the period of the DCO which is controlled, not its frequency.
Indeed, although modeling a PLL as a frequency controlled
oscillator is the traditional way to proceed, the analysis
presented here is carried out completely in the time domain,
allowing an easy mathematical modeling of all the blocks in
the real SS-ADPLL to be implemented for the HODISS
project.

Now, it is clear that if [] []ntnt ri < (i.e. if the local clock is

leading), the timing error

[] [] []ntntne irri −= (3)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

cannot be known at time []nt i (Fig. 2). In order to update the

value of []nyi at every rising edge of the local clock, it is then

necessary to provide the PI filter with an estimation []neri

�
 of

[]neri , whenever the local clock is leading. Throughout this

study, it is assumed that

[] []1ˆ −= nene riri , (4)

which is possible since []1−neri is always known at time

[]nt i . Depending on the practical implementation of the filter

(see Appendix A), the control quantity []nyi is either

governed by:

[] [] [] []11 21 −++−= neCnCnyny ririii ε (5-a)

or
[] [] [] []11 21 −++−= nCnCnyny riii εε , (5-b)

where [] [] []
[]�

�
� ≤

=
otherwise ˆ

0 if

ne

nene
n

ri

riri
riε (6)

and 1C and 2C are the filter coefficients. Equation (5-a)

corresponds to the implementation shown in Fig. A2-a (filter
type I), (5-b) corresponds to the implementation shown in Fig.
A2-b (filter type II). Note that in an ideal PI filter, not
accounting for self-sampling, the control quantity would be
governed by:

[] [] [] []11 21 −++−= neCneCnyny ririii . (5-c)

From (1) and (2), we have:

[] [] []nygTTnene iirriri ⋅−−+=+1 (7)

and one may then eliminate iy from (5-a) to obtain:

[] [] [] [] []1121 21 −−−=−+−+ neKnKnenene ririririri ε , (8-a)

or from (5-b) to obtain:

[] [] [] [] []1121 21 −−−=−+−+ nKnKnenene ririririri εε (8-b)

where 11 CgK ⋅= and 22 CgK ⋅= . Note that (8-a) (resp. (8-b))

may be recast as two (resp. four) separate linear equations
where only []1 +neri and its past values appear, each equation

corresponding to a possible value of []nriε and []1 −nriε .

These autonomous equations may also be rewritten in the
classical state-space PLS form:

[] []nn k xAx =+1 (9)

where [] [] [] [][]T
ririri nenenen 21 −−=x and kA is the state

matrix of the kth cell of state-space. The transition diagrams
from cell to cell are represented in Fig. 3 for both types of
filter.

The synchronization of type I and type II SS-ADPLLs has
been addressed in [8-9]. Sub-sections II-B and II-C give a
summary of the main results that can be found in these papers.

B. Synchronization analysis for a single SS-ADPLL

A single SS-ADPLL synchronizes when []neri goes to zero

or, equivalently, when the piecewise-linear systems (PLSs)

defined by (8-a) or (8-b) are asymptotically stable. Thus, it is
of interest for the designer to determine the stability domain of
the PLL, defined as the region of the ()21, KK plane for which

(8-a) or (8-b) is stable.

(a)
Cell 2

A2

Cell 1

A1

(b)
eri[n]

eri[n-1]

eri[n]

Cell 4

A4

Cell 1

A1

Cell 3

A3

Cell 2

A2

Fig. 3. Transition diagrams of type I (3-a) and type II (3-b) SS-ADPLLs.

1) Type I SS-ADPLLs
In [8], the following sufficient stability conditions on 1K

and 2K were established for (8-a):

�
�

�

�
�

�

�

<<
>+

>+−

>+

20

01

0)(4

0

1

2

21
2

1

21

K

K

KKK

KK

. (10)

However, transient simulations showed that these conditions,
based on analytical considerations, were rather conservative.
Another approach, based on the averaging of (8-a), led to an
over-estimation of the stability domain. More precisely, a so-
called “average system” was defined by replacing []nriε in (8-

a) by:

[] [] []()1
2

1~ −+= nenen riririε . (11)

The resulting system is linear and its stability can be assessed
from the position of its poles. The stability domains obtained
with the three approaches are represented in Fig. 4-a.

Note that the stability of a PLS with one (or more) unstable
cell cannot be assessed with PQLFs, unless, by construction,
the PLS leaves the unstable cell(s) immediately after entering
it [9,14-15]. Hence PQLFs cannot be used to determine the
stability domain of type I SS-ADPLLs, because the equation
governing the system in cell 2 (Fig. 3-a), corresponding to

[] 0 >neri , is unstable and there is no guarantee that the

system will bounce back into cell 1 immediately after entering

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

cell 2. General results concerning the use of PQLFs are
summed up in Appendix B.

(a)

(b)

Fig. 4. Stability domain of a single type I (4-a) or type II (4-b) SS-ADPLL.
The dark grey areas are obtained by transient simulations and the light gray
areas are derived by calculating the poles of the average systems. In (4-a), the
black area is the one defined by (10) whereas in (4-b), it is calculated through
PQLFs. The dashed lines are the limits of the stability domain of an ideal
ADPLL governed by (5-c).

2) Type II SS-ADPLLs
The study of the stability of a single type II SS-ADPLL is

more involved than that of a type I SS-ADPLL: we have been
unable to derive analytical bounds for the filter coefficients.
However, PQLFs can be used to derive sufficient stability
conditions for type II SS-ADPLLs: although the equations of
cell 2 and cell 4 can be shown to be unstable, the system
leaves these two cells immediately after entering them.

The stability domains of type II SS-ADPLLs determined by
PQLFs (as explained in Appendix C), by transient simulation
and by averaging are represented in Fig. 4-b. Once more, we
find that the sufficient stability conditions established through
PQLFs are rather conservative, whereas the averaging
approach leads to over-estimate the stability domain of the
system.

C. Synchronization analysis for an autonomous network of two
SS-ADPLLs

Although the results concerning the synchronization of
single type I or type II SS-ADPLLs with an outside reference
clock are rather inconclusive, we showed in [8-9] that small
autonomous networks of two identical SS-ADPLLs are much
simpler to study. For example, suppose the reference clock is
replaced by another SS-ADPLL of the same type (say type I),
as shown in Fig. 5. One of the PLLs is then governed by (8-a),
whereas the other is governed by:

[] [] [] [] []1121 21 −−−=−+−+ neKnKnenene iririririr ε , (12)

where the same conventions as above are used. Now it is clear
that:

[] []nene irri −= , (13)

and also, from (6), that:

[] [] [] []1 - −+= nenenn ririirri εε . (14)

Thus, subtracting (12) from (8-a) yields a single linear
equation governing rie :

[] [] [] [] []1
22

121 1
2

1 −��
�

�
��
	

A +−−=−+−+ ne
K

Kne
K

nenene ririririri

. (15)
It is then very simple to determine the roots of the
characteristic polynomial of (15) and establish the conditions
under which this small network synchronizes.

We show in section III that, in some way, this remarkable
linearization property can be extended to Cartesian networks
of arbitrary size.

III. SYNCHRONIZATION OF CARTESIAN NETWORKS OF SS-
ADPLLS OF ARBITRARY SIZE

1) Framework
An autonomous Cartesian network of SS-ADPLLs consists

in a rectangular (two-dimensional) grid of self-sampled nodes,
each node being connected to at most 4 neighbors. A typical
network and node are represented in Fig. 6. The output of the
DPD of the kth node on the nth rising edge of the local clock

[]ntk is equal to:

[] []B
∈

=
kVl

lk
k

k n
V

n εε 1
, (16)

with

[] [] []
[]�

�
�

−
≤

=
otherwise 1

0 if

ne

nene
n

lk

lklk
lkε , (17)

[] [] [] []nentntne klkllk −=−= , (18)

where kV is the set of the indices of the nodes in a

neighborhood of the kth node and kV is the cardinal of kV ,

i.e. kV is equal to 2 for corner nodes, 3 for edge nodes and 4

otherwise. From (17) and (18), the following fundamental
equality can be derived:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

PI Filter
(K1, K2)

DCO DPD21
y1 t1 DCO PI Filter

(K1, K2)

y2
DPD12

t2

Fig. 5. An autonomous network of two SS-ADPLLs

1 2 3

4 5 6

7 8 9

1 2

3 4

DPD36

DPD56

DPD96

+
+
+

1/3
PI Filter
(K1, K2)

DCO

�36 /e36

�56 /e56

�96 /e96

�6 /e6 t6

t3

t5

t9

Fig. 6. Two Cartesian networks of 4 or 9 SS-ADPLLs. At each node, the total error is defined as the mean value of the outputs of the DPDs.

[] [] [] []1 - −+= nenenn lklkkllk εε . (19)

Let us also define []n� a vector whose kth coordinate is []nkε

and []ne , a vector whose kth coordinate is

[] []B
∈

=
kVl

lk
k

k ne
V

ne
1

. (20)

Each SS-ADPLL uses []nkε (16) to update the local filter

output at time []ntk , as in section II. One may then assemble

the equations governing the whole network and find, for type I
SS-ADPLLs:

[] [] [] [] []()1121 21 −+−=−+−+ nKnKnnn e�Leee , (21-a)

and, for type II SS-ADPLLs:

[] [] [] [] []()1121 21 −+−=−+−+ nKnKnnn ��Leee (21-b)

where L is the normalized Laplacian matrix of the network,
defined as:

�
�
�

��
�

�

∈−
=

=

otherwise0

 if
1

 if1

k
k

kl Vl
V

lk

L . (22)

More generally, given an arbitrary loop filter with one pole in
zero (in order to ensure phase synchronization), it will always
be possible to write the equations governing the network in the
form:

[] [] []

[] [] ��
�

�
��
	

A
−+−

=−+−+

BB
==

Q

q
q

P

p
p qnKpnK

nnn

0

'

0

121

e�L

eee

. (23)

For a network of I lines and J columns, a node number k

being given, we can unambiguously define the line index ki

and the column index kj so that

kk jJik +−=)1((24)

where { }Iik ,...,1∈ , { }Jjk ,...,1∈ .

Let us define a vector v of size IJ , such that:

() k

ji

k Vv kk +−= 1 . (25)

For example, for the 3-by-3 network of Fig. 6, we have:

[]232343232 −−−−=Tv . (26)

Finally, we introduce the “master equation” of the network
governing the quantity:

[] []nnE T ev= . (27),

as:

Definition 1 - The master equation of the network is the scalar
equation obtained by projecting the governing equations of
the network ((21-a), (21-b) and more generally (23)) on
v (25).

This master equation is a restriction of the original PLS to a
one-dimensional subspace, to which it stays confined if the
initial state vector []0e is collinear to v . Hence, it is clearly

necessary that the master equation be stable for the whole PLS
to be stable.

Now, we shall prove that, for a network of SS-ADPLLs, the
master equation is in fact linear. It is then straightforward to
find a necessary condition for the stability of the whole
network, by computing the roots of its characteristic
polynomial. We shall then demonstrate the following theorem:

Theorem 1 - The master equation of an autonomous
Cartesian network of identical SS-ADPLLs is linear. A

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

necessary condition for the stability and the synchronization
of the network is then that the roots of the characteristic
polynomial of the master equation are within the unit circle.

2) Proof of Theorem 1
The proof is organized as follows. First, we prove the

following property:

Property 1 - Tv is the left eigenvector of the normalized
Laplacian matrix associated to the eigenvalue 2=λ .

Then, we establish:

Property 2 - In an autonomous Cartesian network of identical
SS-ADPLLs verifying (19), the following equality holds:

[] [] []()1
2

1 −+= nEnEnT
�v .

If Properties 1 and 2 hold, the projection of (21-a), (21-b) or,
more generally, (23) on v then results in a linear equation
governing []nE , from which a necessary stability condition
can be inferred, as explained in sub-section III-1, thus proving
Theorem 1.

a) Proof of Property1

Let Lvu TT = . We have:

() kl

IJ

k
k

ji

kl

IJ

k
kl LVLvu kkBB

=

+

=

−==
11

1 . (28)

From (22), the only non-vanishing terms under the sum sign
correspond to the values lk = or kVlk ∈/ . Now we note

that, in a Cartesian network, if kVl ∈ , we are in one of the

following to cases:

1±= kl ii

or

1±= kl jj .

Hence we find that, if kVl ∈ :

() () kkll jiji ++ −−=− 11 . (29)

Thus (28) becomes:

() ()

()
�
�
�

�

�

�
�
�

	

A
+−=

−−−=

B

B

∈
=

+

∈
=

++

IJ

Vlk
k

l

ji

IJ

Vlk
k

ji

l

ji

l

k

ll

k

kkll

V

Vu

/
1

/
1

11

11

. (30)

Now the last term on the right-hand side is the cardinal of lV ,

so that we have:

 () ll

ji

l vVu ll 212 =−= +
. (31)

This completes the first step of the proof. It is notable that the
eigenvalues of the normalized Laplacian matrix of a Cartesian

network are necessarily inferior to 2 [18]. Thus, Tv is the

eigenvector associated to the largest eigenvalue of the
normalized Laplacian.

b) Proof of Property 2

The second step of the proof is straightforward, but rather
tedious. First, we shall show that:

[] [] 0)1(
1

=+−=B B
= ∈

+
IJ

k Vl
kllk

ji

k

kk nnS εε . (32)

Let kL (resp. kC) be the set of the indices of the nodes in the

neighborhood and on the same line (resp. column) as node k .
It is clear that:

kkk CLV �= . (33)

Thus, S may be rewritten:

[] []

[] []nn

nnS

kl

IJ

k Cl
lk

ji

kl

IJ

k Ll
lk

ji

k

kk

k

kk

εε

εε

+−+

+−=

B B

B B

= ∈

+

= ∈

+

1

1

)1(

)1(

. (34)

Letting LS (resp. CS) be the sum over the lines (resp.

columns), i.e. the first (resp. second) sum on the right-hand
side of (34), we have:

[] []

() [] () []
()

() [] () []()
()

B

B B B

BB B

B B

=

= = ∈
+−+−

= = ∈
+−+−

+

= ∈

+

Θ−=

+−−=

+−=

+−=

+−

+−

I

i
i

i

I

i

J

j Ll
ljJijJil

ji

I

i

J

j Ll
ljJijJil

ji

kl

IJ

k Ll
lk

ji
L

jJi

jJi

k

kk

nn

nn

nnS

1

1 1
,11,

1 1
,11,

1

)1(

)1()1(

)1(

)1(

1

1

εε

εε

εε

 (35)

Now, one may expand
iΘ :

() () [] () () []()}
() () [] () () []()
() () [] () () []()
() () [] () () []()
() () [] () () []()

() () () [] () () []()
() () () [] () () []()

() () () [] () () []()} Jjnn

Jj
nn

nn

j
nn

nn

j
nn

nn

jnn

JJiJJiJJiJJi
J

JJiJJiJJiJJi
J

JJiJJiJJiJJi
J

JiJiJiJi

JiJiJiJi

JiJiJiJi

JiJiJiJi

JiJiJiJi

i

=+−+

−=
�C

�
D
E

+−+

+−
+

+

=
�C

�
D
E

+−

+−

=
�C

�
D
E

++

++

=+−
=Θ

+−−+−−+−+−

+−−+−−+−+−
−

−+−−+−−+−−+−
−

+−+−+−+−

+−+−+−+−

+−+−+−+−

+−+−+−+−

+−+−+−+−

1,1111,1

1,1111,1
1

21,1111,21
1

41,3131,41

31,2121,31

31,2121,31

21,1111,21

21,1111,21

1

1
1

1

...

3

2

1

εε

εε

εε

εε
εε

εε
εε

εε

 (36)
and find that every line of (36) is cancelled out by the
following one. Hence, 0=Θ i

 and 0=LS . Similarly, one

may show that 0=CS , which proves (32).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

Now, we may complete the rest of the proof by writing:

[] []

[]B B

B

= ∈

+

=

+

−=

−=

IJ

k Vl
lk

ji

IJ

k
kk

jiT

k

kk

kk

n

nVn

1

1

)1(

)1(

ε

ε�v

. (37)

Using (32), we may rewrite (37) as:

[] [] []B B
= ∈

+ −−=
IJ

k Vl
kllk

jiT

k

kk nnn
1

)1(
2

1 εε�v , (38)

which simplifies, using (19) ,into:

[] [] []

[] []

[] []()1
2

1

1
1

)1(
2

1

1)1(
2

1

1

1

−+=

�
�

�

�

�
�

	

A
−+−=

−+−=

B B

B B

= ∈

+

= ∈

+

nEnE

nene
V

V

nenen

IJ

k Vl
lklk

k

k
ji

IJ

k Vl
lklk

jiT

k

kk

k

kk
�v

. (39)

This completes the second part of the proof.

3) Discussion
Before illustrating these results, we stress the fact that the

master equations obtained by projection of the network
equations on v are independent of the number of lines and
columns in the network. They only depend on the transfer
function of the loop filter and its practical implementation.

2 1

5 4 3

7 6

[]2224222 −−−−=Tv

Fig. 7. An incomplete Cartesian network of 7 SS-ADPLLs with the
corresponding vector vT.

Furthermore, it is quite simple to extend Theorem 1 to
incomplete Cartesian networks, i.e. Cartesian network with
one or more nodes missing (Fig. 7) and thus to establish the
following corollary:

Corollary 1 - Theorem 1 holds for any incomplete
autonomous Cartesian network of identical SS-ADPLLs.

Properties 1 and 2 are unchanged by the incompleteness of the
network, the only difference being in the proof of Property 2,
where one must pay attention to the presence of “holes” in

iΘ .

Finally, suppose we have chosen to predict the timing error
in a more elaborate way, according to:

[]
[] []

[]�
�

�
�

�

−

≤
=
B
=

otherwise

0 if

1i

I

lki

lklk

lk inea

nene
nε . (40)

Fundamental equality (19) then becomes:

[] [] [] []B
=

−+=
I

lkilkkllk ineanenn
1i

 - εε , (41)

It is then possible to derive a master equation using Property
1 and the following property:

Property 3 - In an autonomous Cartesian network of
identical SS-ADPLLs verifying (41), the following equality
holds:

[] [] [] �
�

�
�
	

A −+= B
=

I

i
T inEanEn

1i2

1
�v .

The proof of Property 3 is almost the same as that of Property
2, except it is (41) (as opposed to (19)) which is injected into
(38), the previous part of the proof being independent of which
fundamental equality is verified.

IV. ILLUSTRATIONS AND RESULTS

A. Master equations of type I and type II SS-ADPLLs

Let us, as an illustration, derive the master equations of type
I and type II SS-ADPLLs. The projection of (21-a) on v leads
to:

[] [] [] [] []1121 21 −−−=−+−+ nKnKnEnEnE TT LevL�v . (42)

Using Property 1, (42) becomes:

[] [] [] [] []122121 21 −−−=−+−+ nEKnKnEnEnE T
�v . (43)

Using Property 2, the master equation of type I SS-ADPLLs
can then be derived from (43):

[] [] []
[] () []12

121

211 −+−−
=−+−+

nEKKnEK

nEnEnE
 (44-a)

Similarly, for type II SS-ADPLLs, we obtain:

[] [] []
[] () [] []21

121

2211 −−−+−−
=−+−+

nEKnEKKnEK

nEnEnE
 (44-b)

Incidentally, it is always possible to find a network of ideal
ADPLLs, i.e. which are not self-sampled, with the same
topology as the original one, whose master equation is the
same as that of the self-sampled network. For example, (44-a)
and (44-b) are also the master equations (i.e. the projections on
v) of the networks governed by:

[] [] []

[] []��
�

�
�
�
	

A
−��

�

�
��
	

A ++−

=−+−+

1
22

121

1
2

1 n
K

Kn
K

nnn

eeL

eee

 (45-a)

and

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

[] [] []

[] [] []��
�

�
�
�
	

A
−+−��

�

�
��
	

A +
+−

=−+−+

2
2

1
22

121

2211 n
K

n
KK

n
K

nnn

eeeL

eee

. (45-b)

It is also interesting to notice that the resulting ideal networks
are in fact the “average networks”, as defined in sub-section II-
B-1, which can be obtained from (21-a) or (21-b) by replacing
in these equations []n� by:

[] [] []()1
2

1~ −+= nnn ee� . (46)

Whether some properties of the original self-sampled network
can be derived from those of the associated “average network”
remains to be demonstrated.

Fig. 8. Stability domain (grey area) of the master equation of networks of type
I (8-a) or type II (8-b) SS-ADPLLs, determined by finding the roots of the
characteristic polynomials of (44-a) and (44-b).

B. General master equation

More generally, assuming the general form (23) and timing
error prediction (40), the master equation is found to be:

[] [] []
[] [] []BBBB

= ===
−−+−+−

=−+−+
P

p

I

i
pi

Q

q
q

P

p
p ipnEKaqnEKpnEK

nEnEnE

0 10

'

0

2

121

. (47)

As in IV-A, the corresponding “average network” could be
obtained by substituting in (23) []n� by:

[] [] [] �
�

�
�
	

A −+= B
=

I

i inann
1i2

1~ ee� . (48)

C. Stability domains of autonomous networks of type I and
type II SS-ADPLLs

The stability domains derived from the characteristic
polynomials of (44-a) and (44-b) are represented in Fig. 8. It is
remarkable that the stability domains derived from the
transient simulation of (21-b) or from solving the LMIs of
Appendix B yield exactly the same results, regardless of the
network size. This suggests that the stability of (44-b) is a
necessary and sufficient condition for the synchronization of
autonomous Cartesian networks of type II SS-ADPLLs.
Furthermore, it is simple to verify that the average network
(45-b) also has the same stability domain.

On the other hand, the results obtained with type I SS-
ADPLLs from simulation depend on the size of the network:
for small networks of 2 or 4 SS-ADPLLs, the stability domain
given by simulation or PQLFs does indeed coincide with the
one derived from (44-a). However, as the network size
increases, the actual stability domain becomes smaller than
predicted with the master equation (Fig. 9). The Matlab code
used for the transient simulation of the different networks is
given in Appendix D. If the norm of E_N_MINUS_1 is small
after a sufficient number of edges (depending on the size of the
network and the values of 1K and 2K), the network is

assumed to be stable.

D. Transient behaviour of networks of type I and type II SS-
ADPLLs

Transient simulations of networks of 4 SS-ADPLLs (as
depicted in Fig. 6) are now performed. First, a network
composed of type I SS-ADPLLs is simulated. The coefficients
of the PI filter are chosen as 6.11 =K and 4.12 −=K , in

order to enforce a strong correction while remaining stable.
The total error of each node, calculated from (21-a) is
represented in Fig. 10, along with that of the “average
network” (45-a), launched from the same initial conditions.
The results show that, although the two networks seem to
synchronize in the same amount of time, their transient
behaviour is quite dissimilar. As 1K and 2K decrease, the

responses of both networks become more alike (but their
settling time increases).

On the other hand, the response of a network of type II SS-
ADPLLs (21-b) is very similar to that of the corresponding
“average network” (45-b), even for large values of 1K and

2K . A typical response is plotted in Fig. 11, for 8.01 =K and

7.02 −=K .

These observations and those of sub-section IV-C lead us to
the conclusion that the average network is a good basis for the
design of networks of type II SS-ADPLLs. Its behaviour is

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

Fig. 9 - Stability domains of complete Cartesian networks of (from left to right) of 9, 16 or 256 type I SS-ADPLLs. All networks have the same number of lines
and columns. The dashed lines represent the limits of the stability domain derived from the master equation (44-a).

Fig. 10 - Total errors in a network of 4 type I SS-ADPLLs (black bold lines)
compared with the total errors of the corresponding average system (colored

dashed lines).

Fig. 11. Total errors in a network of 4 type II SS-ADPLLs (black bold lines)
compared with the total errors of the corresponding average system (colored
dashed lines).

very close to that of the self-sampled network (same stability
domain, similar transient behaviour) and it has the great
advantage of being linear. Thus, all the classical tools from
linear analysis (stability margins, for example) can be used as
a first step in the design, and their results tested afterwards
with transient simulations of the actual SS-ADPLL networks.

V. CONCLUSION

The study of the stability of a clock distribution network
based on SS-ADPLLs was described in this paper. We showed
that (networks of) SS-ADPLLs can be modeled as piecewise-
linear systems. Three approaches were tested in order to
determine their stability (or synchronization) domains. The
most rigorous approach, based on PQLFs, is quite costly in
computing effort and requires a huge amount of bookkeeping,
even for networks of moderate size. Moreover, it cannot be
applied as is to all sorts of SS-ADPLLs and yields only
sufficient stability conditions. The most straightforward
approach, based on transient simulation of the network, yields
some results which may be dependent on the initial conditions
of the system. The third approach, which is the main
contribution of this paper, may seem quite limited: it relies on
a particular network topology (Cartesian), is valid for
autonomous networks only and it yields necessary (not
sufficient) stability conditions. However, it does provide us
with a very simple tool (the so-called master equation) to
determine, as a starting point, the limits of the domain in which
the filter coefficients must be chosen to ensure stability.
Furthermore, our study indicates that the properties (not only
stability, but also settling time) of Cartesian networks of type-
II SS-ADPLLs can safely be derived from those of the
corresponding average network. A rigorous demonstration of
this property remains yet to be established.

The study of non-autonomous networks of SS-ADPLLs and
of the influence of the nonlinearity of the characteristic of the
DPD is the subject of ongoing work.

ACKNOWLEDGMENT

This work is supported by the French National Agency of
Research (ANR) through the HODISS project.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

PI Filter
(K1, K2)

DCO

Reference
clock (tr) Detector

TDC

Sign

DPD

Local
clock (ti)

Error

Absolute error

S/H

Measure

Fig. A1. Detailed block-diagram of an SS-ADPLL.

it

 2K z-1

 1K Sample/Hold iy

z-1

it
Measure

 (a)

 2K z-1

 1K

it

Sample/Hold iy

it

(b)

Fig. A2 - Implementation of type I (a) and type II (b) PI filters.

REFERENCES
[1] G.A. Pratt, J. Nguyen, “Distributed Synchronous Clocking”, IEEE

Transactions on Parallel and Distributed System, vol. 6, pp. 314-28,
1995.

[2] V. Gutnik, A. P. Chandrakasan, “Active GHz Clock Network Using
Distributed PLLs”, IEEE Journal of Solid-State Circuits, vol. 35, pp.
1553-60, 2000.

[3] E.G. Friedman, “Design and Analysis of a Hierarchical Clock
Distribution System for Synchronous Standard Cell/Macrocell VLSI”,
IEEE Journal of Solid-State Circuits, vol. 21, pp. 240-246, 1986.

[4] M. Saint-Laurent, M. Swaminathan, “ A Multi-PLL Clock Distribution
Architecture for Gigascale Integration”, IEEE Computer Society
Workshop on VLSI, pp. 30-35, 2001.

[5] S.H. Strogatz, “Sync: The Emerging Science of Spontaneous Order”,
Hyperion, New York, 2003.

[6] W. C. Lindsey et al., “Network Synchronization,” Proceedings of the
IEEE, vol. 73, no.10, Oct. 1985, pp. 1445–67.

[7] O. Simeone et al., “Distributed synchronization in wireless networks,”
Proc. IEEE, vol. 25, Sept. 2008, pp. 81–97.

[8] J-M. Akré, J. Juillard, D. Galayko, and E. Colinet “Synchronized State
in Networks of Digital Phase-Locked Loops”, 8th IEEE International
NEWCAS Conference, pp. 89-92, Montreal, 2010.

[9] J-M. Akré, J. Juillard, S. Olaru, D. Galayko, and E. Colinet
“Determination of the Behaviour of Self-Sampled Digital Phase-Locked
Loops”, 53rd IEEE International MWSCAS’10, pp. 1089-1092, Seattle,
Washington (USA), August 1-4, 2010.

[10] R. Flynn, and O.Feely, “Limit Cycles in Digital Bang-Bang PLLs”, 18th
European Conference on Circuit Theory and Design (ECCTD), Aug.
2007, pp 731-734.

[11] R.C. Walker, “Designing Bang-Bang PLLs for Clock and Data
Recovery in Serial Data Transmission Systems”, Phase-Locking in
High-Performance Systems, B. Razavi, Ed.:IEEE Press, pp 34-45, 2003.

[12] N. Da Dalt, “A design-oriented study of the nonlinear dynamics of
digital bang-bang PLLs”, IEEE Transactions on Circuits and Systems I,
vol. 52, pp. 21-31, 2005.

[13] I. L. Syllaios, R. B. Staszewski, P. T. Balsara, “Time-Domain Modeling
of an RF All-Digital PLL”, IEEE Transactions on Circuits and Systems
II, vol. 55, pp. 601-605, 2008.

[14] G. Feng, “Stability analysis of piecewise discrete-time linear systems”,
IEEE Transactions on Automatic Control, vol. 47, pp. 1108-12, 2002.

[15] M. Johansson, and A. Rantzer, “Computation of piecewise quadratic
Lyapunov functions for hybrid systems,” IEEE Transactions on
Automatic Control, vol. 43, pp. 555–559, 1998.

[16] F. M. Gardner, “Phaselock Techniques”, Wiley-Interscience, New York,
1979.

[17] E. Zianbetov et al., “Design and VHDL modeling of all-digital PLLs”,
8th IEEE International NEWCAS Conference, pp. 293-296, Montreal,
2010.

[18] B. Mohar, “Some Applications of Laplace Eigenvalues of Graphs”, in
Graph Symmetry: Algebraic Methods and Applications, Kluwer, 1997,
pp. 225-275.

APPENDIX A - IMPLEMENTATION OF TYPE I AND TYPE II SS-
ADPLLS

A detailed schematic of an SS-ADPLL is shown in Fig. A1.
The DPD consists in an edge detector and in a time-to-digital
converter (TDC). The edge detector delivers two binary
signals: Measure (equal to 0 when a measure is being
performed, to 1 otherwise) and Sign (equal to 1 when the local

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

clock is leading, to 0 otherwise). The output (Absolute error)
of the TDC is then multiplied by Sign to obtain the Error
signal, which is updated when Measure goes to 1.

Type I and type II filters can then be implemented as shown
in Fig. A2. Note that, in order to implement type I filters in a
network of PLLs, the 2K branch must be reproduced a

number of times equal to the number of neighbouring nodes,
which makes this solution less attractive. One should also note
that in both cases the value of the output iy changes only on

the rising edges of the local clock. If this were not so (for
example, if all clocked blocks were operated on edges of the
Measure signal), (2) would no longer hold. The behaviour of
the filter would be simplified, but that of the DCO would be
much more complex.

APPENDIX B - PIECEWISE-QUADRATIC STABILITY OF PLSS

A classical approach to the determination of the stability of
nonlinear systems is via Lyapunov functions. A Lyapunov
function is a positive function of the states of a system whose
value decreases along all the possible trajectories of the
system. The existence of a Lyapunov function is a sufficient
condition for proving the stability of an autonomous system.
Except in the most trivial cases, there exists no generic method
to construct or check for the existence of such a function.
However, in the particular case of PLSs, the problem of
finding a Lyapunov function can be broken down into several
sub-problems.

A discrete-time PLS can be represented for its analysis by:

[] []nn i xAx =+1 , iS∈x (B-1)

where nR∈x is the state of the system, { } n
Iii RS ⊂∈ is a

partition of the state-space in a number of closed polyhedral
subspaces, I is the set of the indices of the subspaces and iA

the matrix of the thi local model of the system. Let us also
define Ω the set representing all the possible transitions from
one region to another, i.e.:

[] []{ }ijSnSnji ji ≠∈+∈=Ω ,1,, xx (B-2)

In some cases, it is possible to prove the stability of PLSs by
finding a common quadratic Lyapunov function (CQLF), i.e. a

function Pxxx TV =)(, 0>= TPP , such that

0<− PPAA i
T

i , Ii ∈∀ (B-3)

Determining the existence of a CQLF can be done by
solving the set (B-3) of linear matrix inequalities (LMIs),
which can be achieved with software such as Matlab.

However, many PLSs are stable, even though no CQLF
exists. It may then be possible to prove stability by
constructing piecewise-quadratic Lyapunov functions [14-15],

xPxx i
T

iV =)(, Ii ∈ , so that the following relaxed stability

conditions:

0<+− iiii
T
i MPAPA , Ii ∈∀ (B-4)

are satisfied, where iM is a matrix such that 0≥xMx i
T ,

iS∈∀ x , which can be constructed as follows. Since the cells

iS are polyhedral, it is easy to build for each of them a matrix

iE such that xE i has non-negative entries iS∈∀ x . Then, for

any positive matrix iU (i.e. any matrix with non-negative

entries):

0≥xEUEx ii
T
i

T , iS∈∀ x (B-5)

and iM can then be chosen as ii
T
ii EUEM = . The main result

in Feng's work [14] applied to discrete-time PLSs is
summarized in the following theorem.

Theorem (Feng)

Consider the discrete-time PLS (B-1). If there exist some
symmetric matrices iP , iU , iW and ijQ , Iji ∈, such that

iU , iW , and ijQ are positive and the following LMIs are

respected:

Iiii
T
ii ∈−< , 0 EUEP , (B-6-a)

Iiii
T
iiii

T
i ∈<+− , 0EWEPAPA , (B-6-b)

{ } Ω∈<+− jiiij
T
iiij

T
i , , 0EQEPAPA . (B-6-c)

then the origin of the PLS is asymptotically stable. Moreover,
the function:

xPxx i
TV =)(, iS∈x (B-7)

is a Lyapunov function for the system. Qualitatively, (B-6-a)

enforces the positiveness of xPx i
T for iS∈x . Equation (B-6-

b) guarantees that some energy is lost while the system resides
in iS . Finally, (B-6-c) ensures that some energy is also lost as

the system moves from one cell to the other.

APPENDIX C - APPLICATION OF PQLF TO TYPE II SS-ADPLLS

A single type II SS-ADPLL is governed by (8-b), which can
be rewritten in state-space form as (9), with:

010

001

012 21

F
F
F

�

�

�
�
�

�

� −−−
=

KK

1A , (C-1-a)

010

001

012 21

2

F
F
F

�

�

�
�
�

�

� −−−
=

KK

A , (C-1-b)

010

001

)1(2 21

3

F
F
F

�

�

�
�
�

�

� −+−
=

KK

A , (C-1-c)

010

001

12 21

4

F
F
F

�

�

�
�
�

�

� −−−
=

KK

A . (C-1-d)

For a given couple ()21, KK , one may try to solve the LMIs

(B-6) and thus establish the stability of the system. Some

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

proper care must be taken to remove unfeasible LMIs. For
example, 2A always has an eigenvalue whose modulus is

larger than 1. Thus, it is impossible to satisfy (B-6-b) for
2=i . However, by construction, the system cannot reside in

2S for more than one time step. Thus, the corresponding LMI

does not have to be satisfied. The same goes for 4S . The

remaining matrix inequalities can easily be solved with
Matlab.

One of the main difficulties in using this approach resides in
the bookkeeping effort that must be made to rule out
unfeasible LMIs from the original set. As shown above, this is
fairly simple in the case of a single SS-ADPLL. Unfortunately,
the number of cells in the state-space increases exponentially
with the size of the network, making it exceedingly hard to
keep track of all possibilities, even for moderate network sizes.

APPENDIX D - MATLAB CODE FOR TRANSIENT SIMULATION

Define :
• N_EDGES, maximum number of rising edges (i.e.

maximal simulation duration)
• N_NODES, number of nodes in the network
• LAP, normalized Laplacian L of the network
• K1 and K2, the tested values of 1K and 2K

• PERIODS, column vector containing the values of
the nominal periods of the DCOs

• T_START, column vector containing the moment of
the first rising edge of each DCO

• TYPE, type of PLL, may be ’I’or ’II’ in the following
code

Execute :
% Define network adjacency matrix ADJ
ADJ=eye(N_NODES)-LAP ;
%Initialize network
T_N_MINUS_1=T_START;
% Define DCO inputs at edge N
Y=zeros(N_NODES,1);
EPSILON_N=zeros(N_NODES,1);
% Define total error of each node at edge N-1
E_N_MINUS_1=zeros(N_NODES,1);
T_N=T_N_MINUS_1+T0;
T_OLD=T_N_MINUS_1(:,ones(1,N_NODES));
% Define error between all the nodes at edge N-1
ERRORS_OLD=T_OLD'-T_OLD;
DT=zeros(1,N_NODES);
N=1;
%Loop over edges
while N<N_EDGES,

T_NEW=T_N (:,ones(1,N_NODES));
% Define error between all the nodes at edge N
ERRORS_NEW=T_NEW'-T_NEW;
%Define M so that M(i,j)=1 if node i is leading
%with respect to node j
M=ERRORS_NEW>0;
if strcmp(TYPE,’II’)

E_N_MINUS_1=EPSILON_N;

else
E_N_MINUS_1=sum(A.*ERRORS_OLD,2);

end
EPSILON_N=sum(A.*(M.*ERRORS_OLD+(1-
M).*ERRORS_NEW),2);
% Update DCO input
Y=Y+K1*EPSILON_N+K2*E_N_MINUS_1;
DT=T0+Y;
T_N=T_N+DT;
ERRORS_OLD=ERRORS_NEW;
N=N+1;

end

