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Abstract 

The current and future developments of electric power systems are pushing the boundaries of 

reliability assessment to consider distribution networks with renewable generators. Given the 

stochastic features of these elements, most modeling approaches rely on Monte Carlo 

simulation. The computational costs associated to the simulation approach force to treating 

mostly small-sized systems, i.e. with a limited number of lumped components of a given 

renewable technology (e.g. wind or solar, etc.) whose behavior is described by a binary state, 

working or failed. In this paper, we propose an analytical multi-state modeling approach for 

the reliability assessment of distributed generation (DG). The approach allows looking to a 

number of diverse energy generation technologies distributed on the system. Multiple states 

are used to describe the randomness in the generation units, due to the stochastic nature of the 

generation sources and of the mechanical degradation/failure behavior of the generation 

systems. The universal generating function (UGF) technique is used for the individual 

component multi-state modeling. A multiplication-type composition operator is introduced to 

combine the UGFs for the mechanical degradation and renewable generation source states 

into the UGF of the renewable generator power output. The overall multi-state DG system 

UGF is then constructed and classical reliability indices (e.g. loss of load expectation (LOLE), 

expected energy not supplied (EENS)) are computed from the DG system generation and load 

UGFs. An application of the model is shown on a DG system adapted from the IEEE 34 

nodes distribution test feeder. 
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Notations 

   Solar irradiance  

     Total number of discretized solar irradiance states 

    Discretized solar irradiance at state i 

     Random variable representing the power output of one solar module 

        u-function of the power output of one solar module,       
     Number of functioning solar modules in the solar generator 

  
    Power output of a single solar module at solar irradiance state i  

  
    Probability of solar irradiance being at state i  

     Total number of mechanical states of the renewable generator (e.g. solar generator, 

wind turbine, and electrical vehicle aggregation) 

  
    State value of the mechanical state i of the renewable generator 

  
    Probability of the renewable generator being at mechanical state i  

     Random variable representing the mechanical condition of the renewable generator 

   
   

     u-function of the mechanical condition of one renewable generator,       
    Random variable representing the power output of a solar generator   

  
   Power output of a solar generator at performance state i  

  
   Probability of the solar generator being at performance state i  

       u-function of the solar generator power output,      
  
   Rated power output of one solar generator  

   Multiplication operator of u-functions 

   Wind speed  

     Total number of discretized wind speed states 

    Discretized wind speed at state i 

     Random variable representing the power output of one wind turbine at different wind 

speed levels 

  
    Power output of a wind turbine at wind speed state i  

  
    Probability of the wind speed being at state i  

        u-function of the power output of wind turbine at different wind speed levels,       
    Random variable representing the power output of a wind generator   

  
   Power output of a wind generator at performance state i  

  
   Probability of a wind generator being at performance state i  

       u-function of the wind turbine power output,      
  
   Rated power output of the wind turbine  

     Random variable representing operation status of one electric vehicle (EV) 

  
    Power output of an EV at operation state i  

  
    Probability of an EV being at operation state i  

        u-function of the power output of an EV,       
     Random variable representing the power output of an EV aggregation 

  
    Power output of an EV aggregation at performance state i  

  
    Probability of an EV aggregation being at performance state i  

        u-function of the power output of one EV aggregation,       
  
   Power output of a transformer being at performance state i  

  
   Probability of a transformer being at performance state i  

       u-function of the power output of one transformer 

  
   System power generation at state i  

  
   Probability of the system power generation being at state i  
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       u-function of the system power generation 

  
   Power load demand at state i  

  
   Probability of the power load demand being at state i  

       u-function of the power load demand 

       distributive operator of u-functions 

 

 

1 Introduction 

Traditionally, the power distribution network was designed to carry electricity from the 

transmission devices and delivers it to the end consumers without any energy generation. The 

reliability assessment of these systems (Allan 1994, Billinton and Allan, 1996) aims at 

evaluating the sufficiency of the generation facilities output to satisfy the consumer demand 

(i.e. power delivered exceeding load power consumption). In the past decades, renewable 

energy sources have become increasingly present in the power distribution network due to the 

rising prices of conventional energy sources and the enhanced public concerns on 

environmental issues such as global warming. While the renewable energy sources are 

increasingly regarded as cost-effective, their power outputs are largely dependent on external 

natural resources such as solar irradiation and wind speed. Owing to the random nature of 

these resources, the renewable generators behave quite differently from the conventional 

generators. This has put additional pressure on the need to assess the reliability of the power 

distribution network with renewable energy sources (Hegazy et al. 2003).  

Monte Carlo simulation is the mainstream method for computing the reliability indices of 

various sub-areas of a power network such as the generation system (Billinton and Bagen 

2006, Billinton and Gao 2008), the transmission network (Papakammenos and Dialynas 2004), 

the composite generation and transmission system (Gao et al. 2009) and the distribution 

network (Hegazy et al. 2003, Atwa et al. 2010). In general, simulation can be very effective to 

approximate the power system behaviors but it can suffer from unstable accuracy and lengthy 

computation time, which may lead to consider simplifying assumptions, e.g. binary-state 

representations of the working/failure processes (Hegazy et al. 2003, El-Khattam et al. 2006). 

Analytical models (Billinton and Allan 1996, Billinton and Gao, 2008, Ding et al. 2011) are 

also used for reliability assessment, e.g. by Contingency Enumeration or State Enumeration 

(Beshir et al. 1996). They are usually preferred on small scale power networks (such as local 

distribution networks), because they can provide more precise estimation of the power 
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adequacy with relatively smaller computation efforts than simulation models (Rei and 

Schilling, 2008).  

For more realistic reliability assessment of power systems, multi-state models, which have 

been widely applied to resolve system reliability assessment problems (Lisnianski et al., 2010, 

Natvig, 2011), are being introduced to describe the random behaviors of the generation 

sources (Billinton and Gao, 2008) and the degradation/repair of the components (Massim et al. 

2006). Compared to binary-state models, the multi-state models offer greater flexibility in the 

description of system state evolution, for more accurate approximation of the real-world 

power systems (Ding et al. 2006, Zio et al. 2007).  

In this paper, we consider a relatively complete electrical network with distributed generation 

and describe it as a multi-state stochastic system by means of an analytical probabilistic 

model. To improve the descriptive power and solution efficiency of analytical probabilistic 

models of multi-state stochastic systems, the Universal Generating Function (UGF) technique 

has been introduced (Ushakov 1987). It is a powerful analytical tool to describe multi-state 

components and construct the overall model of complex multi-state systems. It has a wide 

range of successful applications in various fields (Lisnianski and Levitin, 2003). In the power 

field, it has been used in particular to model wind generators (Wang et al. 2009, Ding et al. 

2011). In our work, the UGF technique is used to model the power output of different random 

generation sources (Billinton and Gao, 2008) and the degradation/failure/repair behavior of 

the components of the generation system. The universal generating functions (here after 

termed u-functions) modeling a generic generation source and the degradation/failure/repair 

behavior of the generation system components are combined by a multiplication operator 

formally defined to obtain the u-function of the renewable generator power output. The u-

functions modeling the different generation units which make up the distributed generation 

network (solar generators, wind turbines, electrical vehicles and transformer), are combined to 

obtain the model of the overall distributed generation system, which is then solved to 

calculate the reliability indices by taking into consideration the uncertain load demand, also 

represented by a u-function.  

The rest of the paper is organized as follows. In Section 2, the multi-state models of the 

components (solar generator, wind turbine, electric vehicle, transformer and loads) are 

developed and mathematically presented by way of the UGF technique. In Section 3, the 

overall multi-state (stochastic) system (MSS) model is built. The reliability indices are 
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introduced and formulated in terms of UGFs. Section 4 presents a case study and the results 

obtained with the proposed analytical model. Section 5 provides some discussions, and 

possible future extensions of the study. 

 

2. Multi-State Models of the Individual Components in the Distributed Generation 

System 

This Section describes the multi-state models of the components in the DG system and uses 

UGF for the mathematical representation.  

2.1 Solar Generator  

We consider a photovoltaic (PV) solar generator made of a number of cells. The model 

consists of two parts: the solar irradiation function and the power generation function which 

links the solar irradiation to the power output of the PV. In literature, the Beta distribution has 

been used to represent the random behavior of the solar irradiation (Ettoumi et al. 2002, Atwa 

et al. 2010): 

      
      

        
                                        

                                       

     (1) 

where s is the solar irradiance kW/m
2
,      is the Beta function of s,   and     are the 

parameters of the Beta function which can be inferred from estimates of the mean and 

variance values of historical irradiance data. Within a multi-state modeling framework, the 

continuous solar irradiation distribution needs to be transformed into a discrete distribution 

(Kaplan 1981, Atwa et al. 2010). To this aim, s is divided into     states of equal size, the 

probability of the ith state being: 

              
    

        
                                                (2) 

where             is the step size, and    is the value of solar irradiance in the ith state: 

   
             

 
                                                            (3) 

Once the irradiation distribution is modeled, the output of one solar generator can be 

determined by the following power generation function (Mohamed and Koivo 2010): 
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                                                           (4) 

where           is the output power of the solar generator at irradiance level    with     

functioning solar modules,    is the voltage temperature coefficient V/
o
C,    is the current 

temperature coefficient A/
o
C, FF is the fill factor which is defined as the ratio of the actual 

maximum obtainable power to the theoretical (not actually obtainable) power,     is the short 

circuit current in A,     is the open-circuit voltage in V,      is the current at maximum 

power point in A,      is the voltage at maximum power point in V,     is the nominal 

operating temperature in 
o
C,    is the cell temperature in 

o
C,    is the ambient temperature in 

o
C. Given the relation between    and      , the probability of the power state       is       . 

In solar generation, there are two different sources of randomness: one is the external solar 

irradiation (Moharil and Kulkarni, 2010), and the other is the internal mechanical degradation 

of the hardware elements (e.g. the failure of a solar module) and the repairs (Billinton and 

Karki, 2003). We assume that they are independent from each other. For solar irradiation, in 

the left portion of Fig. 1 state ‘0’ represents the amount of solar irradiation that transforms 

into no power generation, ‘   -1’ represents the state of solar irradiation which produces the 

maximum power output given that all solar modules are working. For the internal mechanical 

degradation/failure/repair states (Fig. 1, right), for simplicity we assume that each solar 

module has only two states (working or failed), leading to a total of     states of the solar 

generator (from complete failure when none of its modules are working to perfect working 

when all its modules function). In the right portion of Fig. 1, state ‘0’ represents failure of all 

modules of the solar generator, ‘   -1’ represents its perfect functioning when all solar 

modules are producing; the intermediate states represent partial failures, i.e. the loss of a 

portion of the modules (Goel and Gupta 1993). The solar modules are considered connected 

in parallel within the structural logic of the solar generator, but physically their failures reduce 

the capacity of operation percentually.  
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The random solar irradiation and the degradation/failure/repair process jointly determine the 

overall power output of the solar generator. This is modeled by eq. (4), which combines by 

multiplication the number of functioning solar modules (representing the generator 

mechanical condition) with the power output of the individual solar modules (determined by 

the strength of solar irradiance). For example, when 50% of the solar modules are working 

and the solar irradiance is such that each solar module produces 50% of the rated power 

output, the overall power output of the entire solar generator is 25% of the rated power. The 

modeling assumption is that the rated power of the solar generator is produced under the 

perfect condition that all solar modules are working and the solar irradiation is at its peak 

value. 

 

Fig 1. Solar irradiation states and mechanical states of the solar generators 

Let     and     be the discrete random variables representing the states of solar irradiance 

and mechanical condition, respectively, and let                  
     

           
    and     

           

   
     

           
    denote the state probability distributions of     and    , respectively. 

The UGF approach is utilized to represent the probability mass functions (PMFs) of the two 

random variables and derive the PMF of the solar generator power output,             . 

For the solar irradiance, the u-function links the probability of state i,   
  , to the 

corresponding state value of    , denoted as   
   (i.e. the power output of a single solar 

module at solar irradiance level i): 

          
     

       
                                                    (5) 

Similarly, the u-function of the mechanical condition is defined as: 

0 

1 

nIR-1 

Solar Irradiation States Mechanical States 

0 

1 

nMA-1 
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                                                (6) 

where   
   denotes the state value of     (in the case of the solar generator, it is the number 

of working solar modules). 

In the theory of UGF, the composition operator    is used to derive the u-function of the 

output variable of an arbitrary structure/property function              of n independent 

random variables           (Levitin 2005). For the solar generator model, we introduce a 

multiplication-type structure function of the two random variables to describe the power 

output coherently with the mathematical representation of eq. (4). For two random variables 

   and   , the purposely defined composition operator    then needs: 

                      
   

       
    

      
   

    
                                  (7) 

where       and       are the u-functions of the two random variables,   
  and   

  are the 

state probabilities,   
  and   

  are generic state values, and      
    

     
    

  is the 

structure function of state multiplication. It is noted that the composition operator    

corresponds to the multiplication-type structure function, which is a simple multiplication of 

two random variables and has not been formally specified previously. 

For the solar generator, according to formula (4)           , and based on the 

composition operator    just introduced, the u-function of the solar generator power output 

   can be written as: 

                   
            

                                                      
    

     
     

       
   

     
   

                  
    

     
   

                            (8) 

where               is the total number of states of one solar generator (   is the 

number of redundant states (i.e. states with the same amount of power output)). When 

computing the value of   , the collecting like-item technique is applied to reduce the number 

of items in the u-function (Li and Zuo 2007). 

 

2.2 Wind Turbine 
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Similar to the solar, the wind turbine generation model consists of two parts: wind speed 

modeling and the turbine generation function. The Weibull distribution has been used to 

model the wind speed randomness (Boyle 2004): 

     
 

 
 
 

 
 
   

      
 

 
 
 

                                            (9) 

where k is the shape index, and c is the scale index. When k equals to 2, the probability 

density function is called Rayleigh density function.  

Similar to solar irradiation, within a multi-state model the continuous wind speed distribution 

needs to be transformed into a discrete distribution. To this aim, the wind speed v is divided 

into     states of equal size; the probability of the ith state can be obtained by: 

              
    

        
                                             (10) 

where             is the step size, and    is the expected value of wind speed in the ith 

state: 

   
             

 
                                                         (11) 

With the wind speed discretized into multiple states, the output of one wind turbine can be 

modeled by the following function (Hetzer  et al. 2008): 

       

 
 
 

 
 

                                                

  
  

        

        
                    

  
                                    
                                           

                                 (12) 

where     and     are the cut-in, and cut-out wind speed respectively,    
   is the rated power 

output, and     is the rated wind speed. 
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Fig 2. Wind speed states and mechanical states of the wind turbines 

Similar to the solar generator, the wind turbine also contains two different sources of 

randomness – external and internal: the former is the wind speed and the latter is the 

mechanical degradation/failure/repair behavior (Guo et al. 2009, Arabian-Hoseynabadia et al. 

2010, Nielsen and Sørensen, 2011). Generally, the wind turbine consists of three main 

subassemblies connected in series: generator, gearbox, and turbine rotor (Spinato et al. 2009). 

This implies that the failure of a single subassembly leads to the failure of the entire wind 

turbine. 

Let     and     be the random variables representing the wind speed and mechanical 

condition, respectively. We assume that     and     are independent from each other and 

discretized into     and       states, respectively. Let     
              

     
           

    and 

    
              

     
    denote the state probability distributions of wind speed and mechanical 

state, respectively;   
   and   

         denote the state values of the wind speed and 

mechanical condition, respectively. The u-function of the wind speed state is: 

          
     

       
                                            (13) 

The u-function of the mechanical state is: 

   
       

       
                                              (14) 

The overall u-function of the wind turbine can be obtained by:  

0 

1 

nWS-1 

Wind speed states Mechanical States 

0 

1 
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                   (15) 

 

where       is the structure function, defined the same as for the solar generator, and 

              is the total number of states of the wind turbine (   is the number of 

redundant states). 

 

2.3 Electrical Vehicles  

Electrical Vehicles (EV, or plug-in hybrid vehicles) can be important elements for distributed 

generation, with increasing expectation for the positive penetration of the system (Saber and 

Venayagamoorthy, 2011). An individual EV can be regarded as an electricity generator, a 

load or a storage, because it has a battery storage capable of charging, discharging and 

maintaining the power (Clement-Nyns et al. 2011). In our model, a group of     EVs is 

considered distributed on the system. Typically, these are modeled as moving like a single 

‘block group’ and their power profiles are aggregated as a compound load, source or storage 

(Guille and Gross 2009, Clement-Nyns et al. 2011). The physical reasons for grouping EVs 

into one block are as follows: 1) the battery storage of one individual EV is too small to have 

influence on the power grid; 2) the majority of the vehicles follow a nearly stable daily usage 

schedule. A modeling reason for grouping EVs into one block is to avoid combinatorial 

explosion: if all EVs were considered separately, there would be      states of EV generation, 

load, and storage. In addition, it is assumed that all EVs are identical and each individual EV 

has two mechanical states: working or failed.   

 

Fig 3. Operating states of a single EV  

1 

0 

2 

Disconnected 

Charging  

Discharging 
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Similar to the solar generator modeling, the u-function of EV aggregation power output is 

obtained by multiplying the u-function of the power output of a single EV, representing its 

uncertain energy behavior, by the u-function of the mechanical condition of the EV 

aggregation, which indicates the number of functioning EVs. Let the variable     denote the 

random behavior of a single EV operation (represented by the multi-state model of Figure 3), 

with the states 0, 1, and 2 denoting the charging, disconnected, and discharging activities. 

Physically,     takes values from the set {  
     

     
  }={          in correspondence to 

the charging, disconnected, and discharging activities, respectively, and where    is the 

absolute power output of one functioning EV. The probability vector of the set            is 

denoted as                   
     

     
   , whose numerical values are   

     
     

   
      where 

  
   is the time of residence of the EV in operation state i. The u-function of the operation of 

one EV can be written as:  

         
     

  
   

     
  

   
     

  
                                 (16) 

Similar to the other renewable generators previously modeled, the EV aggregation is also 

assumed to be subject to mechanical degradation/failure/repair of its constituent EVs. Let 

    denote the mechanical condition of the EV aggregation, whose value represents the 

number of functioning EVs. The probability distribution of the mechanical state is denoted as 

    
              

     
           

   . The u-function of the EV aggregation mechanical state is: 

   
         

     
       

                                             (17) 

The overall u-function of the EV aggregation can be obtained as:  

                  
              

                                        
    

        
     

        
   

 
   

            
     

       
          

                     (18) 

where       is the property function, defined the same as for the solar generator and wind 

turbine,   
   is the power output (generation or consumption) by the EV aggregation (Saber 

and Venayagamoorthy, 2011), and                 is the total number of states of the 

EV aggregation (    is the number of redundant states). 
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Fig 4. Operation states and mechanical states of the EV aggregation 

 

2.4 Transformer 

For the transformer, the randomness in its functional behavior is mainly due to its internal 

mechanical degradation/repair (Ding et al. 2011), which can be represented as a stochastic 

process of transitions among multiple states of degradation (Roos and Lindah 2004). 

Therefore, the UGF function for the transformer is defined as: 

         
    

     
                                                   (19) 

Under Markovian assumption, the state probabilities can be obtained by solving the Markov 

stochastic transition model of Fig 5 with assigned transition rates (Massim et al. 2006). 

Fig 5. Mechanical states of a transformer 

 

2.5 Load 

In practice, the load values are typically recorded hourly on a specified time horizon (e.g. a 

year or a season). To model the dynamic behavior of loads, many multi-state models have 

been proposed ranging from a single load-aggregated representation up to more complex 

1 0 2 nt-1 

1,0 2,1 

0,1 1,2 

3,2 

2,3 
          

nt-2,nt-1 

          

0 

1 

2 

Operation states Mechanical States 

0 

1 

nMA-1 
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individual load modeling (Veliz et al. 2010). Load-aggregated models (Ding et al. 2011, 

Hegazy et al. 2003) resort to the load duration curve (LDC) model to reduce the number of 

load levels (Billinton and Allan 1996), and consider only one geological area pattern; 

differently, individual load modeling eventually resorts to a multilevel non-aggregate Markov 

model (Leite da Silva et al. 2000) which considers each hour as one state and includes the 

changing patterns in different areas. To keep the number of load states limited, we consider 

the LDC model which sorts all chronological load values into descending order of magnitude 

and divides the sorted load values into    states (Fig. 6). The u-function of the multistate load 

model can be written as: 

         
    

     
                                                  (20) 

where    is the power consumption at state i of the load.  

 

3 Multi-State Model for the Distribution Network and Reliability Assessment 

The following assumptions are made to combine the component models introduced in Section 

2 to establish the multi-state model of the distributed generation system (Fig. 6): 

(1) The distribution system under consideration is a local distribution network. It has a 

radial topology with one transformer and    distribution nodes. In this topology, all 

components are actually connected in parallel, because they share a common feeder 

(transmission line) (Hegazy et al. 2003). The distribution nodes’ load profiles are 

represented by a load-aggregate model. 

(2) For the multiple    solar and    wind generators, the energy sources (i.e. solar 

irradiation and wind speed) are perfectly correlated, respectively. This assumption is 

reasonable for the local distribution network in a geographically close area and it can 

largely reduce the number of states of combined generators.  

(3) For the wind and solar generators, the internal mechanical degradation/repair 

mechanism is mutually independent from each other. This is a common assumption in 

reliability modeling of hardware MSSs (Kuo and Prasad, 2000), especially when there 

is not enough data to describe the interdependence between components. 
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Fig 6. Hierarchy of the components of the distributed generation system  

By assumptions (2) and (3), we obtain the u-function of the combined solar generators as 

follows: 

            
           

           
      

                           
           

             

                                                (21) 

where   
     is the u-function of the ith solar generator,         is the u-function of the solar 

irradiation for all solar generators,    
     is the mechanical state u-function of the ith solar 

generator, and    is the total number of solar generators. The UGF operator    between any 

two u-functions is defined as:                       
   

       
    

      
   

    
   , where 

      is the property function representing the relationship      
    

     
    

 . 

Similarly, we can obtain the following UGF for the combined wind generator: 

        
           

           
      

                 
           

             

                                                (22) 

where   
     is the u-function of the ith wind turbine,         is the u-function of the wind 

speed for all wind turbines,    
     is the mechanical state u-function for the ith wind turbine, 

and     is the total number of wind turbines.  

The u-function of all types of generators combined is:  

Distribution Network 

Generation Load (   states) 

Conventional 

Solar (   states) Wind (   states) EV (    states) Transformer (   states) 

Renewables 
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   (23) 

where        
      

     
  
    (where    

  is the number of solar irradiation states,     
   is 

the number of mechanical states of the ith solar generator, and    is the number of redundant 

states) and        
      

     
  
    (where    

  is the number of wind speed states,    
   

is the number of mechanical states of the ith wind turbine, and    is the number of redundant 

states) are the total numbers of states of the combined solar and wind generators, respectively. 

By further reducing the number of terms in (23), the u-function of the system generation takes 

the following expression:  

         
    

     
                                                        (24) 

where                      is the total number of energy states of the system 

generation and    is the number of redundant states. 

Given the assumption (1) above, the u-function of the aggregated load model has the form 

(20). 

 

3.1 Reliability Assessment Indices 

In MSS modeling, reliability (availability) is in general defined as the probability that the 

MSS lies in the states with capacity levels greater than or equal to the demand W (Zio, et al. 

2007). The distributive operator   has been proposed to obtain the reliability (availability) 

index      from the u-function of one MSS (Levitin et al. 1998): 

          
             
              

                                              (25) 

           
       

           
        

                                   (26) 

where n is the number of states of the MSS, and    is the output of the MSS at state i. 

For power systems, reliability (adequacy) is widely considered as a measure of the ability of 

the system power generation to meet the load demand (Billinton and Allan 1996, Rei and 

Schilling 2008, Levitin et al. 1998). Two common reliability assessment indices are loss of 

load expectation (LOLE) and expected energy not supplied (EENS) (Billinton and Allan 1996, 
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Rei and Schilling 2008). The former is the expected period during which the load demand is 

greater than available generation: 

                
  
                                                    (27) 

where i is the equally sized time step (e.g. hour or day),    is the total number of time steps, 

   is the total power generation available at time period i,     is the load demand at time 

period i,           is the probability that the load demand exceeds the available power 

generation at time period i. The latter is the expectation of the energy that the system is not 

able to supply:  

                       
  
                                             (28) 

where       is the energy that the system is not able to supply at time step i. Typically, 

these two indices are computed through Monte Carlo simulation (Billinton and Allan 1996). 

In this study, we utilize the distributive operator   to compute LOLE and EENS from the u-

functions of system generation in (25) and load demand in (20). The LOLE index is written as: 

                                      
   

    
    

     
   

    
    

                                            
   

    
    

 

 
    
   

    
   

                                     (29) 

 

Similarly, EENS is written as: 

 

             
    

      
   

    
    

 

 
    
   

    
                       (30) 

 

 

4 Case Study 

The system used as case study is modified from the IEEE 34 node distribution test feeder 

(Kersting 1991), and is a radial distribution network downscaled to 4.16 kV via the in-line 

transformer. In this network, the rated power of the transformer is 5000 kW (Kersting 1991). 

The common assumption made for the transformer, solar generator, wind generator and EV 

aggregation is that the random process of internal mechanical degradation/repair can be 

modeled as a Markov process of stochastic transitions between the two states of working and 

failed. This brings no loss of generality with respect to the UGF modeling approach. 
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Fig 7. IEEE 34 nodes distribution test feeder modified for distributed generation 

1 SG: solar generator, 2 WG: wind generator 

  

The ratio of renewable energy to conventional energy is 25% (Ackermann et al. 2001). Within 

the renewable energy, wind, solar, and EV occupy a share of 60%, 30% and 10%, 

respectively. Therefore, the rated power outputs of wind, solar and EV are 750 kW, 375 kW, 

and 125 kW, respectively. The ratio between wind energy and solar energy represents the 

recent situations of some European countries such as Czech Republic and Austria (Eurostat, 

2009). The EV aggregation is taken as a share of 10% because it is a relatively new 

technology still undergoing development. The renewable generation source consists of five 

identical solar generators (each one containing 1000 solar modules which is with 75 W rated 

power), five identical wind turbines (each with 150 KW rated power), and an EV aggregation 

containing 25 EVs (each with 5KW rated power). 

The reliability block diagram (RBD) representation of the distributed generation system is 

given in Figure 8. 
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Fig 8. Reliability block diagram of the distributed generation system 

It is shown by Figure 8 that all the power generation sources are modeled as connected in a 

parallel logic structure with respect to the function of providing the power to satisfy the load 

demand. The transformer is represented by a Markov model with two states: working and 

failed. The failure and repair rates are 0.0004/yr and 0.013/yr (Roos and Lindah 2004), 

respectively. By solving the Markov model, the steady probabilities of the working and failure 

states are 0.97 and 0.03, respectively. The UGF for the transformer is then: 

                       

As described in Section 2.1, the model of solar generator can handle the failure of any portion 

of the solar modules and the uncertain state of solar irradiance. Due to the limitation of the 

data available, two mechanical states (e.g. all solar modules are working or all are failed) are 

considered for the numerical example, with failure and repair rates set to 0.0005/hr and 

0.013/hr, respectively (Karki and Billinton 2001). After solving the Markov model, the steady 

probabilities of working and failed states occupancy are 0.96 and 0.04, respectively.  

The parameters of the Beta distribution of solar irradiation have been estimated by fitting the 

average daily solar irradiation data taken from Mohamed and Koivo (2010). The resulting 

distribution is divided into 5 equally sized states with different interval sizes and 

corresponding probabilities, to search for the optimal number of states (Billinton and Gao 

2008). The state probabilities are computed by eqs. (2-3). For each state, the expected solar 

Wind turbine 1 

Solar generator 1 

EV aggregation 

Wind turbine 5 

Solar generator 5 

Transformer 

Load demand : L 
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irradiation value is substituted into the generation function (4) to obtain the expected power 

output of a single solar module. Table 1 shows the information of the 5-state division. 

Table 1. five-state solar model of a single solar module 

State No. Solar irradiation 

(kW/m2) 

Probability Power output 

(kW) 

1 0.1 0.59 0.00825 

2 0.3 0.13 0.024 

3 0.5 0.10 0.0405 

4 0.7 0.08 0.05625 

5 0.9 0.10 0.072 

 

In the case of 5-state division, the UGF for the compound of all five solar generators is: 

                  
         

         
         

         
      

                                                 

                    
                                   

                                                                          

                                                     

              

                                                                           
        

 

The individual wind turbine is modeled with two mechanical states: complete failure and 

perfect functioning. The failure and repair rates are set to 0.0005/hr and 0.013/hr, respectively 

(Karki and Billinton, 2001). The Rayleigh distribution of wind speed (obtained by fitting the 

average daily wind speed data taken from Mohamed and Koivo (2010)) has been divided into 

5 equally sized states, with the associated probabilities and power outputs (see Table 2). 

Table 2. five-state wind model of a single wind turbine 

State No. Wind Speed 

(km/hr) 

Probability Power output 

(kW) 

1 4  0.39 2.85 

2 12 0.47 36 

3 20 0.12 69 

4 28 0.011 100.5 

5 36 0.003 133.5 
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Similarly, the UGF of the combined five wind generators is: 

                  
         

         
         

         
      

                                               

                      
                             

                                                                        

                                                

           

                                                                              
        

 

For the EV aggregation, the operation state probabilities are obtained by using the daily 

charging profile (Clement-Nyns et al. 2011):                 
 

  
 
  

  
 
 

  
                  . The 

rated power of a single EV is 5kW, which corresponds to a random variable of EV 

aggregation     with values in the set         . The mechanical state probabilities are 

obtained by using the failure and repair rates 0.0013/hr and 0.12/hr, respectively:     
           

           . Then the overall UGF becomes: 

                  
                                     

          

                           

By combining the UGFs of all generators, we obtain the composite generation u-function for 

the 5-state division of both wind speed and solar irradiation:  

                                   

                                                                                         
        

  

                                                                                            
        

  

                                               

                    
                             

             

                                                                                                        
          

  

  

The multi-state load model is built on the 8736 hourly load values of the IEEE-reliability 

testing system (IEEE-RTS), with a peak load of 5500 kW and minimal load of 1863.5 kW. 
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This value satisfies the ratio of average peak load to average transformer power output in 

Hegazy et al. (2003). The load values are grouped into ten equally-sized intervals in the range 

(1863.5, 5500) kW for a reasonable trade-off between modeling accuracy and evaluation 

efficiency (Singh and Lago-Gonzales 1989). The probability for each load interval/state is 

defined as the ratio of the number of load values inside the interval to the total number of load 

values. For example, the state probability of the first interval/state is  
   

    
     . The state 

value of each interval/state is the average of the lower and upper bounds of the interval. For 

example, the performance value of the first interval/state is 
             

 
     . After the 

load value clustering and the state probability computation, we can obtain the final u-function 

for the load:  

 

                                                                           

                                                                                        

 

Based on the u-functions of system generation and load, the reliability indices for the DG 

system are computed: 

                
   

    
    

 

  
   

    
   =259.52 hr/yr 

               
    

      
   

    
    

 

  
   

    
   =822.45 MWhr/yr 

 

5  Discussion and Conclusion 

 

To the knowledge of the authors, this study is a first in proposing a UGF-based multi-state 

analytical model for the reliability assessment of a distributed generation system with 

renewable energy sources. Multi-state sub-models are built for each element in the 

distribution network, including solar generator, wind generator, transformer, electrical 

vehicles and load. The UGF is used to mathematically represent the multi-state elements and 

combine their states through a formally introduced composition operator, to obtain the final 

system model which allows computing the reliability indices in a straightforward manner. An 

illustration of the method has been provided, with respect to a modified IEEE 34 node test 

feeder distribution network.  

For small-scale power grids, analytical modeling can be efficient, accurate, and serve the 

purpose of providing reference results. However, some limitations exist in the study presented, 
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which origin from some of the assumptions underlying the models. For example, the 

dependence between the energy variables and mechanical states of the solar and wind 

generators respectively, are not considered. In practice, over-intensity of irradiation and over-

speed of wind may cause damage to the internal components of the generators and lead to 

mechanical degradation and failures. In addition, transmission lines are neglected whereas 

their failures can result in ‘islanding’ of the downstream area of the network.  

Besides the above modeling issues, the computational effort needed to solve the model may 

also be critical, depending on the number of components and states considered. UGF 

operation is essentially a convolution computation: development of more efficient algorithms 

can be considered from two directions: 1) combining states to reduce the number of states by 

clustering techniques, 2) fast convolution algorithms (such as fast Fourier transform (FFT)).  
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