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Abstract A temporal multiscale modelling applied to fa-
tigue damage evolution in cortical bone is presented. Micro-
damage accumulation in cortical bone, ensued from daily
activities, leads to impaired mechanical properties, in par-
ticular by reducing the bone stiffness and inducing fatigue.
However, bone damage is also known as a stimulus to bone
remodelling, whose aim is to repair and generate new bone,
adapted to its environment. This biological process by re-
moving fatigue damage seems essential to the skeleton life-
time.
As daily activities induce high frequency cycles (about ten
thousand cycles a day), identifying two-time-scale is very
fruitful: a fast one connected with the high frequency cyclic
loading and a slow one related to a quasi-static loading. A
scaling parameter is defined between the intrinsic time (bone
lifetime of several years) and the high frequency loading
(few seconds). An asymptotic approach allows to decouple
the two scales and to take into account history effects [1].
The method is here applied to a simple case of fatigue dam-
age and a real cortical bone microstructure.
A significant reduction in the amount of computation time
in addition to a small computational error between time ho-
mogenized and non homogenized models are obtained. This
method seems thus to give new perspectives to assess fatigue
damage and, with regard to bone, to give a better understand-
ing of bone remodelling.
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1 Introduction

Living bone supports daily cyclic loadings associated with
activities like walk, jump or household occupations. Cortical
bone is subsequently exposed to cyclic loadings, especially
compressive stresses, which induce accumulation of damage
[2][3]. Microdamage results in a reduction in strength and
stiffness and can lead to bone failure incrementally through
the process of fatigue [4] [5] [6].
Bone fatigue can occur at a strain magnitude which is typ-
ical of the physiological loading environment [7]. At this
strain magnitude, the fatigue life of living bone is about 107

cycles, which corresponds to appproximatively three years
of life. However, bone can adapt and repair itself through
the bone remodelling process, which is essential as human
skeletal elements stand throughout more than sixty years.
Damage in cortical bone is known as a stimulus for bone re-
modelling, whose aim is to repair inadapted cortical bone by
resorbing it then forming new one to prevent it from failure.
The relationship between this efficient remodelling process
and fatigue damage deserves further considerations. Some
models have presented bone remodelling considering dam-
age as a stimulus (Prendergast et al. [8], Doblaré et al. [9]).
A damage-adaptative remodelling model where remodelling
is activated when damage is above a critical level was also
proposed by McMamara et al. [10]. Garcia-Aznar et al. [11]
then Martinez-Reina et al. [12] presented a model dealing
with time-dependent changes in bone apparent density, min-
eralization, fatigue damage and Young’s modulus of proxi-
mal head of human femur. However, to our knowledge, fa-
tigue damage, ensued from high and low frequencies load-
ings, is still not investigated. The simulation of the accumu-
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lation of microdamage in bone subsequent to cyclic load-
ing is thus interesting to understand the remodelling acti-
vation factors. In particular, the representation of the actual
frequencies ofin vivo loadings seems essential to a better un-
derstanding of the interaction between damage and remod-
elling. Daily activities generally induce frequencies up to
three hertz. In one day, people may be submitted to approx-
imatively 10,000 cycles. Simultaneously, bone experiences
a quasi-static loading, even if some immobilization occurs,
which will be defined as the ”slow time” or ”low frequency
cycles” in the next sections. The implementation of the ”fast
time” attached with the high frequency cycles requests mod-
elling as a multiscale phenomenon in time domain. The fast
loading period is about several seconds whereas bone life
spans years. This intrinsic time scale is thus significantly
longer than the period of the high frequency cycles.
Qing and Fish [13] have decomposed initial boundary value
problems with various orders of temporal scaling into a global
initial boundary value problem linked to the ”slow” or quasi
static loading for the entire loading history and a local initial
boundary value problem associated with the fast oscillatory
problem for a single period. Integration of the former issue
necessitates a small time step. This method has been tested
on two rate-dependent material modes: the Maxwell vis-
coelastic and the power-law viscoplastic models. Recently,
Oskay and Fish [14] have developed a multiple temporal
scales model for fatigue life predictions of elastoplasticsolids.
Due to the discrepancy between the load period and life-
time, a mathematical homogenization technique with two
temporal coordinates was carried out. The computational
study was proposed in the context of continuum damage me-
chanics on damage growth and cracks propagation. Nonpe-
riodic fields in time domain have arisen from irreversible
inelastic deformation and have also resulted in two-time-
scale problems: a slow and a fast one. Consideration of these
two scales has been previously achieved by Guenounni and
Aubry [1] using an asymptotic expansion method, which al-
lows the assessment of the mean evolution together with the
local cyclic loadings in the case of viscoplasticity. Yet, these
models do not explore the fatigue damage issue, especially
linked to a biological material as bone.
Nevertheless, in the present work, it also seems a coherent
approach to split the problem into two-time-scale based on
the method decribed in [1]. A ”slow” time corresponding to
a static cyclic loading whose period is a day long and a ”fast”
time which is coherent with the fast loading (frequency of
10−4 related to 10,000 cycles per day) are considered.

A cyclic damage model, based on a classic damage one,
is developed which allows the expression of a theoretical
bone lifetime. After the description of the bone damage law
and the time homogenization method, a simplified case is
analysed. Compressive cyclic loadings are applied to a hol-

lowed matrix, whose material properties are identical to those
of cortical bone. Finally, a real cortical bone microstructure
is considered.

2 Bone damage constitutive equation

Many studies have been dedicated to bone damage [2] [3]
[15] [16]. The objective here is not to provide an exhaustive
analysis of the merits of each model but only to choose a
representative one which will serve the purpose of illustrat-
ing the homogenization technique presented subsequently.
The model is thus restricted to a simple isotropic damage
law using the damage itselfD as the unique internal vari-
able.
A classical damage model requires two ingredients. The first
one is related to the stress-strain relationship:

σ = ED (λ̄ tr(ε) I +2µ̄ ε) (1)

with σ andε, the Cauchy stress and small strain tensors re-
spectively.̄λ = ν

(1−2ν)(1+ν)
andµ̄= 1

2(1+ν)
are the normalized

Lame coefficients andED the damageable Young’s modulus.
The normalized elasticity tensorC is then defined by:

Cε = λ̄ tr(ε) I +2µ̄ ε (2)

The second one is the evolution equation of the damage
which, for bone, as suggested by Frondrk [16], based on his
experimental studies, is given by:

dD
dt

= B

[

1−D
εI

] [

σI

σr

]N

(3)

with σI andεI , the major principal stress and strain respec-
tively, σr a constant reference stress,B andN some material
constants.

The decrease of the Young’s modulus value is then rep-
resented through the equation

ED = (1−D)E(0) (4)

E(0), the initial Young’s modulus, corresponds to the elastic
modulus of an ideal undamaged material (D=0) [17].

It should already be noted that, because of the assump-
tion of the material isotropy:

σI = (1−D)(λ +2µ)εI (5)

so that the previous equation (3) may be written by elimi-
natingσI :

dD
dt

= B

[

λ +2µ
σr

]N

(1−D)N+1εN−1
I (6)

or simply

dD
dt

= β (1−D)N+1εN−1
I (7)
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whereβ = B
[

λ +2µ
σr

]N
.

Other authors, like Pattin [3] and Kachanov [16], have
proposed different evolution models, which could be used
with the following method of time homogenization as well.

Finally, the stresses should satisfy the usual equilibrium
equation (8) whereDiv is the classical divergence operator
of a tensor field inside the domainΩ :

Divσ = 0 (8)

Body forces are not considered here. On the boundary∂Ωσ ,
the stress vector should match surface forces:

σ(n) = fb (9)

where fb stands for the surface load andn is the outer unit
vector normal to the boundary.

3 A two-time-scale fatigue simulation

The loading on the boundary is assumed to be made of two
parts, depending on the spatial domain, one which varies
slowly, the second rapidly:

fb(t) = fbs(t)+ fb f (
t
ξ

) (10)

whereξ is a scaling parameter. The fast or high frequency
cycles which vary very rapidly is then defined by the vari-
ableτ as:

τ =
t
ξ

(11)

As often in the case of fatigue analyses, a two-time-scale
behavior is revealed. The first one is related to the daily fast
cycles which is called the fast timeτ , whose characteristic
period isT , and the other onet is related to the static loading
and low frequency cycles.
Obviously, it is not possible to compute every fast cycle for
a few months. The strategy proposed here consists in build-
ing a time average technique which allows to compute low
frequency cycles only, which are, however, marginally mod-
ified by the high frequency ones.

Starting with the method of Guenounni and Aubry [1],
which presented a homogenization method based on a tem-
poral asymptotic development to assess the evolution of me-
chanical properties of structures submitted to cyclic load-
ings, a new approach of temporal homogenization applied
to fatigue damage is defined together with its main outline.

3.1 General assumptions

Each variable is assumed to depend simultaneously on both
time scalest and τ and to be periodic with periodT with
respect to the fast time variableτ . The following notations

are used with respect to the time derivatives of a function
α (t,τ ), which may also be depending on the spatial domain:

α̇ =
∂α
∂ t

(12)

α ′ =
∂α
∂τ

(13)

Similarly, the average value< α > of the functionα is given
by:

< α (t,τ ) >=
1
T

∫ T

0
α (t,τ )dτ (14)

The periodicity assumption with respect to the fast period
leads to:

< α (t,τ )′ >= 0 (15)

3.2 Series expansion with respect to the small parameterξ

Each variable is expanded according to the following asymp-
totic expansion regardingξ which gives for the strainε:

ε(t,τ ) = ε0(t,τ )+ ξ ε1(t,τ )+ O(ξ 2) (16)

with O(), the Landau notation.
Using the total differentiation ruled(.)/dt, derivatives

are decomposed according to:
dε
dt

=
∂ε
∂ t

+
1
ξ

∂ε
∂τ

= ε̇ +
1
ξ

ε ′ (17)

Consequently, the strain derivative can be written as:
dε
dt

=
1
ξ

ε ′0 + ε̇0+ ε ′1 + ξ (ε̇1 + ε ′2)+ O(ξ 2) (18)

and the damage variable:
dD
dt

=
1
ξ

D′
0 + Ḋ0 + D′

1+ ξ (Ḋ1 + D′
2)+ O(ξ 2) (19)

Combining the damage evolution in Eq. (7) to the ex-
pansion of the strain eigenvalueεI in Eq. (16):

1
ξ

D′
0 + Ḋ0 + D′

1+ ξ Ḋ1 =

β (1−D0− ξ D1)
N+1 (εI0 + ξ εI1)

N−1 (20)

As N is assumed at least larger than two, theξ −1 term
gives:

D′
0 = 0 (21)

and theξ 0 term:

Ḋ0 + D′
1 = β (1−D0)

N+1 εN−1
I0

(22)

Eq. (21) induces that:

D0(t,τ ) = D0(t) (23)

and taking the average of the zeroth order term (Eq. (22)):

Ḋ0 =β (1−D0)
N+1 < εI0(t,τ )N−1 > (24)

Thus, the slow evolution of the damage variable depends
on the fast time through the principal strain term only. The
dependence with respect to the fast timeτ is exhibited in the
following.
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3.3 Splitting of the two-time-scale

The displacementu satisfies the equilibrium equation (8) in-
side the domainΩ :

Div [(1−D)Cε(u(t,τ ))] = 0 (25)

and, on the boundary∂Ωσ :

[(1−D)Cε(u(t,τ ))] .n = fbs(t)+ fb f (τ ) (26)

At the zeroth order, these equations read, inΩ and∂Ωσ
respectively :

Div [(1−D0(t))Cε(u0(t,τ ))] = 0 (27)

[(1−D0(t))Cε(u0(t,τ ))] .n = fbs(t)+ fb f (τ ) (28)

Because the damageD0 does not depend on the fast time,
it is possible to split the displacement into two parts, firstly
with u0s(t) which satisfies a slow time equation:

Div [(1−D0(t))Cε(u0s(t))] = 0 (29)

[(1−D0(t))Cε(u0s(t))] .n = fbs(t) (30)

and secondly withu0f (t,τ ) which satisfies a coupled fast
and slow time equation:

Div
[

(1−D0(t))Cε(u0f (t,τ ))
]

= 0 (31)
[

(1−D0(t))Cε(u0f (t,τ ))
]

.n = fb f (τ ) (32)

so that the full solution of Eq. (25) and Eq. (26) becomes:

u0(t,τ ) = u0s(t)+ u0f (t,τ ) (33)

Using this decomposition, the average evolution of the
damage may be written:

Ḋ0(t) = β (1−D0(t))
N+1 < εI(u0s(t)+ u0f (t,τ ))N−1 >

(34)

where it is recalled thatεI stands for the major principal
strain.

It is important to stress that the fast time displacement
u0f is depending linearly on the loadingfb. To go further, let
us assume that the fast loading may be given as a product of
a time dependent factorαb f (τ ) with a spatial loading mode
f̂b(x):

fb f (τ ,x) = αb f (τ ) f̂b(x) (35)

Then, clearly:

u0f (t,τ ) = αb f (τ ) û0f (t) (36)

where ˆu0f is the displacement associated withf̂b .
Finally, the fast part of damage evolution is simply iden-

tified by the given scalar factorαb f (τ ):

Ḋ0(t) = β (1−D0(t))
N+1

< εI(u0s(t)+αb f (τ ) û0f (t))
N−1 > (37)

This last formula is extremely interesting: it shows that the
two displacement fieldsu0s and even ˆu0f may be computed
with respect to the slow time only. The slow evolution of
the damage is built locally by taking the average value with
respect to this known scalar coefficientαb f . Obviously, the
involved numerical procedure is much less costly than the
one computing every fast cycle.

3.4 Fatigue criterion

It is possible to obtain a concise fatigue criterion by assum-
ing αb f small. Using a perturbation theory of eigenvalue
[18], the evolution law can be approximated by:

Ḋ0 = β (1−D0)
N+1

<
[

εI(u0s)+αb f (τ )(εI(û0f )(ϕ0s), ϕ0s)
]N−1

> (38)

where, for two vectors a and b, the dot product (a,b) is de-
fined by

(a,b) = ∑
i=1,3

ai bi (39)

ϕ0s stand for the principal directions of the strain tensor as-
sociated withu0s , and all the quantities exceptαb f are de-
pending on the slow time only. An explicit expression of the
damage evolution law is here obtained with the power term
approximated by the explicit formula:

Ḋ0 = β (1−D0)
N+1εI(u0s)

N−1

[

1+(N−1) < αb f (τ ) >
(εI(û0f )(ϕ0s), ϕ0s)

εI(u0s)

]

(40)

From this expression (40), a lifetime fatigue criterion, solv-
ing for the timetli f e, is given by:

1−D0(0) =

∫ tli f e

0
Ḋ0 dt

whereD0(0) is the initial damage value.
A first bone fatigue damage criterion is here established. It
is essentially based on the zeroth order which allows a quite
fast approximation of the lifetime. This lifetime results from
the addition of a pure slow time contribution and a comple-
mentary term taking into account the mean effect of the fast
time load combined with both the quasi-static and slow time
displacement solutions.

4 First application

4.1 Definition of the problem

Three cases are investigated and compared on a linear elastic
isotropic rectangular matrix with a centered elliptical hole
(Fig. 1):

– The ”full” computation considers the low and the high
frequency cycles together in the same mechanical prob-
lem without application of the time homogenization the-
ory. This is the case of reference.

– The ”low frequency” computation only takes the low fre-
quency cycle (t) into account. The high frequency cycles
(τ ) are not considered.

– The ”homogenized” computation addresses the low and
high frequency cycles together using the time homoge-
nization theory presented above.
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The damage evolution in the ”full” and the ”low frequency”
computations are based on the damage equation (3) and on
the equation (37) in the ”homogenized” one.

Fig. 1 Boundary conditions associated with the hollowed matrix and
localization of the areas called as ”far from the hole” and onits ”lateral
side”

In every case, the material properties of the matrix are
set to an initial Young’s modulusE(0) equal to 20 GPa and
a Poisson′s ratioν equal to 0.35. The material parameterB
is set to 1,N to 4 andσr to 100 MPa. The matrix is initially
supposed to be slightly damaged withD(0) set to 10−4.

A vanishing normal displacement field is prescribed on
the boundaries corresponding to the lateral faces and the bot-
tom face is totally constrained. The upper boundary∂Ωσ is
submitted to a cyclic loading in compression.

The forcefbs related to the ”low frequency” is described
by:

fbs(t) = [ f0 + f1 sin(2π ωs t)] f̂b(x) (41)

where f0 and f1 are some negative constants andωs is the
slow frequency. The termαb f (τ ) in the expression of the
force fb f in Eq. (35) associated with the ”high frequency” is
given by:

αb f (τ ) = f2 sin(2πωf τ ) (42)

where f2 and ωf are a negative constant and the fast fre-
quency respectively.

The time unit is set to the day. Computations are per-
formed on one day, i.e. on the interval[0;1]. During this
period, one low frequency cycle is imposed for the ”low
frequency” case and one low frequency cycle and ten thou-
sand high frequency cycles occur simultaneously for the two
other cases. The time steps are chosen equal to 10−3 for the
”low frequency” and the ”homogenized” computations and
to 10−5 for the ”full” one. Indeed, a smaller time step is
required in the ”full” case to capture the high frequency cy-
cles. Triangular quadratic Lagrange elements are used for
the usual mechanical unknowns and constant discontinuous
elements for the ordinary differential equation associated
with the damage variable.

4.2 Uniaxial approximation

One dimensional variables are assumed sufficient to achieve
the goal of validating our time homogenization model. In-
stead of an equivalent stress and the whole constitutive rela-
tion tensor, the principal stress and the longitudinal value of
the elastic modulus of compact bone are chosen.
The former integral Eq. (37) to be evaluated becomes con-
sequently:
∫

[0,T ]
|εyy(us(t))+αb f (τ )εyy(û f (t))|

N−1dτ (43)

with εyy(us) andεyy(û f ) the components in the loading di-
rectiony of the strain linked to the slow and the fast issues
respectively and|.| defined the absolute value.

The damage evolution is then given by:

Ḋ0(t) = β (1−D0(t))
N+1

< |εyy(u0s(t))+αb f (τ )εyy(û0 f (t))|
N−1 > (44)

Under the non-restrictive assumption that :

εyy(u0s(t))+αb f (τ )εyy(û0 f (t)) < 0 (45)

the damage law in Eq. (44) becomes:

Ḋ0 = β [1−D0]
N+1

[

−εyy(u0s)
N−1− (N −1) εyy(u0s)

N−2 εyy(û0f ) < αb f (τ ) >
]

(46)

Some positive stresses exist in the upper and the bottom
boundaries of the elliptic hole, but these areas are not con-
sider in the following.

4.3 Results

For the three cases mentioned previously, comparisons be-
tween the obtained values of the damage variableD and the
strainεy are achieved. Two areas are analysed: far from the
hole and on the lateral side of it (Fig. 1), which obviously ex-
periences stress and strain concentrations. In the following,
the graphics illustrate the homogenized output in blue, the
full computation in purple and the ”low frequency” model
in red.

The temporal evolution ofD far from the hole is given in
Fig. 2, which is enlarged in the interval[0;0.2] in Fig. 3 and
near the lateral side in Fig. 4, enlarged in the interval[0;0.1]
in Fig. 5.

The ”full” or reference computation and the homoge-
nized one are quite similar. The ”low frequency” case is
obviously different: the comparison with the ”full” compu-
tation shows why it is important to consider the high fre-
quency cycles in the damage modelling.
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Fig. 2 DamageD evolution far from the elliptic hole

Fig. 3 DamageD evolution far from the elliptic hole (zoom)

Fig. 4 DamageD evolution on the lateral side of the elliptic hole

The damage value is obviously higher near the lateral
side of the hole, which experiences stress and strain concen-
trations, than far from it (Tables 1 and 3). The damage in-
creases faster, especially at the beginning, when the high fre-
quency cycles are considered, which still proves it is worth
taking them into account. Nevertheless, the discrepancy de-
creases progressively (Tables 2 and 4).

The longitudinal normal strain evolution associated with
the previous evolution of the damage variableD through the

Fig. 5 DamageD evolution on the lateral side of the elliptic hole
(zoom)

constitutive equation in Eq. (8) is given in Figs. 6 and 8 far
from the hole and near the lateral side of the hole respec-
tively. These figures are magnified in the interval[0.25;0.45]
(Figs. 7 and 9 respectively).

Fig. 6 Longitudinal normal strainεy evolution far from the elliptic hole

Fig. 7 Longitudinal normal strainεy evolution far from the elliptic hole
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Table 1 Range of values for quantities associated with homogenized,
full and low frequency computations (σy, the stress,εy, the strain in the
loading direction andD, the damage variable), far from the hole

homogenized full low frequency

σy (MPa) [5 ; 105] [5 ; 105] [5 ; 105]
εy (%) [0 ; -5.1] [0 ; -5.2] [0 ; -4.1]
D 0.93 0.93 0.91

Fig. 8 Longitudinal normal strainεy evolution on the lateral side of the
elliptic hole

Fig. 9 Longitudinal normal strainεy evolution on the lateral side of the
elliptic hole

As expected, the strain values are higher near the lateral
side than far from it but the maximal discrepancy between
the three models occurs when the load is maximal and is
quite similar in both zone (Tables 2 and 4).

The mismatch for the damage variableD between the
homogenized and full computations on the one hand and the
low frequency calculation on the other hand is the highest at
the beginning of the calculation then decreases progressively
until it reaches the value 0.46% and 0.49% respectively near
the lateral side of the hole and 1.75% and 1.86% far from it.

Table 2 Values of the maximal relative error (e) between quantities
associated with homogenized, full and low frequency simulations, far
from the hole.

ratio: homogenized / full full / low frequency

eεy (%) 1.61 20
eD (%) 0.12 1.75

Table 3 Range of values for quantities associated with homogenized,
full and low frequency computations (σy, the stress,εy, the strain in the
loading direction andD, the damage variable), on the lateral side of the
hole

homogenized full low frequency

σy (MPa) [5 ; 355] [5 ; 355] [5 ; 355]
εy (%) [0 ; -7] [0 ; -7.1] [0 ; -5.9]
D 0.98 0.98 0.975

Table 4 Values of the maximal relative error (e) between quantities
associated with homogenized, full and low frequency simulations, on
the lateral side of the hole.

ratio: homogenized / full full / low frequency

eεy (%) 1.62 20
eD (%) 0.03 0.46

Obviously, the strain field is more affected by the temporal
homogenization method because it depends on the damage
field through the constitutive equation. Indeed, the differ-
ence reaches about 20% between both cases, when the high
frequency cycles are considered, and the case with the low
frequency cycles case only (one cycle per day), is examined.

The relative error between time homogenized and non
homogenized actual Young’s modulus is thus very low, even
negligeable (about 1%) when stress and strain are in the
physiological range and low (about 6%) for very high stresses.
The damage evolution law induces a very significant fast de-
crease of the Young’s modulus. This choice allows to demon-
strate the efficiency of the time homogenization achieved be-
cause when a slower evolution is considered, no difference
is really observable. Moreover, the stress magnitude of the
fast problem is chosen large enough to allow the examina-
tion of the influence of the stress field.
The reduction of computation costs through the temporal
homogenization method is also very significant. The compu-
tation time for the time homogenized model and the low fre-
quency one (time step of 10−3) is about 360 times faster than
the non homogenized (or full) model (time step of 10−5).
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5 Application to a real cortical bone microstructure

To illustrate the potentiality of the approach on a more re-
alistic example, the method is here applied on a real hu-
man cortical bone microstructure. The experimentally deter-
mined microstructure is issued from the femoral diaphysis
of an aged-woman. The geometrical parameters and me-
chanical variables result from Scanning Electron Microscopy
images and compression and nanoindentation testings re-
spectively. These data are used as initial conditions for the
numerical simulation. The heterogeneous microstructure is
implemented in the FE code and submitted to identical bound-
ary conditions presented in the previous sections.
Ten thousand high frequency cycles associated with one low
frequency cycle a day during thousand days are simulated.
These cyclic loadings induce damage and consequently bone
remodelling activation[19] [20]. Coupled with the damage
evolution, a scenario of the biological process of bone re-
modelling is performed [21]. When the damaged bone is
resorbed, new tissu is formed. The adaptation is achieved
through the generation of osteons, some hollowed cylinders
which give strength and stiffness to cortical bone. Compar-
ison of the initial and the final Young’s modulus, stress and
strain distributions is achieved and given in Figs. 10 and 11.
In the following figures, the white color corresponds to the
values which exceed the maximal value of the scales. These
are chosen so that the gradient of color is significant enough
to depict the mechanical fields.

The scales in Figs. 10(b) and 11(b) refer to the local
Young’s modulus values attached to the microstructure (poros-
ity in blue, highest value of the Young’s modulus in red).
The decrease of the final Young’s modulus values (Fig. 11(a))
results from the damage growth (Eq. (4)). When the dam-
age is sufficiently developed, bone remodelling is activated:
three osteons are generated and appear in a kind of yellow
hollowed cylinders in Fig. 11(a). An increase of the equiv-
alent strain values relatively to the initial state (t= 1 day)
due to the deterioration of the Young’s modulus value is
observed in Fig. 11(c). Interaction between damage and re-
modelling is also revealed through changes in the microstruc-
ture geometry and mechanical variables distribution (Fig.
11). Indeed, when damaged bone is resorbed, the damage
growth is emphasized.
The present example, briefly outlined here, demonstrates the
ability of the proposed method to evaluate the fatigue dam-
age which could occurin vivo in cortical bone. The consid-
eration of the high frequency cyclic loadings is proved to be
necessary to improve the knowledge of thein vivo damage
evolution in cortical bone associated with the bone remod-
elling activation.

(a) (b) (c) (d)

(e) (f)

Fig. 10 Microstructure of human cortical bone before remodelling and
damage (t=1 day): (a) initial Young’s modulus distribution(b) scale
of the Young’s modulus value; (c) initial normal longitudinal stress
distribution; (d) scale of the stress value; (c) initial equivalent strain
distribution; (d) scale of the equivalent strain value

6 Conclusion

The time homogenization method proposed here allows the
resolution of a two-time-scale issue, especially applied to
damage fatigue simulation, seldom conceived by other stud-
ies. This method is based on an asymptotic expansion tech-
nique, which allows the computation of the mean evolution
together with the local fast cycles loadings. The scaling pa-
rameter is defined by the ratioξ between the material intrin-
sic time, associated with a quasi-static load (low frequency
cycles) and the high frequency cycles of the fast loading.

The average value of the zeroth order of the variables
expansion leads to the resolution of the long-term response.
The oscillatory or high frequency response is obtained through
the complementary terms of the asymptotic expansion. The
transient evolution of the damage variableD and the strain
compared between the full computation (low and high fre-
quency cycles resolved in the same problem) and the ho-
mogenized one are very close.

A significant reduction in computation time and a very
low computational error between time homogenized and non
homogenized models are provided by this approach. The de-
pendence of the slow evolution of the damage variable with
respect to the fast time is simply due to the strain term and
its fast evolution is only identified by a given scalar factor
function of τ . Thus, the accumulation of fatigue damage,
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(a) (b) (c) (d)

(e) (f)

Fig. 11 Microstructure of human cortical bone after remodelling and
damage (t=100 days): (a) final Young’s modulus distribution(b) scale
of the Young’s modulus value; (c) final normal longitudinal stress dis-
tribution; (d) scale of the stress value; (c) final equivalent strain distri-
bution; (d) scale of the equivalent strain value

issued from these high frequency cycles, can be well repre-
sented by decoupling the two scales and taking into account
history effects.

The analysis of a real cortical bone microstructure will
be detailled elsewhere but the relevance of the time homog-
enization method which allows the simulation of real daily
activities and give a first approximation of the damage which
could occur in bonein vivo is here illustrated. Furthermore,
the consideration of the high frequency cyclic loadings is
needed to improve the knowledge of the determining factors
of the bone remodelling activation. A bone damage fatigue
criterion is also obtained. This method may be consequently
applied for the prediction of risks of fracture and bone age-
ing, which is really interesting in medical application and
treatment.
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