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ABSTRACTWe address here the case of electron-matter elastic intieraas it occurs in Trans-
mission Electron Microscopy (TEM) experiments. In the fodwproblem, we show that it is
possible to derive the scattered electron wave functiomasolution of a Helmholtz equation.
This equation depends on the spatial potential associattittie analyzed sample, and can be
relevantly solved using the Finite Element Method (FEMperTtve present an inverse formu-
lation dealing with the determination of the sample’s ptidwhen the total wave function is
measured after crossing the sample.

RESUMENOUS nous intéressons ici au cas de I'interaction élastigjeetron-matiere rencontrée
dans un microscope électronique en transmission (MET).rAirpiu potentiel spatial carac-
térisant I'échantillon observé, nous montrons que le peald direct permettant d’obtenir la
fonction d’onde électronique a la sortie de I'échantilloayp s’écrire comme une équation de
Helmholtz, qui peut étre résolue de fagon pertinente paréaHdde des Eléments Finis (MEF).
Une formulation du probléme inverse qui a pour but de retesue potentiel de I'échantillon a
partir de la fonction d’onde mesurée est également présenté

KEYWORDSelastic scattering, TEM, inverse problem, adjoint staggularization
moTs-CLES diffusion élastique, MET, probléme inverse, état adjaidgularisation.
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1. Introduction

Problems dealing with wave scattering in a heterogeneodgumeare investigated
in applications, whose associated scales can be extreriffedyedt (seismic waves,
ultrasound waves, etc.), and are typically solved usingRiné¢e Element Method
(FEM), whatever the scale of the problem may be. Here we wmatitiress the case
of electron-matter elastic interaction as it occurs in Sraission Electron Microscopy
(TEM) experiments (Smittet al, 1982). The associated goal is to determine the
electronic structure of a sample by studying how it scatterslectron wave.

In the forward problem, we assume that we know the spatiamia field associ-
ated with the sample on the electronic scale, and we caécatathe atomic scale the
scattering of the electron wave function. By introducingn#restrictive simplifying
assumptions, it is possible, even on this scale, to use thMetBperform the calcula-
tion with a reasonable computational cost. Then the obdamenerical result can be
compared with scattering information measured with the TEM

To go further, we can define the following inverse problemetedmine the elec-
tronic structure of the studied sample: we look for the sppaibtential field that leads
to a numerically calculated scattered electron wave fong¢tivhich is as close as pos-
sible to the experimental one. The solutions of an invereblpm, however, are well
known to be unstable and not unique. In (Petehl., 2008), we showed that the deter-
mination of a spatially-variable field of properties coteisin an inverse problem that
was awkward to regularize, particularly with typical Tikiwv regularization terms.
Therefore we propose here a strategy inspired from (Bamgegl.,, 2007) and based
on a specific spatial discretization of the sample’s poatiigeld. This field is nu-
merically sought by means of a mesh that is independent fnenmtesh used for the
resolution of the wave scattering problem. This specifichrigdnitially coarse, in
order to regularize the inverse problem, but can then batitely refined by using
local error estimators classically used in mesh adaptimimdrease the accuracy of
the identified spatial potential field.

2. Theoretical framework of the forward electron scattering problem

Classically, the incident electron can be considered asgtax planar wave func-
tion associated with a given real wave vedigr

Yi(x) = Z/;z exp(ik; - X) [1]

when the time harmonic factor is removed. In an empty dofajrhis wave function
has to satisfy the following Schrédinger equation, exprdss atomic units (a.u.,
distances in Bohr and energies in Hartree):

_%Axwi = Eii [2]

whereE; = ||k;||?/2 is the energy of the incident electron, afg is the Laplacian
operator with respect to the space variakleThe domairf), corresponding to the
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sample is characterized by a spatial potential fiéJdassociated with the sample’s
electrons and nuclei, which vanishes rapidly out$ide

The complete problem to solve should consider the incideoctr®n as well as the
sample’s particules in the following generic Schrodinggration:

S b B s (6, X6+ Ve (X, X0 ) Vi (X6t (6 X0) = B (6,%,) 13

wheret. is the total wave function associated with the total enetgygf the sys-
tem. The sample’s potential is expressed as the sum of twenpalsV; and V.,
corresponding to the sample’s self-interaction and th&lént electron’s interaction
with the sample respectively.andx, stand for the space variable associated with the
incident electron and all the other particles respectively

—————

Figure 1. Considered domain for the electron scattering problem.

In order to decouple the terms related to the incident edadtom those associated
with the sample, we use the result from (Wang, 1995) consjéti approximating the
total wave functiony.s as the product of two wave functions and+,. associated
with the sample and the incident electron respectively. Assalt,v). should satisfy
the following equation:

S+ VXX) = (B~ B0 g

whereFE; is the sample’s energy andis the sample’s potential as seen by the incident
electron:

V(x) = / Vo (%, %) [ (), [5]

s

In the particular situation of inelastic scattering, whiq|| is not constant across
the domain, the latter system has to be solved as a whole uamdugn transitions oc-
curring inside the sample can be theoretically observeldg&chneideet al., 2009).
On the contrary, in the case of elastic scattering that we Wweaddress here, it is then
possible to simplify the previous equation using an appnation commonly used in
TEM: the incident electron’s velocity is very large, so tlia¢ energyF — E, can
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be approximated by the incident electron’s enefgywhich is known. In addition,
it is possible to go further by expressing the electron wawrecfion as the sum of
the known incident wave); and of the unknown scattered wayg. The scattered
electron wave functiory; has to satisfy the following Helmholtz equation:

%A?/}d + Eipa = V) [6]

where we have considered tHatis small when compared tB;.

In the conventional TEM environment, the outgoing wave- v, is magnified by
a series of magnetic lenses allowing an analysis both inimgaay in diffraction mode
(i.e. with a Fourier transform of the wave). The intensityttoé final wavey ¢ is then
collected on devices such as a screen, an imaging plate obec@@era. In this case,
t results from the convolution ap; + 4 with the TEM'’s transfer function, which
mostly takes into account the effects of the defocus andeobHjective lens spherical
aberration. In the following, we will not address these defeand, disregarding given
scale and rotation factors, we will consider as the outgeiage intensity the electron
wave function’s square modul@).||> = [[¢; + 1q* calculated on a virtual plane
3 located right at the exit side of the sample, as it is depictddgure 1.

3. Numerical resolution of the forward electron scattering problem

From the previous section, it is obtained that the forwaobfgm consists in solv-
ing the Helmholtz equation [6] for the scattered electromevanctiony,.

3.1. Theclassical approach vs. the FE computation

The classical approach consists in considering the Gréamision associated with
the Helmholtz equation to be solved:

_exp(ik -r)

After multiplying Equation [6] withg and integrating by parts, the scattered wave
functioni; can be expressed as:

valx) = [ VEImatx = y)dy = (V) #0) () 8]

In practice )4 is then calculated using the multislice method, which digithe sam-
ples into several slices with respect to the thicknessZidta et al, 1977; Stadel-
mann, 1987; Williamst al,, 1996; Kirkland, 1998). Although classically used, this
method necessitates a more or less empirical choice of gliess’ size, and is not
able to take into account the waves that may be reflected batkosth between the
atoms.
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Instead of using the previous method, we prefer to consideapgproach that is
able to solve Equation [6] without further assumptions.sTdpproach should then be
able to deal with non periodical samples (i.e. with a defast)vell as to take into
account all the waves interacting in the problem.

Therefore we propose to use the FEM, although this requoesesadaptations.
The first one is related to the fact that the initial problefig@iefined on a domaift,
whose dimensions are infinite. In spite of this, it can be shthat the scattered wave
function, is of the evanescent kind far from the considered sample;iwddlows to
bound the domaif, with a boundary denoted,, in Figure 1. On this boundary the
following evanescent condition is applied, as propose®appv, 2006):

Ma .
on = i|[k;[|[va [9]

wheren stands for the unit outward normal along the boundayy.

The main difficulty, however, lies in the high-frequency temt of the problem
to be solved. While interatomic distances are alipatu. (and sample’s thickness
aboutl0® a.u.), an estimate of the incident wave length;is= 0.05 a.u. If we assume
that10 FE degrees of freedom par wave length are to be used in or@ectoately
discretize the calculated wave, an amount ot degrees of freedom is required to
mesh a single crystalline cell, which would be impracticabach without additional
adaptations.

3.2. Paraxial approximation

In order to deal with the high-frequency content/qf the paraxial approximation
consists in searching for the unknowpg such that:

Ya(x) = Pa(x) explik; - x) (10]

wherek; is the incident wave vector, along the microscope’s axihéendase of par-
allel illumination (which corresponds to classical expental conditions). Even if,
formally, this approximation does not imply that the saatkwave function should
be oriented along the incident wave’s direction, this fitdl wéth the TEM's exper-
imental conditions, where all the rays that are diffractethwan angle greater than
about30 mrad are truncated by the microscope’s transfer function.

By using the approximation [10] into Equation [6], one gets:
1, - . ~ ~
§Awd +ik; - Vibg = Vb in Q. [11]
becauser; = ||k;||?/2. Similarly, the evanescent condition [9] gives, with [10]:

O

5 =i(][kil| —k; -1n)thg 0nTog [12]
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3.3. Numerical FE resolution

The numerical resolution of the previous group of equatfoasconsists in choos-
ing finite dimensional spaces, and W, using typical FE discretizations associ-
ated with a given mesiM;,. Then the discrete forward problem consists in finding
7/;d,h € W,, such that:

1_ - . -
/ (—§de,h -Vuwy +ik; - Vfﬁd,th) dQ
Qe
i ~ -
+/ §(||kl|| — kl . Il)i/)d,h’u}; dS = / Vh¢i7hwz da th S Wh [13]
Soo Qe

whereV and-* stand for the gradient operator and the complex conjugapertively.
Vi € V}, is the spatial discretization of the sample’s poteritiadn the mesh\1;,.

As a example to demonstrate the validity of the proposedagmpr, we choose a
very thin 2D sample made of pueeiron. The potential” associated with the crystal
is simulated by means of a Yukawa's potential (Ashketfal., 2002):

al exp(—ary)
V= Z v, —= [14]
k=1 Tk

wherer;, stands for the distance from ttketh nucleus (out ofV nuclei), andV, and
a are two constants to set. This potential is discretized emtbshM,.
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Figure2. (left) FE forward calculation of|t.||? = ||+; +a||? for ana-iron sample.
(right) FFT of the outgoing wave functiaf; + 14 on the virtual plane- .

Figure 2 shows the calculation witl)0, 000 degrees of freedom of the intensity
[1Ve]l? = || + %al|? in @200 keV-microscope with|k;|| = 130 rad/(a.u.). The
chosen sample, whose thickne&s() is below actual experimental values, is ori-
ented along thé001] direction, and the associated Yukawa’s potential is repres
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in Figure 2 with isolines representing the location of thegke’s nuclei. Since Equa-
tion [13] is linear with respect to the incident wave’s artygiet); , as well as the
potential’s amplitudé/,, both values are set equal 1o In addition, an absorption
coefficient of5.10~2 is introduced to improve the convergence of the calculation
Eventually the Fast Fourier Transform (FFT) of the outgoiraye functiony; + 14

is depicted in Figure 2. Diffracted beams clearly appearpating to Bragg's law
relative to the interatomic distances and the incident viewgth \;.

4. Formulation of theinverse electron scattering problem

The inverse problem consists in determinin@inthe spatial potential fiel®” such
that the electronic wave’s intensiti; + 4| |2, which is numerically calculated with
V}, on the virtual plan&:,,, best fits the measured intensjty,,,||> of the outgoing
wave. By this means, it should be possible to detect a deféutwhe studied sample.

The usual technique is to introduce the discrepancy betwhralculated and
the measured intensities through a misfit function (Beikaal, 2005; Beilinaet
al., 2006):

T =7 [ (1+0ulP = ml) ds+ 5 [ (v-voren ns

whereq is a regularization parameter to be set, &hdcC . the domain where the
potentialV is looked for. V; is a potential field, which is chosenpriori. Typically
this latter is assumed to be close to the sought potential: filelr example, when
dealing with the detection of a defect within the sample, care choose the potential
associated with the perfect crystal. In this latter casejritierse problem consists in
finding the defect by means of the involved modification ofpbé&ential.

4.1. Adjoint state formulation

The minimization of the previous misfit function [15] is udlygperformed by
means of gradient-based techniques. In oder to avoid tonetaning calculations as
well as inaccuracies associated with numerical diffeegiatn, the derivative of7 (V')
is analytically introduced by means of an adjoint state fgwb The solutiorr of this
adjoint state problem can be considered as a Lagrange trarltiptroduced in the
following Lagrangian functiorC (¢4, V, 2):

~ ~ ~ 2
£ Vi) =7 [ (194 ulP = lol?) @5+ 5 [ (v = Ve

+Re {/ (%w?d V2 + (i - Vg — Vi/;i)z*) dQ}
Qe

““{/zm sl ~ k-l ds | e
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Where(d?d, V, z) are considered as independent &rdstands for the real part. Min-
imizing 7 (V) with 14 verifying Equations [11]-[12] is then equivalent to wrigithe
first-order stationarity conditions fat(vq4, V, z).

The first-order stationarity condition with respectitg leads to the adjoint state
problem, which is very close to the forward problem:

%Az—i—iki-v,zzoinQe [17]
% = —i(|[ki|| + ki - n)z oS (18]
1[0 - T

3 || 5] | = (0 8alP = 6 ?) (54 Gy ons, (9

where[[-]] stands for the discontinuity gap. The adjoint state can tegpreted as the
solution of a backwards wave scattering problem.

Then the first-order derivative aﬂ(iﬁd, V, z) with respect td” allows us to express
the directional derivative of the misfit function easily:

Dy J(V)6V = DyL(g,V,z)0V

/ (a(V V) — Re(J);z*)) SV dQ [20]

Qy

4.2. Numerical resolution of the inverse problem

The minimum of the misfit functio7 (V') is sought asDy 7 (V) §V = 0 VYV,
which could be rewritten as the following compatibility edion:

Re(¢;z*) = a(V — Vp) in Q, [21]

The minimization problem eventually consists in solvingeth Partial Differential
Equations with unknown@), V, z): the forward problem [11]-[12], the adjoint prob-
lem [17]-[18]-[19] and the compatibility equation [21]. &hdentification process re-
sults in the resolution of a system, which is highly nonlinieathe spatially-variable
unknown fieldV.

The FE numerical resolution then consists in find@ﬁg,h, Vs zn) € Wh X Vi, X
W, such that:

1 ~ i ~
/ <§V’l/)d_’h . Vw;; +ik; - Vi/)dth;;) dQ
Qe

i - -
+/ §(||ki|| — ki -n)Yg pwy, dS = / Vithi pwy, dQ - Ywp € Wy, [22]
b3} Qe

oo
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1 . [
/ (—§Vzh -Vwj, —ik; - Vzhw,’;) daQ + / §(||kl|| +k; -n)zw; dS
Q. )

oo

b [ (1t Gl = 0ml) G+ )i, dS =0 € W 23]

/ (Vi — Vi) — Re(7,20)) Vi d2 = 0 ¥V, € Vi [24]
Qy

For the time being, instead of actual experimental data,seesynthetic data such
as those obtained with Equation [13]. The resolution of tivelise problem "as is"
can lead to some difficulties, mainly coming from the fact tivea want to determine
a spatially-variable represented by a large amount of sealaes to be identified,
whereas experimental information is scarce. The mesh wsdtid discretization of
this field may then influence the resolution of the inversédfem, and even if it is not
the case, using a mesh which has to be fine enough to deal wittatbulation of the
forward and adjoint solutions can lead to a very costly idieation process.

4.3. Iterative strategy using two different meshes

For all these reasons, we propose to apply the strategyré@usfriom (Bangerth
et al, 2007) and described in (Puetf al., 2008), where the spatial discretization of
the field to be identified is achieved with a mesh differentrfrihe one associated
with the calculation of the forward and adjoint solutions.\é introduce two distinct
meshes: a sufficiently refined mesh,, for the resolution of the forward and adjoint
problems [22]-[23], and a coarse mestty for the discretization of the sought field
V' and the resolution of the compatibility equation [24]. Thbe discrete problem
consists in findindvy 1, Vir, zn) € Wi x Vi x W, such that:

1_ -~ . -
/ <§V’l/)d_’h . Vw;; +ik; - Vi/)dth;;) dQ
Qe
i ~ .
[ gl =i m i ds = [ Vo de an W (25]
Soo Qe

1 _ .
/ <§Vzh - Vwy, —ik; - Vzhw;;) dQ Jr/ %(||kz|| +k; -n)z,wy, dS
Qe b

oo

[ (1n+ BaalP = 1[6lP) G+ Fan)ui, =0 Y, € W, [26]
Zm

/ (OL(VH — VO,H) — Re(i/NJ;HH};IZZ)) oVgdQ =0 VoéVyg € Vg [27]
Qs

whereW,, andVy are associated with the fine mesh;, and the coarse mesil g
respectivelyIl? : W, — Wy andIl : Vg — V), are specific operators (projection
and extension respectively).
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Of course, the identified potential fieldy is not very accurate foM g is cho-
sen coarse to regularize the inverse problem. To improvédiwtification further,
we propose an iterative method based on Bangerth's workg@&amet al, 2007):
the meshM g used for the discretization of the spatial fiéldis progressively re-
fined according to classical mesh adaption methods. Th#ee faly ona posteriori
error estimators, such as estimators quantifying the yualia mesh regarding the
reference continuous mechanical problem. For implemientgurposes, we choose
a L2-norm error indicator based on the equilibrium residuassociated with Equa-
tion [27] (Verfurth, 1996):

ers = < H4|r|2dQ) [28]
Q

where H is the local size of the mesM g. This error indicator can be split into
local contributions for every element of the mesit;. Each element whose local
contribution is higher than a given specific level is refindthe adaption steps stop
when the global error is below a given threshold charadtegithe quality of the
resolution of the compatibility equation [27], and consewfly of the identified spatial
field V.

Of course, it would be possible to use similar L2-norm errmfi¢ators to refine
the meshM;, as well. Here, however, this choice is hot made for imple o
purposes, and we assume that the mésh is sufficiently refined for the resolution
of the forward and adjoint problems [25] and [26].

4.4. 2D example

The previous strategy is applied to the detection of a deféhin a given sample.
First, synthetic data are obtained with Equation [13] ugsirgample with a lacuna as
seen in Figure 3; it is simply assumed that the sample’s piatarorresponds to the
perfect crystal’s potential minus the potential assodiat#h the missing atom. Con-
cerning the resolution of the inverse problemis set so that both terms in the misfit
function [15] have approximately the same magnitude. Thehmd;, associated with
the forward and adjoint problems consists of 5,044 quadledéiments, whereas the
initial meshM¢Y; discretizing the differencAV = V — V; between the sought poten-
tial and the perfect crystal’s potential is made of 8 lindareents, which constitute
the search domaif2, enclosing the crystal. Both meshes are depicted in Figure 4.
Figure 3 shows the identified potential differenk& after 5 refinement steps, while
the associated mesht%, made of 1,201 linear elements is visible in Figure 4. The
strongest fluctuations are located in the vicinity of theutaa, but several artefacts
are visible, mainly close to the boundaries of the searchailot,. This can be an
effect of the regularization, which is all the more awkwardset in the present case
where experimental data are scarce comparatively with ahgtexity of the spatial
potential to be identified.
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Figure 3. (left) FE forward calculation of|y.||? = [|1; + 14l|? for ana-iron sample
with a lacuna. (right) Identified potential differencel” after 5 iterations.

Figure4. (left) MeshM,, associated With/;d)h. (center) Initial mesh\%, associated
with Vi — V. (right) MeshM3, after 5 iterations.

5. Conclusion

First we showed that electron-matter elastic interact®it accurs in TEM ex-
periments can be numerically solved using the FEM. With somrestrictive as-
sumptions and adaptations, the forward elastic electrattesing can be reduced into
a Helmholtz equation that can be efficiently solved using raxial approximation.
We then obtain the intensity of the total interacting waverait crossing the sample.

When dealing with the inverse problem of identifying a cay'stpotential from the
intensity of the total interacting wave, one is often confesl with the difficult choice
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of a relevant regularization. This is particularly true whbe sought spatial field is
discretized on a FE mesh, for its choice can influence thdtresthe identification.
Here we introduce a general iterative strategy using adgaptieshes. The goal is to
use a specific mesM g for the spatial discretization of the potential to be identi
fied. Using a coarse mesh makes the choice of the regulanziatim easier, and the
identification can be improved by refining the mesty; according to classical error
estimators.

Further studies will focus on the identification strategypérticular, the influence
of the sample’s size and the use of different illuminatiarediions should be consid-
ered, as well as the choice of different regularization teamd refinement criteria.
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