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SUMMARY

It is well known that the solution of an inverse problem isptised and not unique. To avoid difficulties caused
by this, when solving such a problem, Tikhonov's reguldit@aterms are usually added to the norm quantifying
the discrepancy between the model’s predictions and expetal data. This regularization term however is often
inadequate to perform the identification of a field of matepi@perties which varies spatially. This is all the
more difficult when dealing with the numericsblutionof this inverse problem, for the sought field is spatially
discretized and this discretization can influence the teduhe identification.

We will here examine an overall strategy using classicaptida meshing methods used to circumvent these
drawbacks. The first step consists in using two distinct m&stne associated with the discretization of the sought
spatial field, the other associated with g@utionof the mechanical problems (forward and adjoint statesq In
second step, we will introduce local error estimators wlltbw an oriented refinement of the mesh associated
with the sought parameters.

This general strategy is applied to a practical case study: detection of underground cavities using
experimental data obtained by an interferometric devica eatellite. We will then address the question of how
the regularization terms and the error estimator drivirgyrtiesh refinement were selected. Copyrigh2010
John Wiley & Sons, Ltd.

KEY WORDS: identification; inverse problem; adjoint state; reguation; mesh adaption; error estimators;
quantity of interest.

1. INTRODUCTION

How should the material parameters of a domain be identifieenathe only available experimental
data are measured on its boundaries? The solution of théessevproblem is well known for being
ill-posed and not unique, so it becomes all the more chaitenghen the parameters to be identified
depend on the space variable within the studied domain, et the usually available measurements
are scarce. Also, when solving this inverse problem nurabyicthe spatial discretization of the
sought parameters field influences the whole identificationgss. As a result, the addition of relevant
regularization terms to the inverse problem can be quitensandt.

This paper is focused specifically on the detection of unwengyd cavities using experimental
data obtained by an interferometric satellitar device hiégues for the geometrical reconstruction
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2 G. PUEL AND D. AUBRY

of buried objects (e.g. cracks, cavities or inclusionsptigh mechanical measurements have been
largely investigated, as listed in the survey paper [1] idgalith inverse problems in elasticity. They
generally consist in the minimization of a misfit functionpesssing the discrepancy between the
available experimental data and the corresponding qissitialculated with the parameters field being
identified. As regards the case of cavity detection, themmization can be achieved through gradient-
based optimization techniques used in conjunction witlpstsensitivity formulations [2, 3]. Another
approach consists in applying level sets methods to desttréoshape of the sought cavity [4]. Instead
of looking for the cavity’s shape, it is also possible to toydirectly identify the Young’s modulus
spatial field within the studied domain, as it is applied irafic examples in [5] or [6] using a specific
constitutive relation error in addition to the initial misfiinction.

In all cases, since theoretical studies have shown the @xitylof this kind of inverse problems
(see e.g. [7, 8] for considerations on uniqueness), priomkedge is often required in order to avoid
local minima For example, the shape of the cavity can be asdpor the spatial Young's modulus
can be sought as a piecewise constant field in a fixed spasialetization. Techniques such as the
linear sampling method [9, 10] or the topological derivatjt1] also allow a preliminary probing of
the medium and can provide an interesting initial guess.dareeral way, however, regularization can
be difficult to set or adapt.

The problem we address here leads to the same observatiogrs expressing this cavities detection
issue in terms of an identification problem (the determaoratif the inner Young’s modulus spatial field
using the measured displacements on the surface of theedtgdbund), we stress the shortcomings
of classical regularization such as Tikhonov’s when thel g®#o identify a spatially-variable field
of material properties. Instead of assuming an arbitraatiapdiscretization of the sought Young’s
modulus field, we introduce a strategy using the Finite Eleriviethod (FEM) with a classical adaptive
meshing in order to efficiently regularize the inverse peofol

Adaptive Finite Element techniques are only slowly consddor thesolutionof inverse problems
[12, 13] and to our knowledge only [14, 15] and [16, 17] adtug@ropose a specific method for
solving inverse problems based on adaptive Finite Elemeshies, which we want to adapt here in
the case of elastostatics Partial Differential EquatidPBEs). The first step consists in using two
distinct meshes: one associated with the discretizatioheo$patial field to be identified (e.g. Young’s
modulus), typically coarse and which will be progressivetined with adaption techniques, and one
associated with theolutionof the usual mechanical problems (e.g. stress-strain fohaad adjoint
state problems])t is shownthat the choice of a coarse mesh to discretize the souglikipet allows
a good regularization of the problem, even if the identifiadapneters fields very roughly described.
Therefore in a second step, the introduction of local erstimeators can drive the refinement of the
coarse mesh, resulting in an accurate identification ofahbglst spatial field, as it is demonstrated here
in a practical case of study for an elastostatics problem.

2. PRESENTATION OF THE PROBLEM

Below are described the main features of the specific prollerwant to address, which deals with
the detection of underground cavities through measurewéiite displacements at the free surface of
the studied ground. This specific problem is used as anrifitishal example of what can be obtained
with the general strategy of identification we present here.

Copyright(©) 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng010;00:1-28
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SPATIAL FIELD IDENTIFICATION USING MESH ADAPTION 3

2.1. Experimental data

From a practical point of view, experimental data come fronsadellite equipped with an
interferometric radar device measuring the displacemggiven points of the surface of the ground,
between two consecutive acquisitions, with an accuracyouthé millimeter, both in horizontal
and vertical directions [18]Such an experimental techniqualled inSAR (synthetic aperture radar
interferometry) allows the monitoring of a very fine grid of points, typicalljth a resolution ofa
dozen of meterdor areas up to a few hundreds of square kilomefEng. idea is to use such a device
to monitor the creation and/or the growth of undergroundtes/such as in [19], which presents the
monitoring of the ground deformation of a site correspogdmthe exploitation of underground salt
by solution mining. For the problem addressed here assume that no cavity was present when the
first acquisition was doneso the displacemermgemp measured on the surfaée.,, of the ground
results from the creation of one or several cavities betvileeiwo consecutive acquisitions. Owing to
thesolutionof the measurement processuy,,,, will be considered as a continuous 3D-vectorial field.

The considered detection problem then consists in findiegctieated cavities within a specific
volumic domain that is characterized by the monitored s@fand a given depth, which are set a
priori. In the following, this domain is typically five kiloeters deep and ten kilometers large, and
the cavities that are to be found aseveral hundreds of meters large amberal kilometers below
the surface of the ground, which consequently drops loealew tens of centimeters. This problem is
depicted in a 2D schematic representation in Figure 1, wihermonitored surfacg.,, is symbolized
with hatching.

Figure 1. 2D schematic representation of the considereulgro

2.2. The forward model

The forward model to be compared with experimental datasetin some simple non-restrictive
assumptions. The initial ground (i.e. with no cavity) is simiered as a homogeneous, isotropic medium,
whose mechanical properties (Young’s moduligs Poisson’s ratio, mass density,) is well known.
This description will be used as an initial guess in the idieation process of the Young’s modulus
spatial field, as well as a means to know the initial depressithe surface of the ground due to gravity
when no cavity is present. This depression is added to titedismentiw, ., measured between two
acquisitions in order to obtain the whole displacemeni, of the surface of the ground, which is the
result of the combined effects of gravity and of the creatibane or several cavities. As a conclusion,
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4 G. PUEL AND D. AUBRY

this displacement field, ., so defined is considered as the experimental data used idethgfication
process defined in the following.

The domain associated with the ground is dendteahd the following conditions are verified on
the boundary)() of the domair2: whereas no load is applied on the surfake, of the ground, we
assume that the displacements on the others boundaries @éthain vanish. So the forward problem
is defined as follows: given a Young’s modulus spatial fiéldve compute the displacement fiel(F')
in 2 with the following PDE and boundary conditions:

div ECpe(u) — pge, =0 inQ
Q on aQ - 2ezp (1)
0 onXeap

U

ECpe(u)e, =

wherediv, (u), g ande, are the divergence operator, the small strain tensor, tbeleration of
gravity and an upward vertical vector respectively. is the normalized constitutive relation tensor,
such that the stress tensor standsras ECoe(u) = E (A(tre)l + 2fi€), where\ = T

andjg = ﬁ are the normalized Lame coefficients, whiland tr denote the identity tensor and
the trace operator respectivelyandp stand for the Poisson’s ratio and the mass density respégtiv
whose spatial distributions are assumed knevgmiori.

The previous group of equations can be rewritten in termswéak formulation as well. Given a
Young’s modulus spatial fieléd belonging to a specific Hilbert spag one seeks in another Hilbert
spaceV such that:

/ tr ECoe(u)e(w) d2 + / pge, - wdd=0  Yw e, 2
Q Q

withVy ={w e V]w=00n0 — X, }.

3. THE INVERSE PROBLEM

We consider that the inverse problem consists in determithie Young's modulus spatial field#
resulting in a displacement field dfr.,, as close to the experimental displacements, as possible.

3.1. Formulation of the inverse problem

Classically, thesolutionof the inverse problem consists in minimizing a misfit fuoati which is a
given norm evaluating ol the discrepancy between the displacement figlfl) associated with
the forward problem and the experimental displacement fig|g:

TAE) =5 [ 1) =ty By ©
exp
which emphasizes the determination of a best fit betweerriempetal and numerical data.

Like any other inverse problem, this problem is ill-poséw dssociated solution is unstable and not
unique, in particular when it consists of a spatially-valgsfield in 2. This actually means from the
numerical point of view that we have to find a large amount @flacvalues, each being associated
with a node of the FE mesh, whereas very few experimentaladatavailable (in this case: only on the
surface of the ground).

Copyright(©) 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng010;00:1-28
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SPATIAL FIELD IDENTIFICATION USING MESH ADAPTION 5

To circumvent this issue, so-called Tikhonov’s regulaiaaterms are usually added to the previous
norm, for instance to bound tmeagnitudeof the sought spatial field or of its spatial gradient:

TE) =5 [ IuE) - sy 8y + [ R(ETE) 0 @)
cop Q

whereV F stands for the spatial gradient bf We will discuss the choice of such regularization terms
below.

3.2. Adjoint state formulation

The minimization of the previous misfit function (4) is udyalerformed by means of gradient-based
techniques. In order to avoid time-consuming calculatiassvell as inaccuracies associated with
numerical differentiation, the derivative of (E) is analytically introduced by means of an adjoint
state problem.

The solutionz of this adjoint state problem can be considered as a Lagnawélier introduced
in the following Lagrangian functiol(u, E, z):

1
LB D) = 5[ -, + [ REIE)@

- [ wECwe@ - [ poe. - za0 (5)
Q Q

where(u, E, z) are considered independent. Minimizigd ) with u verifying (1) is then equivalent
to writing the first-order stationarity conditions f6fu, F, z).

The first-order stationarity condition with respectideads to the adjoint state problem, which is
very close to the forward problem:

/ (U — Upypy) - Ou ¥y — / tr ECoe(du)e(z)dQ =0 You € Vo (6)
Serp Q

except for the associated loading conditions. Instead dfydorces within the domain in (2), a
boundary condition is applied to the surface of the grodhg, and expressed as the discrepancy
between the displacement§E) andu,,,:

divECpe(z) =0  inQ
z=0 onof) — EeJ;p (7)
ECoe(2)n =t — Ueyy onXezp

Then the first-order derivative df(u, F, z) with respect toF allows us to express the directional
derivative of the misfit function easily @ J (E) = DgL(u, E, z) with:

DpL(u,E,z)0E = /(DER(E,ZE)—trCos(g)E(g))éEdQ
Q

+ / DypR(E,YE) -5V E dQ 8)
Q

/ (DER(E,VE) — div DygR(E,VE) — tr Coe(u)e(z)) 6E dQ)
Q

+ | DypR(E,YE)-ndEdS
oN
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6 G. PUEL AND D. AUBRY

3.3. Numericabolutionof the inverse problem

The minimum of the misfit function7(E) is sought asVgJ7(E)JE = 0 VoE, which could be
rewritten as the followin@ptimality equations:

tr Coe(u(E))e(2(E)) = DER(E,YE) — divDysR(E,YE)  inQ
DypR(E,YE)-n=0  ondf 9)

The minimization problem eventually consists in solvinge# PDEs with unknown@w(E), z(E), E):
the forward problem (1), the adjoint problem (7) and tmimality equations (9). The identification
process results in thelutionof a system, which is highly nonlinear in the spatially-edie unknown
field E.

The straightforwardolutionof this system first consists in choosing finite dimensionélspaces
Vi CV, Vo, C Vo andP;, C P using a typical Finite Element (FE) discretization with aegi mesh
M. Then the discrete problem to solve reads:

/ tr E,Coe(uy, )e(w,,) dQ —|—/ pge, - w,dQ =0 Yw, € Vo
Q Q

/ (y — theny) - 10y Oy — / By Coc(z)e(wy) 42 =0 Vay, €Von  (10)
> Q

exrp

/ (D, R(En,NYEp) — tr Coe(uy,)e(zy,)) 0ER, dQ
Q

-‘r/ DZE)IR(E}L7ZE}I) -VOE,dQ =0 VYéE, € Py,
Q

with unknowns(uy,, z,, E) € Vi, X Vo5 X Ph.

In [20, 21], a complete investigation of how to solve thisdiof inverse problem is proposed: the
authors detailed the use of Newton-like methods using Krg@dutions at each Newton iteration. Here,
the numerical method to solve the previous system (10) isvgpéd Newton method: at each step, the
algorithm computes the analytical expression of the Jarobiatrix associated with the full system,
then its numerical expression using the current valueseofittknowns, and finds the best step length
reducing the value of the residual associated with the syside process is then stopped when the
estimated relative error is below a given threshold. Ottrateyies could also be considered: instead of
computing the Jacobian matrix associated with the fullesyst staggered process could be proposed,
where the forward and adjoint problems on the one hand, tlimality equation on the other hand,
are solved successively.

3.4. First identification results and shortcomings of thassical method

For the time being, we use synthetic data as experimental idabrder to study the influence of
the regularization terms used in the inverse problem: thpemental data used here are actually
simulated with a very fine 2D FE mesht;; based on a simplified reference model with only one
homogeneous rectangular lagewhose mechanical properties are the following orgs= 60G Pa,

vp = 0.25, pg = 2,600kg/m3. The cavity is introduced as an elliptic homegeneous medhimithin

), characterized byE, = 0.6G Pa, v = 0.25, pc = 2,600kg/m3.

Copyright(© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng010;00:1-28
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SPATIAL FIELD IDENTIFICATION USING MESH ADAPTION 7

As aresult, the so-called experimental displacemepts are derived from the following problem:

/ tr Eocog(ﬂewp)g(whh) dQ + / poge, - Wyp de
JQ—Q Q—Qc

+/ tr ECCOE(yexp)E(whh) dQ + / Pcgt, - Whp a2 =0 th € VO,hh (11)
Q¢ Qe

Note that the fine mesh used here (about 50,000 quadratgtiar elements) to calculate,,, will

not be used anymore in the following, for teelutionof the inverse problem should not be dependent
of the mesh used to solve the mechanical problem.

With this very simple example, we tested several regulidrderms using a mesh made of about
6,000 quadratic triangular element8or each case, homogeneous Young’s modulus field equal to
Ey is used as an initial guess for the nonlinsalutionof the system of equations (1G)yhereas the
mass density is assumed to be equaldoWith this initial guess, the initial misfit function (with no
regularization)7, is about 5,600: let us recall th&h is a straightforward indicator of the discrepancy
between the experimental and the model-predicted displacts.

ChoosingR(E,VE) = £|E — Ey|* means that the sought Young’s modultishould remain close
to the moduludy, of the homogeneous ground, which is knoapriori. When spatially discretized,
the associated optimality equation derived from (9) leadk¢ third equation of the system (10):

/Q (a(En — Ep) — tr Coe(uy,)e(zy,)) 0ER,dQ =0 VOE), € Py, (12)

Of course, adding such a term results iwell-known,tricky choice of the constant. In Figure 2, the
final value of the misfit functio/y obtained after solving the whole system (10) is plotted rgtahe
values of the regularization parameteit can be seen thaf, « is set too large, the homogeneous field
Ey is foundas the solutiorand the misfit functiory/y remains equal to its initial value (about 5,600)
whereas ifv is set too small, the regularization is insufficient to deithwhe inverse problerand the
algorithm fails to find the solution of the system (10). As adasion, it can be said that, whatever the
choice ofq, it is quite impossible to solve the inverse problem andextdty identify the cavity without
using another strategy.

Therefore weproceeded to the study afhother regularization term, based on the gradient of the
sought Young’s modulus spatial field:

R(B,VE) = 5| 8| (13)
which leads to the followingliscretized formulation:
—/ tr Coe(uy, )e(z, )0 Ep dQ —|—/ BYE, -VoE,dQY =0 VOoE, € Py (14)
Q Q

This regularization seems more adapted to the considexaisin problem, because binds the
gradient ofthe sought field without restrictintis latterclose to a specific valuén order to choose a
relevant value for the regularization parametekve proceed to the same analysis asdoFigure 3
depicts the final values of the misfit functighy after solving (10) for different values ¢f. For high
values of3, the regularization is too restrictive and the homogengmitgal field is found as the
solution of the system (10). Then, whgrdecreases, the final value gf decreases as well, until the
algorithm fails to find the solution of (10), for values @fower than6 - 10~23.

Copyright(©) 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng010;00:1-28
Prepared usingqimeauth.cls



8 G. PUEL AND D. AUBRY
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Figure 2.75-vs.< curve after solving (10): the algorithm fails to convergeawhy < 6 - 1024
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Figure 3..75-vs.-8 curve after solving (10): the algorithm fails to convergeanl < 6 - 10~22

Nevertheless, finding a relevant value fais still a difficult process. For example, we can try to
apply the Morozov discrepancy principle [22, 23], which sists in findings for which the final
value of 7, after solving (10) is equal to the assumed accuracy or neigd.lIn the case of radar
interferometry measurements, the accuracy can go up to anffimiters, resulting to a final misfit
function of aboutl0~! to 1 in our proposed example. We see in Figure 3 that this leveksponds
approximately tg3 = 10~2!. But, actually, there may be additional noise, coming faragle from
the vegetal cover of the monitored ground, which makes ttegferometric correlation coefficient drop
significantly [19]. So, to check this choice, we added somesSian noise to the so-called experimental
datau,,,: Figure 4 shows the values of the misfit functigi after solving (10) for different values of

Copyright(© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng010;00:1-28
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SPATIAL FIELD IDENTIFICATION USING MESH ADAPTION 9

B, when the standard deviation associated with the Gaussiar is equal t& cm. In this case, the
level of the final misfit function should be aboki, and gives along with the Morozov discrepancy
principle 8 ~ 1020,

misfit function

Figure 4.Jo-vs.3 curve after solving (10), with Gaussian noise added 19, : the algorithm fails to converge
wheng < 107%?

This previous case also shows that the noisier the datajgher should be chosen to be able to
solve the system (10However, if 5 is choserlarger, we get a solution with a very smoothed spatial
variation, unable to represent the cavity that we introdung11) to synthesize the experimental data,
as can be seen in Figurevthere3 = 10719, The results of the identification are thus extremely
dependent on the value gf

A relevant choice of3 thus seems to be aboub~—2! in the considered example. Another
interpretation of this choice is that it should bede such that both terms in (4) would have the same
magnitudethis could be achieved with:

5 [2ep 36| Beap | A]?
| Eol?1€2]
where|Az| is an equivalent distance giving a rough estimate of the makspatial variation of the
sought fieldHere3 ~ 10~2* corresponds t@Axz| ~ 25 m.

As proposed in [24] for the same kind of inverse problem, oseal possibility to prevent the
smoothing of the identified Young’s modulus field is to chotheeTotal-Variation nornR (E, VE) =
~v|IVE||, or else its differentiable counterpart:

R(E,NVE) = v/|YE|? + n? (16)

which leads to the following discretized formulation:

VE, -NVOE,

— | trCoe(uy,)e(z;)0ER dQ + ——d
| o Coztwetzimngn s [ 5 e
Such a choice tends to allow discontinuities in the idemtifield [25], which seems to be even more

appropriate than the use of the gradient-based regulaninaith the L2-norm.

(15)

Q=0 V5E, € Py (17)

Copyright(© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng010;00:1-28
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10 G. PUEL AND D. AUBRY

Surface: Ep Maxi: 6.50e10
1000 x10"°
0 6
-1000 5
-2000 4
-3000 3
-4000 2
-5000
1
-6000
0
-5000 -3000 -1000 1000 3000 5000 pini: 0

Figure 5. Shortcomings of the classical Tikhonov's regmégtion

The same analysis as before can be conducted, but now twoatiffregularization parameters are to
be set:y andr. The latter is classically chosen small, but first tests gtbthat in our case it had to be
set far greater than expected to get the solution of thesy&t8): forn? < 109, it is impossible to find
a solution different of the initial uniform field’, This is a first clue that the TV-based regularization
can lead to numerical difficulties when solving (10). Figagots the misfit function after solving (10)
against the values of, for ? set to10°. The same curves are obtained whgn= 10° or ? = 10*2
are chosen. According to the Morozov discrepancy pringifliean accuracy of a few millimeters,
~ = 10~* could be chosen. Once again, to check this choice, we addeglGaussian noise to the so-
called experimental data,,,,,: Figure 7 shows the values of the misfit functignafter solving (10) for
different values ofy, when the standard deviation associated with the Gaussiaa is equal t& cm.

In this case, we get ~ 10~'2. What is more significant is that the ability to solve the eys{(10) is
strongly influenced by the noise level, far more than wittdgeat-based regularization with parameter
.

In what follows, we prefer to focus on the gradient-basedilaigzation (13), because this choice
seems less sensitive to the noise level. All in all, the ragzationdifficulties actuallycome from
the fact that we want to determine a spatially-variable freldresented by a large amount of scalar
values to be identified, whereas experimental informagastarceln addition to the noisehe mesh
that is used for the discretization of this field influencesgblution of the inverse problenmindeed
it is possible to showhat with stronger assumptions reducing the number of sopgrameters,
the identification process is even more efficient. For examiplwe know a rough estimate of the
depth of the sought cavity, we can restrict the domain whieeeYoung’s modulus is sought for to
a narrower area. Similarly, if we assume that the shape oty is known, we can express the
detection problem as the determination of the location &edstze of the assumed shape. However,

Copyright(© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng010;00:1-28
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SPATIAL FIELD IDENTIFICATION USING MESH ADAPTION 11
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Figure 7.Jo-vs.<y curve after solving (10), with Gaussian noise added 1g,: the algorithm fails to converge
wheny < 107

such assumptions are too restrictive, and make the rolssstfethe method drop dramatically, so
they will not be considered in what followslere we prefer to focus on the discretization aspect of
the inverse problem, to improve both the regularizatiorhefinverse problem and the quality of the
identified spatial field.
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12 G. PUEL AND D. AUBRY

4. ITERATIVE STRATEGY USING MESH ADAPTION

As we mentioned it before, the identification of the Young&dulus field is linked to the determination
of the scalar unknowns associated with the discretizatithm®spatial field on a FE mesh. The coarser
this mesh is, the fewer unknowns are to be found, and so tedlllggsed the inverse problem should
be in terms of uniqueness and stability, for the unknown fekbught for in a smaller spadBy this
means, a slight reduction in the number of unknowns couldbeurably obtained as welHowever,
using such a coarse mesh would not be convenient to deallveifotutionof both forward and adjoint
problems, if we wanted to get accurate resultserefore we will need to go further in a second step to
deal with this restrictive result, by introducing mesh ailégy.

4.1. Strategy using two different meshes

The best trade-off is to introduce two distinct meshes: fdeiftly refined mesh\,, for the solution

of the forward and adjoint problems (1) and (7) and a coarsshméy for the discretization of the
sought fieldE' and thesolutionof the optimality equation (9). Then the discrete problem consists in
finding (uy,, 25, Ex) € Vi X Vo, x P such that:

/ tr HhHEHCOE(gh)E(wh) dQ +/ pPoge, - Wy a2 =0 vwh € VOJL
Q Q
/ (uy, — Qe:r:p) cwp, d¥eqp — / tr HhHEHCOE(éh)E(Mh) d2 =0 Vw, €Von (18)
Zen:p Q
/ (DEHR(EH,ZEH) —tr CQH}IL{E(Q]L)H}IL_IE(gh)) 6EH dQ
Q

+ / Dy, R(Ey,VEy)-YSEgdQ =0 VSEy € Py
Q

whereV,, andPy are associated with the fine mesh,, and the coarse mesht ; respectively, and

% : vV, — Yy andll : Py — P, are specific operators associated with pointwise mappings
(projection and extension respectivelyhe system (18) is solved in the same way as the system (10)
was previously, by using a damped Newton method.

In the following, we use the fine and coarse meshes depictedjures 8 and 9 respectivelyt;, is
made of about 6,000 quadratic triangular elements whevéaonly has 12 linear triangular elements.
The shape of the cavity introduced in the very fine calcutaftl) ofu,,,, is added for information
purposesbut is not included in the identification process

With such meshes, theolution of (18) using a gradient-based regularization term (13hwit
B=10"2! leads to a good guess of the location of the sought cavitychvsinows that it is possible
to detect and approximately locate the cavity. The Youngslutus field, however, is identified in a
very approximate way: Figure 10 shows the identified Youngilulus obtained with the two meshes
described in Figures 8 and 9, as well as the shape of theielligtity to be found. This first example
thus shows that it is possible to detect the cavity, evess dlitape cannot be precisely determined.

To quantify the quality of the identified Young’s modulus, define the following error indicator,
which stands fothe root mean square tife relative discrepancy between the experimental anddfialw
displacement fields on the surface of the ground:

e fEeIP ||Q - gezp| |2 dzemp (19)
Bexp —
! IEEIP ||Eezp||2 dEeIP
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Figure 8. Example of a fine mesh,, for the solutionof forward and adjoint problems
(5,758 quadratic triangular elements)
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Figure 9. Example of mextremeleycoarse mesh i for the discretization of the sought
spatial field (12 linear triangular elements)
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Figure 10. Young's modulus identified with meshes of Fig@esd 9 ¢x,,, = 1.37%)

With the uniform Young’s modulugsy as an initial guess, the previously defined error indicator
readses,,, = 19.0%. After the identification process, and despite the coarseri#ion of the
identified field, the error is quite low, even for an exampléhwvsynthetic dataes,,, = 1.37%. A
look at the two terms of the misfit function (4) after the idBoation process gives, = 15 and

Q gIIZEII2 dQ2 = 3.0: the two terms are not perfectly balanced, the reguladnarm being weaker
than the discrepancy term, but it was predictable becagseoidrse mesh used for the discretization of
the identified field tends to have a regularizing effect.

To demonstrate this regularizing effect, we have plotteHigure 11 the final values of the misfit
function J, after solving (18) for different values @f. When compared to Figure 3, the identification
process using a coarse mesfy; for the field £ is much more regularized, for values uplto—4°
are possible for the regularization parameterOf course, it is also observed that the solution is
not improved any more below a given value @fwhich roughly corresponds to the value obtained
with (15).

4.2. lterative strategy with adaptive meshes

To improve the identification further, we propose an iteatmethod based on Bangerth’s work
[14, 15]: the meshM g used for the discretization of the spatial fieltlis progressively refined
according to classical mesh adaption methods. Theselalyssna posteriorierror estimators, such as
estimators quantifying the quality of a mesh regarding #ference continuous mechanical problem.
For implementation purposes, we begin to choose a L2-noran grdicator based on the residual
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Figure 11.7-vs.-3 curve after solving (18): the algorithm still converges wige= -10~%°

ers = /H4|T|2dﬂ (20)
\ Jo

whereH is the local size of the meshi . This choice can also be justified by the assumption that
there is a constardt such that the errar verifies|e| < C H?|r|. To evaluate the residua) the solution
of equation (9) is mapped on a mesh identicalMfy;, but with quadratic shape functions [26]. The
local contribution for a given element is computed by averg@ver the element the corresponding
nodal values of. The elements whose local contributions are the highestameerefined: the algorithm
selects these elements in a way that at each refinement stely about three quarters of the initial
number of elements of1%, are added to the meSIh{’}{“ used in the next sted@.he adaption steps
stop when the global error is below a given threshold chareing the quality of thesolution of
the optimality equation (9), and consequently of the identified spatiatl fié] or when no further
improvement of the global error indicator is noticealblet us note that the idea of using for this kind
of inverse problem a multiscale approach to enhance thecehaihkeeping the successive iterates
within the basin of attraction of the global minimum was afgoposed in [27], but this multigrid
approach was not based on adaptive mesh refinement technique

Of course, it would be possible to use similar L2-norm errafi¢ators to refine the mesi;, as
well. Here, however, this choice is not made for implemeéatapurposes, and we assume that the
meshM,, is sufficiently refined for theolutionof the forward and adjoint problems (1) and (7).

associated with equation (9):

4.3. Application of the strategy to the 2D example

This iterative strategy is applied to the problem of locgtiubterranean cavities using the synthetic
datau,,,, derived from (11). Figure 12 illustrates the identificatafran elliptic cavity using 6 adaption
steps refining the initial discretization megit; (12 linear elements) to a mesht$, with about
2,000 elements in the end (Figure 13). The shape of the intexticavity in (11) can be seen in both

figures in the bottom left of the studied domain.
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Figure 12. Young's modulus identified after 6 refinementsiep,,, = 0.235%)
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Figure 13. Discretization mesh$; for the identified field after 6 refinement steps
(1,758 linear triangular elements)

Figure 13 also demonstrates that the successive refineimenis near the location of the sought
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SPATIAL FIELD IDENTIFICATION USING MESH ADAPTION 17

cavity, as well as close to the surface of the ground, wheeestilution of the adjoint problem
is mainly located and influences tloptimality equation (9). After these 6 iterations, the relative
discrepancy indicator iss,,, = 0.235%, which shows the improvement of the identification by means
of the iterative strategy (compared 137% when using the mesiM 5 and no refinement). Further
refinements do not lead to any noticeable improvemafter these 6 refinement steps, the balance
between the two terms of the misfit function (4) is the follogi 7, = 0.43and |, §||ZE||2 dQ = 4.6.
The discrepancy decreased while the regularization teemsined quite the same as previously,
leading to a solution slightly oversmoothed.

4.4. Influence of measurement noise

The same strategy is then applied to the same example as prati@us paragraph, bt test the
sensitivity of the method to noise, Gaussian noise with purposely overestimated 50 estandard
deviation is added to the experimental displacemepts derived from (11). The initial error indicator
ises,,, = 21.5%. The identified Young’s modulus is depicted in Figure 14e8dtive refinements of
the mesh associated with the Young’s modulus field have belgieveed, and the relative discrepancy
indicator isex,,, = 9.07%.

When the forward displacement is calculated>n,, using the identified Young’s modulus, this
displacement field is very close to the experimental onerbefdding the Gaussian noise (a 'corrected’
error estimator, where the noise has been erased, wouldgjye = 0.949%), which shows that the
identification process tends to filter the noise on the expemial dataeven at this high noise level
Figure 15 shows how the initial mesh associated with theeiization of the Young’s modulus evolved
into the mesh\%, with about 2,000 elements: due to the noise on the experahéata, more elements
were refined on the vicinity of the surface of the ground thathe previous case.

Surface: Ep Maxi: 6.50e10

x10%°
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Figure 14. Young's modulus identified after 6 refinement stiepthe case of
experimental data with noises(,,, = 9.07%)
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Figure 15. Discretization mesh$; for the identified field after 6 refinement steps
in the case of experimental data with noise (1,789 lineangular elements)

This example tends to show the applicability of the methodattual interferometric radar
measurements, for the strategy is able to deal with higbtyupted data.

4.5. Robustness of the strategy

In order to demonstrate the robustness of the strategy, @&ewith a calculation analogous to (11)
new synthetic displacements, , associated with the case of two distinct subterraneanieavihe
first one in the same location as in the previous examplesdgbend one in the vicinity of the surface
of the groundThe initial error indicator with a uniform Young’s moduliés giveses,,, = 25.7%.

We apply then the iterative strategy beginning with the sawm meshesM; and My as in
Figures 8 and 9 respectively. Figure 16 shows the identifiedny’s modulus after 5 refinement
steps: when compared to the shapes indicating the locatiobsth cavities introduced in (11), this
spatial field allows to determine clearly both cavities,reifédhe deepest one is only roughly located.
Figure 17 depicts the associated madHl, (about 1,000 elements) after 6 refinement steps: the relativ
discrepancy indicator iss,,, = 3.10%, which is quite low (compared ®235% for the example with
only one cavity). This example concludes on the quality efittentification and eventually shows the
robustness of the introduced stratethys is an additional point tending to demonstrate theiappllity
of the method to actual interferometric radar measurements

4.6. Application to a 3D case

Extending the strategy to the third dimension is straightésd. Experimental displacements are
simulated with a very fine 3D mesh modeling the occurrence cd\ity in a calculation analogous
to (11). As before, the iterative identification processdlsiaved using the experimental displacements
., ON the surface of the ground.
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Figure 16. Young'’s modulus identified after 6 refinement step
in the case of two cavitiegf,,, = 3.10%)
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Figure 17. Discretization mesh$; for the identified field after 6 refinement steps
in the case of two cavities (1,148 linear triangular elersent

Copyright(©) 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng010;00:1-28
Prepared usingqimeauth.cls



20 G. PUEL AND D. AUBRY

Figure 18 shows 2D sections of the identified Young’s moduaifisr 11 refinement steps. The
coordinates of these 2D sections correspond to the codedirtd the center of the cavity used in
(11) and its shape is drawn in the figure. In comparison wighstiape of the sought cavity, we can see
more clearly in Figure 19 each of these 2D sections, or inf€ig0 the>0G Pa-isosurface. Eventually,
the relative discrepancy indicatords,,, = 1.01%, which is quite low and allows us to conclude on
the quality of the identification in the 3D case.

Maxi: 6.20el0
10

4.4
Mini: 4.379e10

Figure 18. Young’s modulus identified after 11 refinemenpsia the 3D casecg. .., = 1.01%)

exp

Figure 19. Young's modulus identified after 11 refinemenpsie the 3D case
- yz, Xy and zx sections (from left to right)
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Figure 20.50G Pa-isosurface for the Young’s modulus identified
after 11 refinement steps in the 3D case

5. FURTHER IMPROVEMENTS OF THE ITERATIVE STRATEGY

From the previous section, we can conclude that the propsisategy is both efficient and robust: for
each case, it is possible to locate the sought cavity orieawjuite accurately. However, the Young'’s
modulus spatial field that is finally identified is not the ohattwas used to simulate the experimental
datau,,,, in (11). The main reason for this is that we used a regulaozaérm based on the norm of
the gradient: even if the proposed strategy relies on a pesgrely refined mesiM , the identified
field tends to be smoothed because the gradient-basedriegtitan term (13) is minimized along with
the initial misfit function (3). Although the uniqueness loétsolution has been restored by this means,

it is not possible to have a good guess of the size of the smayity.

5.1. On the gradient-based regularization

A possible solution would be to set different values of thedignt-based regularization term according
to which step of the iterative strategy is concerned. Tyipiahues such as (15) can be used in the first
steps of the strategy, when regularization has to be sufflgieestrictive in order the identified field
not to diverge, then lower values can be proposed in the fapt ©f the strategy, once the iterative
mesh refinements concerning ;; drove the determination of the sought field to a given patfesrdo
this, the following regularization term is proposed:

R(E,vE) = B0

v THZEHQ (21)
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whereg is not a constant any more, but depends on the locali$ipéthe elements oM 5

nga:p”go'z:el'l)' 2
=g par 2
With such an expression, the regularization is strong whertement is large, its effect being reduced
when the meshM g is refined. Typically, with such a regularization based oR)(2he Young's
modulus gradient should not be higher than that associattdaninear evolution of the Young's
modulus along the element, thatfs / H .

We used this evanescent gradient-based regularizatibrihégtprevious 2D example (11). Figure 21
shows the identified Young’s modulus after 6 iterations,l@Rigure 22 depicts the associated mesh
M8, made of about 1,000 elements. Although the identified Yammgodulus field seems to be
smoothed once again, the relative discrepancy indicatey.js, = 0.170%. We should recall that
the relative discrepancy indicator associated withittigal gradient-based regularization (18js
ex. = 0.235% after 6 iterations.

exp
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Figure 21. Young's modulus identified after 6 iterationshatihe
evanescent gradient-based regularizatien (, = 0.170%)

Attempts to propose a faster evanescent gradient-basedhrizgtion did not succeed, for the
nonlinear algorithm to solve (18) did not converge any mdier gust a few steps.

5.2. On the use of a quantity of interest

Another limitation of the initial strategy lies in the fadtdt the closer we are to the minimum of the
misfit function, the smaller the magnitude of the adjointigioh is, and so, the slower the convergence
of the iterative strategy jdor the error estimator (20) driving the mesh refinemens®&oaiated with a
vanishing optimality equatiorin order tocircumventthe evanescence of the adjoint solution, we can
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Figure 22. Discretization mesh§; for the identified field after 6 iterations with the
evanescent gradient-based regularization (1,353 lim@aigular elements)

modify the initial Lagrangian function (5) (used to derite tstationarity conditions) by focusing on a
so-called quantity of interest(u, E, z). The use of such a quantity has been proposed in [16, 17] to
drive the mesh refinement in a parameter identification grabihere the main target was the accurate
estimation of the quantity of interest rather than the idieation of the parameter field itself. In these
references, only one mesh was used for discretizing thegimhand adjoint problems along with the
parameter field, and the mesh refinement was driven by ertioragsrs related to the chosen quantity
of interest. Here we are interested in extending this carafeguantity of interest to the case where two
different meshes are used, even if the main target remagngléntification of the Young’s modulus
spatial field. The idea is to drive the identification proogih a more relevant mesh refinement than in
the initial strategy, because, if appropriately chosemgiantity of interest does not vanish in optimum,
hence introducing a non-vanishing additional adjoint sofuas well.

Here, as an example, we choose the following quantity oféste

1
E(E) = ﬁ/QEdQ (23)

which represents the mean value of the Young’s modulusaeid over the whole domaift. Such

a quantity will not tend to zero as successive iterationaneputedand can also be seen as a guess of
the cavity’s size: if itis assumed that the Young’s moduksogiated with the cavity is negligible when
compared with that of the ground, the cavity’s volume candiereated with the following expression:

vo=(1-52) (24)
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The quantity of interest is introduced by means of a new Liagjem function/f(g, E 2 q, E,g)
verifying:
L(u,EB,24,E,2) = E@ukF,z)
+DuL(u, B, 2)a+ DpLl(u, B, 2)E + D, L(u. B,2)2 (25)
Whereas the first-order stationarity conditions relagivtel the Lagrange multiplieréz, E,g) lead

to the initial group (1)-(7)-(9) of PDEs to be solved, threfelidional equations corresponding to the
stationarity relatively tdu, F, z) can be derived:

- / tr ECoe(2)e(6u) dO — / tr ECoe(2)e(6u) d2 (26)
Q Q
+/ i-6udS = —DuE(u, F,2)bu  VoueVy
Zen:p
- / tr ECoe(u)e(8z) dQ — / tr ECoe(t)e(8z) dQ (27)
Q Q
= _Dgg(gaE7§)6_z V6_Z€VO
—/tr&ECOE(Q)E(g) dQ—/tréECos(g)s(g) dQ (28)
Q Q

+/ D?ER(E,ZE)E(SEdQ—i-/ D% ,R(E,VE)VE - VOE dQ
Q Q
=—-Dg€(u, E,2)0FE VoE € P

These equations define a dual problem associated with théegtaf the quantity of interes close
look at the equations of the previous system shows that thkadijpint solutiort does not tend to zero
as the primal forward solution tends to the experimental da_t@wp.

Concerning the numericablutionof the dual problem, we use the same meshes as faotlugion
of the primal problem (1)-(7)-(9) : the fine meg#;, for the solutionof the equations associated with
@ andz, and the coarse mesht ; for the solutionof the equation associated wifh The numerical
dual problem then consists in findird;,, Z;,. EH) € Vo,n X Vo, X P such that:

Q Q
= _Dzhg(thHfEvah)wh Vwy, € Vo,n
Q Q
+/ Ay, - wy, dS = =Dy, E(uy,, T} B, z;,) wy, Vwy, € Vo,n
Y

exp

- / tr § B Collly e (1, )T e (2,,) dQ — / tr 6 B Collly e (uy, )T e(2,,) dQ (32)
Q Q

+ / D% R(En,VEp)EgdEy dQ + / D% R(Ex,VE)VEy - VoEg dQ
Q Q -

= —Dp, EMu,, By, 1% 2,) 0By VSEn € Pu
where (uy,, 2, En) € Vi x Vo, X Py, are derived from (18) as previousliere, the successive
refinements ofM g are driven by an error estimator analogous to (20), usingdhielual associated
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with the dual optimality equation (31), extending the stpdgsented in [16, 17], where only one mesh
was used, to the proposed strategy with two different mesttesre M 5 is the specific mesh used for
discretizing the sought spatial field.

We applied this primal-dual formulation with the quantifyimterest (23) along with the evanescent
gradient-based regularization (21) on the previous 2D tarfill). Interesting is to note that we
succeeded in setting a lower value for the evanescent mézatian (3(H) ~ 10~27H?) than the
expression (22§3(H) ~ 10~26H?) that we used previously. The use of a quantity of intereshsee
to have a positive impact on the regularization of the inggyeoblem, for with lower values than
B(H) =~ 1026 H?, there were problems of convergence ingbtutionof theinitial problem associated
with the system (18).

Figure 23 shows the identified Young’s modulus after 6 iteret. Although the identified Young’s
modulus field seems to match less accurately the locatidmeoavity introduced in (11), the relative
discrepancy indicator iss,,, = 0.106%, which is lower than with the previous evanescent gradient-
based regularization (229.,, = 0.170% after 6 iterations)and than with the initial gradient-based
regularization (15)dx.,, = 0.235% after 6 iterations).

The study of the quantity of interest is the following: afteiiterations,é = 54.5G Pa, which
corresponds to an estimated cavity’s volume of abdut= 4.58km3 (for a width of 1km). For
the same width of considered ground, the actual volume otéwity defined in (11) defining the
experimental data wag. = 1.58km?, since€ = 58.1G' Pa. The estimated volume is then three times
too high, which seems once again a consequence of choosirapeet-based regularization. This
conclusion, however, should be slightly nuanced, for thieneged cavity’s volume with the previous
formulations (for both initial gradient-based (15) and mescent gradient-based regularization (22))
wasV, = 5.25km3 for a width of 1km (£ = 53.7GPa). It seems then that using the average
Young’s modulus as quantity of interest led to a better estion of the cavity’s volume, even if this
improvement remains restricted by the gradient-basedaggation term.

Figure 24 depicts the associated mestf, made of about 300 elements only. The choice of
a quantity of interest defined on the whole dom&irseems to have driven a more homogeneous
refinement of the mesi . Even if the finally obtained mesh$; is still quite coarse, it is sufficient
to describe the identified Young’s modulus field in a bettey Wean with the previous formulations,
fores,,, = 0.106% corresponds to the lowest value of tieative discrepancy indicataver all the
identifications results after 6 iterations.

Even if these first conclusions need further investigatioisgng a quantity of interest to drive the
mesh refinement on which the proposed strategy is based ¢ea@mprove both the regularization
of the inverse problem and the result of the identificatiselft In addition, the mesiM ;; used for
the discretization of the sought Young’s modulus spatiddi fieeems to have been refined in a more
effective way, for the final error indicator is lower than wihe other formulations, whereas the final
mesh is coarser.

6. CONCLUSION

When dealing with the inverse problem of identifying a salafield of material properties, one is
confronted with the difficult choice of a relevant regulatipn. This is particularly true when the
sought field is discretized on a FE mesh, for the choice ofl#tter can influence the result of the
identification.

Here we introduce a general iterative strategy using adaptieshes in order to circumvent the
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Figure 23. Young’s modulus identified after 6 iterationsnfalation with quantity of interest
along with the evanescent gradient-based regularization, ( = 0.106%)
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Figure 24. Discretization mestht$; for the identified field after 6 iterations: formulation witjuantity of
interest along with the evanescent gradient-based régatian (305 linear triangular elements)
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shortcomings of the classical regularization methods. gb& is to use a specific meshty for
the spatial discretization of the field to be identified, ipdedently from the mesiM; used to
discretize the forward and adjoint problems. The use of aseomesh forM gy makes the choice
of the regularization terms easier, and the identificatiam loe improved by refining the mesW
according to classical error estimators.

The robustness of such a strategy to solve spatial inverdglgmns has been illustrated in the
specific case of the detection of underground cavities. lditiah, several improvements of the
initial formulation have been proposed so that this iteeasitrategy could give even more accurate
identification results. The comparisons of the differemtrfalations, however, are made difficult by
the fact that the discrepancy indicator (19) that we intasdliexhibits very low values in most cases,
which may be associated with the synthetic data uSedhe other hand, the addition of artificial noise
to these synthetic data at a far higher level than the aatbaiferometric radar devices have tended
to demonstrate the robustness of the strategy in the casermfpted data. Therefore the successful
application of this identification strategy on actual expental data such as in [19] should be possible,
and give in addition valuable information about the différehoices made all along the strategy.
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