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A Polynomial Matrix Inequality Approach for Zonotopic
Set-Membership Estimation of Multivariable Systems

V.T.H. Le, C. Stoica, D. Dumur, T. Alamo, E.F. Camacho

Abstract— This paper proposes a methodology for guar-
anteed state estimation of multivariable linear discrete time
systems in the presence of bounded disturbances and noises. A
zonotopic outer approximation of the state estimation domain is
computed based on the minimization of the P -radius associated
to the zonotope. The proposed method leads to an off-line
Polynomial Matrix Inequality (PMI) optimization problem.
A sub-optimal solution of this problem is obtained using
relaxation techniques. An illustrative example is analyzed in
order to highlight the performance of the proposed algorithm.

I. INTRODUCTION

State estimation plays an important role in control commu-
nity. For a nominal system this problem can be easily solved
using for example the Luenberger observer. But in general
mathematical models are never perfect representations of real
systems and the output measure is influenced by noises. In
this context, the problem of state estimation becomes more
difficult. To solve this problem the Kalman filter [1], which
is based on some probabilistic assumptions on perturbations
and noises, is widely used. The state is estimated by mini-
mizing the error variance. Despite its conceptual simplicity,
these assumptions are sometimes difficult to validate.

The set-membership estimation method (worst-case esti-
mation) can be an alternative. The uncertainties and noises
are supposed to be unknown but bounded by some compact
sets. The state estimation set is determined containing all the
possible system states that are consistent with the uncertain
system and the measurement noises. Several geometrical
forms can be used to present this state estimation such as
ellipsoids [2], [3], [4], [5], [6], polytopes [7] (boxes, paral-
lelotopes [8], zonotopes [9], [10]). In the linear case poly-
topes can exactly represent the domain of the system state but
the complexity grows up exponentially. Therefore a solution
is obtained only for polytopes with a reasonable number
of vertices. To reduce the complexity, the representation by
ellipsoids can be used, but with a loss of performance. In this
paper zonotopes (symmetric polytopes) are used to offer a
good trade-off between the computational complexity and the
precision of the estimation. In addition the wrapping effect
(the growth of the domain representation due to uncertainty
at each sample time) can be efficiently controlled using
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zonotopes [11]. Zonotopes are used in several applications
such as collision detection [12], reachability analysis [13],
state estimation [9], [10], [14], [15].

To estimate the state of linear discrete-time Single-Input
Single-Output (SISO) systems with bounded disturbances
and measurement noise, [15] presents a new optimization
criterion that minimizes the P -radius associated to the zono-
tope in order to obtain good performances and reasonable
computation load. This method allows to perform an off-
line optimization problem which is a major advantage for
real-time applications. The originality of the present paper
is the generalization of the method presented in [15] for
the case of Multi-Input Multi-Output (MIMO) systems with
bounded disturbances and measurement noises. This leads to
a Polynomial Matrix Inequality (PMI) optimization problem
that is difficult to solve. A sub-optimal solution is obtained
using the relaxation technique proposed by [16].

This paper is organized as follows. Section II presents
some useful mathematical notations and properties. Section
III details the proposed solution. An example is analyzed in
Section IV to show the effectiveness of the proposed state
estimation. Finally, in Section V some concluding remarks
and perspectives are drawn.

II. MATHEMATICAL NOTATIONS AND BASIC
DEFINITIONS

This section provides the main notations and definitions
and zonotopes’ properties necessary for the comprehension
of this paper.

An interval X = [a, b] is defined as the set
{x : a ≤ x ≤ b}. The notations mid(X) = b+a

2 and
rad(X) = b−a

2 are used for the center and the radius of
the interval X . The unitary interval is B = [-1,1]. The set
of real compact interval [a, b], where a, b ∈ R and a ≤ b is
denoted I.

A box ([a1, b1], ..., [an, bn])T is an interval vector. A
unitary box in Rm, denoted Bm, is a box composed by m
unitary intervals.

The Minkowski sum of two sets X and Y is defined by
X ⊕ Y = {x+ y : x ∈ X, y ∈ Y }.

Zonotopes are a special class of convex polytopes. A
zonotope of order m in Rn can be defined as the linear
image Rn of a m-dimensional hypercube in Rn. The or-
der m is a measure of the geometrical complexity of the
zonotopes. Given a vector p ∈ Rn and a matrix H ∈ Rn×m
a m-zonotope is the set p⊕HBm = {p+Hz, z ∈ Bm}.
This is the Minkowski sum of the m-segments defined by



m columns of matrix H in Rn. A centered zonotope is a
zonotope whose center is the origin.

The P -radius of a zonotope X = p⊕HBm is defined as
d(x) = max(‖x − p‖2P ), x ∈ X . This notion is related to
the ellipsoid (x− p)TP (x− p) ≤ 1.

Figure 1 shows a zonotope constructed by a linear image

of a centered cube (p =

[
0
0

]
) in R2, with H =

[
1 2 3
3 2 1

]
,

and the associated P-radius d(x) = max(‖x‖2P ), with x ∈

X = p⊕HB3 and P =

[
1 0
0 1

]
.

Fig. 1. Zonotope and ellipsoid representing the associated P -radius

A strip X is defined as the set {x ∈ Rn : |cTx− d| ≤ σ}
with c ∈ Rn and d, σ ∈ R.

A matrix M = MT ∈ Rn×n is called a positive-
semidefinite matrix (resp. negative-semidefinite matrix), de-
noted M � 0 (resp. M � 0), if zTMz ≥ 0 (resp. zTMz ≤
0) for all non-zero vectors z with real entries (z ∈ Rn\{0n}).

Property 1: Given two centered zonotopes
Z1 = H1Bm1 ∈ Rn and Z2 = H2Bm2 ∈ Rn, the
Minkowski sum of two zonotopes is also a zonotope defined
by Z = Z1 ⊕ Z2 =

[
H1 H2

]
Bm1+m2 .

Property 2: The image of a centered zonotope
Z1 = H1Bm1 ∈ Rn by a linear application K can be com-
puted by a standard matrix product K · Z1 = (K ·H1)Bm1 .

Property 3: (Zonotope reduction) [9], [10] Given the
zonotope Z = p ⊕ HBm ∈ Rn and the integer s with
n < s < m, denote Ĥ the matrix resulting from the reorder-
ing of the columns of the matrix H =

[
h1...hi...hm

]
in

decreasing order of Euclidean norm (Ĥ =
[
ĥ1...ĥi...ĥm

]
with ‖ĥi‖2 ≥ ‖ĥi+1‖2). Then Z ⊆ p⊕

[
ĤT Q

]
Bs, where

ĤT is obtained from the first s − n columns of ma-
trix Ĥ and Q ∈ Rn×n is a diagonal matrix satisfying
Qii =

∑m
j=s−n+1 |Ĥij |, with i = 1, ..., n.

Property 4: ([10]). Given the zonotope Z = p ⊕ HBr
⊂ Rnx , the strip S = {x ∈ Rn : |cTx − d| ≤ σ} and the
vector λ ∈ Rnx , define a vector p̂(λ) = p+λ(d−cT p) ∈ Rnx

and a matrix Ĥ(λ) =
[
(I − λcT )H σλ

]
. Then a family

of zonotopes (parameterized by the vector λ) that contains
the intersection of a zonotope and a strip is obtained such
as X ∩ S ⊆ X̂(λ) = p̂(λ)⊕ Ĥ(λ)Br+1.

III. GUARANTEED STATE ESTIMATION USING ZONOTOPES

This section focuses on the main result of our paper. In a
first stage the estimation problem for multivariable discrete-
time systems is formulated. In a second stage, a solution of
this problem is proposed in the form of a Polynomial Matrix
Inequality optimization problem. As PMI problems are non
convex and hence difficult to solve, a sub-optimal solution
is found using the relaxation strategy proposed in [16].

A. Problem Formulation

Consider the following linear multivariable discrete-time
invariant system of the form:{

xk+1 = Axk + ωk
yk = Cxk + vk

(1)

where xk ∈ Rnx is the state of the system, yk ∈ Rny is the
measured output at sample time k. The vector ωk ∈ Rnω

represents the state perturbation vector and vk ∈ Rny is the
measurement perturbation (noise, offset, etc.). It is assumed
that the uncertainties and the initial state are bounded by
zonotopes: ωk ∈ W, vk ∈ V and x0 ∈ X0. To simplify the
computation V is assumed to be a box in Rny , the centers
of W and V are assumed to be the origin. Note that if this
assumption is not satisfied, a change of coordinates can be
used. From the definition of zonotopes, W and V can be
written as W = FBnω and V = ΣBny , where F ∈ Rnx×nω

and Σ ∈ Rny×ny are diagonal matrices.
With these notations, the consistent state set and the exact

uncertain set [10] are defined as follows.
Definition 1: Given the system (1) and a measured output

yk, the consistent state set at time k is defined as Xyk =
{x ∈ Rn : (yk − Cx) ∈ V }.

Definition 2: Consider the system (1). The exact uncertain
state set Xk = (AXk−1 ⊕W ) ∩Xyk , k ≥ 1 is equal to the
set of states that are consistent with the measured output and
the initial state set X0.

Remark 1: The exact computation of the uncertain state
set is difficult. In practice, this set is approximated by
conservative outer bounds to reduce the complexity. An outer
approximation using a zonotope-based procedure for SISO
systems based on the P -radius minimization is presented in
[15]. Based on this idea which provides good performance
and low computational complexity, an original extended ver-
sion for MIMO systems will be presented in the following.
Let us consider that an outer bound of the exact uncertain
state set denoted X̂k−1 is available at time instant k − 1.
Suppose also that a measured output yk is obtained at time
instant k. Under these assumptions, an outer bound of the
exact uncertain state set can be estimated with Algorithm 1.

Algorithm 1
1) Prediction step: Given the system (1), compute a

zonotope X̄k = AX̂k−1 ⊕W that offers a bound for
the uncertain trajectory of the system.

2) Measurement: Compute the consistent state set Xyk

using the measurements yk.



3) Correction step: To find the uncertain state set, com-
pute an outer approximation X̂k of the intersection
between Xyk and X̄k.

The proposed algorithm is similar to the Kalman filter. To
obtain a zonotope bounding the uncertain trajectory of the
system in step 1, Properties 1 and 2 are used. The complexity
of this zonotope is limited using Property 3. The intersection
set of step 3 is computed via an optimization problem
involving the P -radius as detailed in the next part.

B. Proposed Solution

Supposing an outer approximation of the state set X̂k−1 =
p̂k−1⊕ Ĥk−1Br at the time instant k− 1, then the predicted
state set at the next instant X̄k can be computed using (1),
Property 1 and Property 2:

X̄k = Ap̂k−1⊕
[
AĤk−1 F

]
Br+nω = p̄k⊕H̄kBr+nω (2)

The exact uncertain state set will be obtained after inter-
secting the predicted state set with the consistent state set.
In a general way, the outer approximation of this set can be
found by repeating the guaranteed state intersection (Property
4) for each component of the measured output vector yk:
yki = cTi xk + vki , i = 1, ..., ny . cTi is the i-th row of matrix
C and the noise vki is bounded by the zonotope Vi = σiB1,
with σi = Σii ∈ R.

An outer approximation of the intersection between the
consistent state set obtained from the first component of yk
and the predicted state set parameterized by a vector λ1 is
represented by:

X̂k1(λ1) = p̂k1(λ1)⊕ Ĥk1(λ1)Br+nω+1 (3)

where p̂k1(λ1) = Ak−1p̂k−1 + λ1(yk1 − cT1 Ak−1p̂k−1) and
Ĥk1(λ1) =

[
(I − λ1cT1 )Ak−1Ĥk−1 (I − λ1cT1 )F σ1λ1

]
.

Then this set is intersected with the second component yk2
of the measured output vector yk:

X̂k2(λ1, λ2) = p̂k2(λ1, λ2)⊕ Ĥk2(λ1, λ2)Br+nω+2 (4)

with p̂k2(λ1, λ2) = p̂k1(λ1) + λ2(yk2 − cT2 p̂k1(λ1)) and
Ĥk2(λ1, λ2) =

[
(I − λ2cT2 )Ĥk1(λ1) σ2λ2

]
. This proce-

dure is repeated until the last component ykny
of the mea-

sured output vector yk leading to the zonotopic guaranteed
state estimation set at time instant k:

X̂kny
(λ1, ..., λny

) = p̂kny
(λ1, ..., λny

)⊕
⊕Ĥkny

(λ1, ..., λny
)Br+nω+ny

(5)

with

p̂k = p̂kny
(λ1, ..., λny ) = p̂kny−1(λ1, ..., λny−1)+

+ λny
(ykny

− cTny
p̂kny−1

(λ1, ..., λny−1)) (6)

and

Ĥk = Ĥkny
(λ1, ..., λny

) =

=
[
(I − λny

cTny
)Ĥkny−1

(λ1, ..., λny−1) σny
λny

]
(7)

Finally the guaranteed state estimation is represented by
a zonotope parameterized by these vectors λ1, λ2, ...,λny

.

In order to simultaneously compute the vectors λi, i =
1, ..., ny , the approach considered is the following. Compute
a symmetric positive definite matrix P and the vector λi
such that at each sample time the P -radius of the zonotopic
state estimation set is decreased, more precisely the value
maxx∈Xk

(‖x − pk‖2P ). This means that the zonotopic state
estimation set is contracted in time (see Fig. 2) leading to a
more precise estimation of the state.

Fig. 2. Evolution of guaranteed state estimation

This condition is described by the following mathematical
expression:

max
ẑ
‖Ĥkny

ẑ‖2P ≤ max
z
β‖Ĥk−1z‖2P + max

ω
‖Fω‖22+

+σ2
1 + ...+ σ2

ny

(8)

with ẑ =
[
z̃T ω̃T η1 ... ηny

]T ∈ Br+nω+ny , z̃, z ∈
Br, ω̃, ω ∈ Bnω , ηi ∈ B1, and β ∈ [0, 1).

Using the explicit form of ẑ, if the following expression
is true, then the expression (8) is also true:

max
ẑ

(‖Ĥkj ẑ‖2P −β‖Ĥk−1z̃‖2P −‖Fω̃‖22−σ2
1− ...−σ2

ny
) ≤ 0

(9)
Because η ∈ Bny , the following expression is obtained:[
σ2
1 ... σ2

ny

]
(

1
...
1

 −
 η

2
1
...
η2ny

) ≥ 0. Adding this term to

the left of (9) leads to the following sufficient condition for
(9):

ẑT ĤT
kjPĤkj ẑ − βz̃T ĤT

k−1PĤk−1z̃ − ω̃TFTFω̃−
−σ2

1η
2
1 − ...− σ2

ny
η2ny
≤ 0

(10)

Denoting v = Ĥk−1z̃, then the inequality (10) can be written
in the matrix formulation:

vω̃
η

T

A1,1 A1,2 A1,3 ... A1,ny+2

∗ A2,2 A2,3 ... A2,ny+2

∗ ∗ A3,3 ... A3,ny+2

...
...

...
. . .

...
∗ ∗ ∗ ... Any+2,ny+2


vω̃
η

 ≤ 0

(11)



with ’*’ denoting the terms required for the symmetry of
the matrix and the following additional notations:



A1,1 = B1PB
T
1 − βP

A1,2 = B1PB
T
2

A1,3 = B1PB
T
3

...
A1,ny+2 = B1PB

T
ny+2

A2,2 = B2PB
T
2 − FTF

A2,3 = B2PB
T
3

...
A2,ny+2 = B2PB

T
ny+2

A3,3 = B3PB
T
3 − σ2

1
...
A3,ny+2 = B3PB

T
ny+2

...
Any+2,ny+2 = Bny+2PB

T
ny+2 − σ2

ny
,

(12)

where

B1 = (

ny∏
i=1

(I − λny+1−ic
T
ny+1−i))A)T

B2 = (

ny∏
i=1

(I − λny+1−ic
T
ny+1−i))F )T

B3 = (

ny−1∏
i=1

(I − λny+1−ic
T
ny+1−i)σ1λ1)T

...
Bny

= ((I − λny
cTny

)(I − λny−1c
T
ny−1)σny−2λny−2)T

Bny+1 = ((I − λny
cTny

)σny−1λny−1)T

Bny+2 = (σnyλny )T .
(13)

Using the definition of positive definite matrix allows to
rewrite (11) as:


A1,1 A1,2 ... A1,ny+2

∗ A2,2 ... A2,ny+2

...
...

. . .
...

∗ ∗ ... Any+2,ny+2

 � 0, ∀

vω̃
η

 6= 0 (14)

or


−A1,1 −A1,2 ... −A1,ny+2

∗ −A2,2 ... −A2,ny+2

...
...

. . .
...

∗ ∗ ... −Any+2,ny+2

 � 0, ∀

vω̃
η

 6= 0

(15)

Doing some manipulations in (15) leads to:
βP 0 0 ... 0
∗ FTF 0 ... 0
∗ ∗ σ2

1 ... 0
...

...
...

. . . 0
∗ ∗ ∗ ... σ2

ny

−

−


B1P
B2P

...
Bny+2P

P−1


B1P
B2P

...
Bny+2P


T

� 0 (16)

Using the Schur complement [17], (16) is equivalent to the
following Polynomial Matrix Inequality problem:

βP 0 0 ... 0 B1P
∗ FTF 0 ... 0 B2P
∗ ∗ σ2

1 ... 0 B3P
...

...
...

. . .
...

...
∗ ∗ ∗ ... σ2

ny
Bny+2P

∗ ∗ ∗ ... ∗ P


� 0 (17)

where the decision variables are λ1, ..., λny
, P and β.

Denote the P -radius of the state estimation set at instant
k as Lk = maxx(‖x − pk‖2P ), where x ∈ X̂k. As the 2-
norm is a convex function and W is a convex set the term
maxω ‖Fω‖22 can be easily computed. Denoted const =
maxω ‖Fω‖22 +σ2

1 + ...+σ2
ny

Then the condition (8) can be
written as Lk+1 ≤ βLk + const. At infinity, this expression
is equivalent to:

L∞ = βL∞ + const (18)

leading to

L∞ =
const

1− β
(19)

Let us consider an ellipsoid E = {x : xTPx ≤ const
1−β } which

is equivalent to E = {x : xT (1−β)P
const x ≤ 1}. To minimize

the P -radius (i.e. L∞) of the zonotope, the ellipsoid of
smallest diameter must be found ([17]) solving the following
optimization problem:

max
τ,P,β,λ1,...,λny

τ

subject to

0 ≤ β < 1
(1−β)P
const � τI

βP 0 0 ... 0 B1P
∗ FTF 0 ... 0 B2P
∗ ∗ σ2

1 ... 0 B3P
...

...
...

. . .
...

...
∗ ∗ ∗ ... σ2

ny
Bny+2P

∗ ∗ ∗ ... ∗ P


� 0

(20)

In this PMI problem, the decision variables are: P =
PT ∈ Rnx×nx , λ1, ..., λny

∈ Rnx and β, τ ∈ R.
Thus the total number of scalar decision variables is:
nx(nx+1)

2 + nynx + 2. The degree of the PMI (17) is ny + 1.



This PMI can be solved by using the Linear Matrix Inequality
(LMI) relaxation methodology [16] that will be detailed in
the next part.

C. Relaxation of the PMI problem

In a first stage, all of the nx(nx+1)
2 + nynx + 2 scalar

decision variables are denoted as follows: τ , y10...0, y01...0,
..., y00...10, y00...01. For expression (20), this leads to

β = y100...0, P =

[
y01...0 ... y00...1...0
... ... ...

]
, λT1 =[

y00...1...0 ...
]
,..., λTny

=
[
y00...1...0 ... y00...01

]
.

In a second stage, the polynomial decision elements in
(20) are rewritten as the result of a change of variables
based on the previous scalar decision variables such as:
y20...0 = y10...0 · y10...0, y11...0 = y10...0 · y01...0 etc. In this
way, expression (20) becomes a LMI. If the LMI relaxation
of the PMI optimization problem (20) is used, then the
following LMI problem must be solved (see [16] for more
details):

max τ
subject to the LMIs


M1 =


1 ∗ ∗ ∗

y10...0 y20...0 ... ∗
y01...0 y11...0 ... ∗

...
...

. . .
...

y00..111 ... ... y00...222

 � 0

M2 � 0

(21)

where M2 denotes the equivalent LMI expressions obtained
from the PMI in (20) using the new scalar decision variables.

Denote l = nx(nx+1)
2 + nynx + 1. As the degree of the

PMI in (20) is ny + 1 thus the dimension of LMIs (21) are:

• M1: q × q, with q = 1 + l +
(
2
l

)
+ ...+

(round(ny+1

2 )
l

)
;

• M2: 1, nx × nx, (2nx + nω + ny)× (2nx + nω + ny).

The number of scalar decision variables in this optimization
problem is q(q+1)

2 + 1.
Remark 2: The prediction step using zonotopes is a

very simple matrix computation. However, this computation
increases the order of the zonotope at each step. In order
to control the domain complexity, a reduction step is im-
plemented to bound a high-order zonotope by a lower-order
zonotope using Property 3.

Remark 3: The PMI problem (20) can be also solved
using an inner approximation [18] instead of the outer
approximation [16] proposed in this section.

Remark 4: Some LMI optimizations must be solved to
obtain the value of λi but this computation is done off-line.

In order to illustrate the effectiveness of this technique, it
will be applied on an example in the next section.

IV. ILLUSTRATIVE EXAMPLE

Consider the following linear discrete time system:
xk+1 =

[
0 −0.5
1 1

]
xk + 0.02

[
−6
1

]
ωk

yk =

[
−2 1
1 1

]
xk + 0.2vk

(22)

with ‖vk‖∞ ≤ 1, ‖ωk‖∞ ≤ 1. The values of vk and ωk
are generated by random functions. The initial state belongs
to the box 3B2. The order of the zonotopes is limited to
m ≤ 20 in the interest of a fast simulation. A simple system
of 2nd order (nx = 2, ny = 2) is chosen in order to reduce
the complexity of computation and to facilitate the graphic
visualization.

Denote β = y10000000, P =

[
y01000000 y00100000
∗ y00010000

]
,

λT1 =
[
y00001000 y00000100

]
, λT2 =

[
y00000010 y00000001

]
.

Thus the dimensions of LMIs of the considered optimization
problem (21) are:

• M1: 37× 37;
• M2: 1, 2× 2, 7× 7.

As l = 8 and q = 37, the total scalar number of decision
variables is 37·38

2 + 1 = 704.
Figures 3 and 4 show the evolution of the predicted

state set and the outer approximation of the state estimation
set. This outer approximation is reduced at each iteration.
Note that the obtained set is an approximation of the real
intersection which will become more and more accurate at
each iteration (Fig. 3, Fig. 4).

Fig. 3. Intersection X̂k between the predicted state set X̄k and the
measurement Xyk at the time instant k = 1

Figures 5 and 6 present the obtained bounds on x1k and
x2k . The stars represent the real state x1k , x2k of the system.
These points are found between the bounds of x1k , x2k
which confirms that these bounds are well estimated. Figure
7 shows the evolution of the volume of the guaranteed state
estimation. The volume of the zonotopes decreases in time,
which confirms the contractive property of the proposed
method.



Fig. 4. Intersection X̂k between the predicted state set X̄k and the
measurement Xyk at the time instant k = 8

Fig. 5. Bounds of x1

V. CONCLUSION

In this paper a new zonotopic outer-bounding of the state
estimation for a multivariable linear discrete time invariant
system has been proposed. The proposed method computes
a set of all the states that are consistent with the measured
output, the bounded noise, the bounded perturbation. The
contractive condition on the guaranteed state estimation leads
to a Polynomial Matrix Inequality optimization problem. A
sub-optimal solution of this PMI problem is obtained using
a relaxation technique [16] that leads to a Linear Matrix
Inequality optimization problem.

Current work focuses on different strategies for solving the
PMI problem in order to improve this result. An interesting
perspective is to extend the zonotopic state estimation to the
case of multivariable uncertain systems, in the presence of
bounded disturbances and noises.
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[14] V. Puig, P. Cugueró, and J. Quevedo, “Worst-case estimation and
simulation of uncertain discrete-time systems using zonotopes,” in
Proc. of Europeen Control Conference, Portugal, 2001.

[15] V. Le, T. Alamo, E. Camacho, C. Stoica, and D. Dumur, “A new
approach for guaranteed state estimation by zonotopes,” in Proc. of
the 18th World Congress IFAC, Milan, Italy, 2011.

[16] D. Henrion and J. B. Lasserre, “Convergent relaxations of polynomial
matrix inequalities and static output feedback,” IEEE Transactions on
Automatic Control, vol. 51(2), pp. 192 – 202, 2006.

[17] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory. Philadelphia: SIAM,
1994.

[18] D. Henrion and J. B. Lasserre, “Inner approximations for polynomial
matrix inequalities and robust stability regions,” in LAAS-report 11210,
2011.


