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Abstract: This paper addresses a predictive control strategy for Unmanned Air Vehicles in the
presence of bounded disturbances. The goal is to guarantee tracking capabilities with respect to a
reference trajectory which is pre-specified using the differential flatness formalism. Furthermore,
an off-line linearization strategy of the nonlinear model of the vehicle along the flat trajectory is
proposed. Since the reference trajectory is available beforehand, an optimization problem which
minimizes the tracking error for the vehicle is formulated in a predictive control framework.
The proposed method exhibits effective performance validated through software-in-the-loop
simulations for the control of Unmanned Aerial Vehicles (UAVs).
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1. INTRODUCTION

The trajectory tracking problem represents a fundamen-
tal problem in control and coordination of dynamical
systems, such as wheeled robots, spacecrafts, aircrafts,
missiles, surface vessels, underwater vehicles or unmanned
aerial vehicles (UAVs) (see, for instance, [Valavanis, 2007],
[Aguiar and Hespanha, 2007] and the references therein).
This problem is even more challenging because most of
these dynamical systems are nonlinear, underactuated and
exhibit nonholonomic constraints [Li and Canny, 1993],
[Reyhanoglu et al., 1999].

A widely used technique in control community is Model
Predictive Control (MPC) (see, for instance, [Mayne et al.,
2000], [Maciejowski, 2002] for basic notions in MPC) due
to its ability to handle control and state constraints, while
offering good performance specifications. There are var-
ious applications in the literature where real-time MPC
is applied to autonomous vehicle maneuvering problems.
For example, [Keviczky and Balas, 2006] uses a predictive
guidance controller for an autonomous UAV and a fault
detection filter for taking into account the disturbances.
Mixed-Integer Programming (MIP) techniques combined
with receding horizon strategy was useful to coordinating
the efficient interaction of multiple UAVs in scenarios with
many sequential tasks and tight timing constraints (see,
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[How et al., 2004], [Schouwenaars et al., 2005]). Further-
more, some works investigate the capability of Nonlinear
MPC for tracking control. Among these contributions,
[Kim et al., 2002] formulates a nonlinear MPC algorithm
combined with the gradient-descent method for trajectory
tracking, and [Fontes et al., 2009] proposes a two-layer con-
trol scheme composed by a nonlinear and a linear predic-
tive controller for a group of nonholonomic vehicles moving
in formation. However, it is important to point out that
nonlinear MPC is computationally involved and thus, not
necessarily suitable for a wide class of applications. This
hightlights the importance of developing simpler real-time
optimization problems embedded within predictive control
formulations for plants described by nonlinear models. In
this sense, the authors of [Falcone et al., 2007] consider
a MPC tracking controller based on successive “on-line”
linearizations of the nonlinear model of the corresponding
plant. Yet, the computational complexity of the proposed
MPC scheme remains significant.

The main goal of the present paper is to develop a
trajectory tracking predictive controller for a particular
class of vehicles in the presence of bounded disturbances.

In a first stage, a specified trajectory is generated for a
vehicle using the differential flatness formalism (see the
work of [Fliess et al., 1995] for detailed notions of flatness).
The proposed trajectory generation mechanism takes into
account way-point conditions and furthermore, allows us
to obtain “off-line” linearizations of the nonlinear vehicle



model along the flat trajectory. For reducing the compu-
tation effort we use the “nominal” behavior of the vehicle
and consider safety region (the reader can refer to our
previous work [Prodan et al., 2011]) around it to compen-
sate for the effects of the disturbances affecting the “real”
system. Furthermore, these regions can be defined within
the theory of invariant sets [Rakovic et al., 2011] in order
to avoid recomputations during the real-time functioning
[Mayne et al., 2006].

In a second stage, since the reference trajectory is available
beforehand, a real-time optimization problem which mini-
mizes the tracking error for the vehicle is solved based on a
prediction of the future evolution of the system [Bemporad
and Morari, 1999], [Goodwin et al., 2005].

The following notations will be used throughout the paper.
A Voronoi region, Vi associated to a collection of points
pi is defined as Vi = {x ∈ Rn : d(x, pi) ≤ d(x, pr),∀i 6= r},
where d(x, y) denotes the distance between the points x
and y. Minkowski’s addition of two sets X and Y is defined
as X ⊕ Y = {x+ y : x ∈ X , y ∈ Y}. Let xk+1|k denote
the value of x at time instant k + 1, predicted upon the
information available at time k ∈ N. We write R � (�)0
to denote that R is a positive (semi)definite matrix.

2. PREREQUISITES

This section describes the vehicle’s model and the tra-
jectory generation mechanism. Furthermore, an off-line
linearization strategy of the nonlinear model is developed
by using available operating points along the reference
trajectory.

2.1 Vehicle Model

The framework presented here can be adapted to vehicles
moving in 2D or 3D. Nevertheless, in the present work we
explore the case of an airplane in which the autopilot forces
coordinated turns (zero side-slip) at a fixed altitude. The
airplane is represented by the following kinematic model
[Bencatel et al., 2011]:

ẋ(t) = Va(t) cos Ψ(t) +Wx, (1)

ẏ(t) = Va(t) sin Ψ(t) +Wy,

Ψ̇(t) =
g tan Φ(t)

Va(t)
,

where the state variables are represented by the position
(x(t), y(t)) and the heading angle Ψ(t) ∈ [0, 2π]. The
input signals are the air-relative velocity Va(t) and the
bank angle Φ(t) ∈ [−0.43, 0.43] radians, respectively 1 .
Furthermore, we assume a nearly null angle of attack and
that the autopilot provides a higher bandwidth regulator
for the bank angle, making its dynamics negligible when
compared to the heading dynamics. Wx and Wy are the
wind velocity components on the x and y axis. The
vehicle model is a nonholonomic system. It is completely
controllable, but it cannot make instantaneous turns in
certain directions.

Remark 1. Note that, the nonlinear systems used in a wide
class of practical applications are usually differentially flat.

1 The airspeed and the bank angle are regarded as the autopilot
pseudo-controls.

In this sense, the dynamics we study in the present paper
are the norm rather than the exception. For the cases
where flat outputs are not possible, other strategies for
trajectory generation can be used [Aguiar and Hespanha,
2007], [Castillo et al., 2007].

2.2 Flat trajectory generation

Consider notations:

ξ(t) = [x(t) y(t) Ψ(t)]
T
, (2)

u(t) = [Va(t) Φ(t)]
T
, (3)

denoting the state vector and the input vector, respec-
tively. Then, the general system (1) can be described as:

ξ̇(t) = f(ξ(t), u(t)), (4)

where f(·, ·) : R3 × R2 → R3 is the state derivation
function.

In the following, we require the determination of a refer-
ence trajectory (ξref (t), uref (t)) that steers the model (1)
from an initial state ξref (t0) to a final state ξref (tf ), over a
fixed time interval [t0, tf ]. Since the aforementioned system
is controllable and allows the existence of flat outputs (see,
for instance [Van Nieuwstadt and Murray, 1998], [De Doná
et al., 2009]), we consider flatness theory notions in order
to provide the required reference trajectory.

The systems’ state and input will be represented as func-
tions of a finite dimensional mapping z(t) and a finite
number of its derivatives (in this particular case it will
be shown that the second order derivative suffices):

ξref (t) = η0(z(t), ż(t)),

uref (t) = η1(z(t), ż(t), z̈(t)).
(5)

In the case of the dynamics (1), the vector z(t) =

[z1(t) z2(t)]
T ∈ R2, called the flat output is defined as:

z1(t) = x(t),

z2(t) = y(t).
(6)

It can be shown that, the corresponding reference state
and input for the system (4) are obtained by replacing the
reference flat output (6) into equations (5):

ξref (t) =

[
z1(t) z2(t) arctan

(
ż2(t)

ż1(t)

)]T
, (7)

uref (t) =

[√
ż21(t) + ż22(t) arctan

(
1

g

z̈2(t)ż1(t)− ż2(t)z̈1(t)√
ż21(t) + ż22(t)

)]T

,

(8)

where t ∈ [t0, tf ].

For a practical implementation, the flat output z(t) is seen
as a weighed sum of basis mappings. Imposing boundary
constraints for the evolution of the differentially flat sys-
tems (see, for instance [De Doná et al., 2009]) a flat output
z(t) can be generate by the resolution of a linear system
of equalities. The idea used in our approach is to further
introduce a set of way-points through which the vehicle
must pass 2 :

P , {pi = (ξi, ui), i = 0, . . . , Np}, (9)

where Np is the number of chosen way-points.

2 Hereafter whenever we use the subscript we refer to time and when
we use the superscript we index a point from a set of points.



The list of way-points is assumed as being provided by
an operator (which can oversee the operation) and incor-
porates control requirements: obstacle avoidance, check
points, etc. Note that polynomial basis functions are a
poor choice because their dimension depends on the num-
ber of constraints. This means that they are sensitive to
the number of way-points. More precisely, in this case
the trajectory needs to be computed on segments (i.e.,
each segment taken between two consecutive way-points).
Therefore, additionally constraints are imposed leading to
an increased number of polynomial basis functions beyond
reasonable computation limits. To overcome this issues, we
used B-splines functions which are the best choice in the
sens that their degree does not depend on the number of
way-points. Actually, the degree depends only up to which
derivative we want to assure continuity. In our particular
case, the third degree order suffices to assure smooth
bank and velocity commands. As an illustrative example
Figure 1 shows a flat trajectory which passes through 4
way-points as in (9).

ξref(tf) = ξfξref(tf) = ξf

ξref(t0) = ξ0ξref(t0) = ξ0

ξref(ti+1) = ξi+1ξref(ti+1) = ξi+1

ξref(ti) = ξiξref(ti) = ξi

t0 ti ti+1 tft0 ti ti+1 tf

Fig. 1. Flat trajectory which passes through 4 way-points.

2.3 Linearization of the vehicle model

For computation purposes, it is convenient to use the
discretized model of the nonlinear system 3 (4):

ξk+1 = fd(ξk, uk). (10)

In the sequel, we consider the linearization problem of
the nonlinear discretized system (10). We take here a
piece-wise affine (PWA) approach, that is, we consider
a collection of points in which we pre-compute linear
approximations of (10):

L , {lj = (ξj , uj), j = 0, . . . , Nl}, (11)

with Nl the number of chosen linearization points.

For a given point lj ∈ L we consider the following Taylor
decomposition:

fd(ξk, uk) = fd(ξj , uj)+Aj(ξk−ξj)+Bj(uk−uj)+ . . .︸ ︷︷ ︸
βj(ξk,uk)

,

(12)
where the matrices Aj ∈ R3×3 and Bj ∈ R3×2 are defined
as

Aj =
∂fd

∂ξ
|ξj ,uj , Bj =

∂fd

∂u
|ξj ,uj (13)

3 In general, time discretization of the system dynamics (4) is
performed using the classical Euler method or Adams-Bashforth
multi-step methods.

and βj(ξk, uk) ∈ R3 represents the terms of the Taylor
decomposition of rank greater than 1 (i.e., the nonlinear
residue of the linearization):

βj(ξk, uk) = fd(ξk, uk)− fd(ξj , uj)−Aj(ξk − ξj)−
−Bj(uk − uj),

(14)

for all j = 0, . . . , Nl. Therefore, the system (10) can be
linearized in lj ∈ L by the following dynamics:

ξk+1 = fdj (ξk, uk) , Ajξk +Bjuk + rj , (15)

with the affine constant terms rj ∈ R3 defined as:

rj = fd(ξj , uj)−Ajξj −Bjuj , (16)

for all j = 0, . . . , Nl.

In the following we consider a procedure of selecting
between the predefined linearization points (11) for the
current input/state values. To this end, we partition the
state-space into a collection of Voronoi cells:

Vj =
{
ξ : ||ξ − ξj || ≤ ||ξ − ξr||, ∀r 6= j

}
, (17)

where each cell consists of all points whose linearization
error is less for linearization around point ξj than for any
other point ξr from L, with r, j = 0, . . . , Nl. This allows to
select the linearization point during runtime by a simple
membership testing:

ξk+1 = fdj (ξk, uk), ∀(ξk, uk) ∈ Vj . (18)

Since βj(ξk, uk) = fd(ξ, u) − fdj (ξ, u) it is clear that the
linearization error is related to its corresponding cell, Vj :

||βj(ξk, uk)|| ≤ max
(ξ,u)∈Vj

||fd(ξ, u)− fdj (ξ, u)||. (19)

Consequently, a Voronoi decomposition with bounded cells
of small diameter is desirable in order to have a “good”
PWA approximation of the function (10).

Remark 2. An a priori computation of (13), (14) and (16)
in all feasible combinations of inputs and states is difficult
to handle. As such, we prefer to select the linearization
points (11) along (and around) the flat trajectory under
the assumption (to be tested later) that the real trajectory
will stay “close enough” and thus, the chosen linearization
points will remain relevant to the problem at hand [Fa-
giano et al., 2009].

Proof of concept: In order to better explain the lineariza-
tion strategy, we illustrated in Figure 2 the continuous
trajectory of the nonlinear system (4) (in blue) and the
piecewise linearized trajectory (in red). Therefore, the
linear system (15) describes the small deviations of the
nonlinear system (10) trajectory from the reference state
trajectory ξref (t) described by (7) when an input refer-
ence uref (t) described by (8) is applied. We considered
several linearization points (denoted as black dots) 4 and
constructed the Voronoi cells as in (17).

By linearizing the reference trajectory we have now all
the tools necessary for the control part of the trajectory
tracking problem, which will be detailed in the forthcom-
ing section.

3. TRAJECTORY TRACKING PROBLEM

Since the reference trajectory is available beforehand
(through the use of flatness procedures), an optimization

4 Note that the way-points (9) can also be considered between the
linearization points (11).



ξref(tf) = ξfξref(tf) = ξf

ξref(t0) = ξ0ξref(t0) = ξ0

ξref(ti+1) = ξi+1ξref(ti+1) = ξi+1

ξref(ti) = ξiξref(ti) = ξi

t0 ti ti+1 tft0 ti ti+1 tf

(Aj, Bj, rj)

(Aj+1, Bj+1, rj+1)

(Aj+2, Bj+2, rj+2)

(Aj, Bj, rj)

(Aj+1, Bj+1, rj+1)

(Aj+2, Bj+2, rj+2)

Fig. 2. Real and linearized trajectories and the bounded
Voronoi cells.

problem which minimizes 5 the nominal tracking error for
the vehicle is formulated in a predictive control framework.
Roughly, the vehicle must follow the reference trajectory
using the available information over a finite time horizon
in the presence of constraints.

For a practical implementation we consider the recur-
sive construction of an optimal control sequence u =
{uk|k, uk+1|k, · · · , uk+N−1|t} over a finite constrained re-
ceding horizon, which leads to a predictive control policy:

u∗ = arg min
u

N−1∑
s=0

(||ξk+s|k − ξrefk+s|k||Q+ (20)

+ ||uk+s|k − urefk+s|k||R),

subject to the set of constraints:
ξk+s+1|k = Ajξk+s|k +Bjuk+s|k + rj ,

ξk+s|k ∈ X , s = 1, . . . , N − 1,

uk+s|k ∈ U , s = 1, . . . , N − 1.

(21)

with (ξk+s|k, uk+s|k) ∈ Vj as defined in (17), j = 1, . . . , Nl.

Here Q = QT � 0, R � 0 are weighting matrices and N
denotes the length of the prediction horizon.

The optimization problem (20) has to be solved subject to
the dynamical constraints (21). In the same time, other
security or performance specifications can be added to
the system trajectory. These physical limitations (velocity,
bank command) are stated in terms of hard constraints
on the internal state variables and input control action
as in (21). Note that the sets X , U have to take into
account the reference tracking type of problem delineated
in (20). Thus, the absolute limitations have to be adjusted
according to the reference signals. In the original state
space coordinates, these constraints will describe a tube
around the reference trajectory.

The trajectory obtained by applying the optimal control
u∗ computed in (20)–(21) is “nominal”, in the sense that it
does not consider either exogenous noises (i.e., the wind)
or the state-dependent linearization error (i.e., the term
βj(ξk, uk) from (12)). There are different approaches in the
literature which deal with the reference trajectory tracking
problem for dynamical systems affected by disturbances.
A classical method is based on the tube MPC approach
(for details, the reader is referred to [Mayne et al., 2006],

5 Since the nominal trajectory has to respect state and input con-
straints, the vehicle may not follow exactly the reference trajectory.

[Rakovic et al., 2011]), where a nominal trajectory is
controlled and the real trajectory is kept into a tube
around the nominal one through a suitable control action.

The “real” trajectory takes into account all the perturba-
tions:

ξ◦k+1 = Ajξ
◦
k +Bju

◦
k + rj + βj(ξ

◦
k, u
◦
k) + wk, (22)

where the bounded perturbation wk denotes the wind.

Subsequently, subtracting (15) from (22) we obtain the
tracking error zk = ξ◦k − ξk measuring the difference
between real (ξ◦k) and nominal (ξk) trajectories:

zk+1 = Ajzk+Bju
δ
k+βj(ξ

◦
k, u
◦
k)+wk, (ξ◦k, u

◦
k) ∈ Vj , (23)

where uδk = u◦k − uk denotes the difference between “real”
and “nominal” control actions.

Considering that the perturbations are bounded, 6 as long
as a stabilizable control action:

uδk = K(ξk, ξ
◦
k) (24)

exists, we can guarantee that the real trajectory (22)
remains “close” enough to the nominal one (15). Actually,
there exists a sequence of bounded sets which describe the
tube:

zk ∈ Sk ↔ ξ◦k ∈ {ξk} ⊕ Sk, ∀k ≥ 0. (25)

For LTI dynamics, the choice of (24) is simply a gain
matrix which makes the closed-loop dynamics stable. Here,
due to the switched nature of (15) we need also to switch
between the gain matrices:

K(ξk, ξ
◦
k) = Kj(ξ

◦
k − ξk), j = 0, . . . , Nl, (26)

with each gain Kj stabilizing the pair (Aj , Bj) in (15).
Then, we obtain the switched system:

zk+1 = (Aj+BjKj)zk+βj(ξ
◦
k, u
◦
k)+wk, (ξ

◦
k, u
◦
k) ∈ Vj (27)

which, under mild assumptions (that the switches between
modes of functioning are not happening often) is stable.

Of practical interest is the computation of the “tube”
defined by sets Sk. For LTI dynamics, the sets Sk are
constructed robust positively invariant (see previous work
[Prodan et al., 2011]) in order to minimize the on-line
computations. Here the dynamics of the vehicle change
whenever the linearization point changes and it may not
be possible to describe the set linking the “nominal” and
the “real” dynamics in the same manner. In this case, a
hybrid structure can be proposed. That is, we compute
robust invariant sets for each of the linearized dynamics
and change between them (or scaled versions of them)
when necessary.

4. SIMULATION RESULTS

The current research is to develop software-in-the-loop
simulations and subsequent flight tests for the control
of small Unmanned Aerial Vehicles (UAVs). The vehicle
dynamics is simulated by a Piccolo software (http://www.
cloudcaptech.com/piccolo_system.shtm) and then, the
control algorithm is transmitted in real flight simulations
through a communication routine running on a PC on the
ground. Furthermore, the autopilot sends the telemetry
data to the ground station through a 2.4GHz Piccolo
protocol link.
6 If the cell Vj is bounded, then the nonlinear residue βj(ξk, uk) is
also bounded.

(http://www.cloudcaptech.com/piccolo_system.shtm)
(http://www.cloudcaptech.com/piccolo_system.shtm)
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In the present paper we provide software-in-the-loop sim-
ulations and we are currently working on validating the
approach on the associated hardware. Therefore, instead
of the usage of electrical interfaces, software interface
provided by Piccolo is used here which allows a direct
information-technical communication with the simulation.
The control algorithm is running in MATLAB which is
interfaced with Piccolo software using DUNE and IMC
messaging system (see, for details [Pinto et al., 2012]).

Furthermore, to test the proposed trajectory tracking
method we use an extended unicycle aircraft model (for
low-level control, [Bencatel et al., 2011]) with 12 states, in
a 3 DOF simulation. The simulated UAV is restricted to a
range of speed between 18 and 25 meters per second and
to a maximum bank angle of 25 degrees. The simulations
incorporates perturbations, e.g., the wind. We assume that
the intensity of the wind is bounded for some reasonable
values (e.g., a maximum speed of 20-knots).

As an exemplification, we now describe simulation results
that illustrate the performance of the proposed predictive
tracking controller. The objective is to force the UAV to
track 4 way-points given as in (9) (denoted as red dots in
Figure 3). In a first stage, using the results in Section 2 we
generate a flat trajectory starting from the current position
of the UAV and passing through the given way-points.
In a second stage, we use the linearized model (see the
linearization procedure in Subsection 2.3) for the control

part of the trajectory tracking problem with the following
tunning parameters:

- the sample time is T = 0.05 s;
- constraints on the input: the velocity Va ∈ [18, 25]

m/s, the bank angle Φ ∈ [−0.43, 0.43] rad, the Wx

and Wy components of the wind are limited to less
than 20 knots;

- small variations on the velocity and bank command
are admitted : the rate of change of Va is limited to
the maximum acceleration the aircraft can produce,
i.e., 0.1 ∼ 0.2m/s2; the variation of Φ is limited to
30 ∼ 60 degrees/s;

- the weights matrices in (20) are Q = 5·103·I3, R = I2;
- the prediction horizon is N = 5.

Good tracking performances for the given reference tra-
jectory (depicted in blue in Figure 3) are obtained for the
UAV, whose evolution is depicted in green in Figure 3.
Moreover, the constraints on the velocity and bank com-
mands are satisfied as illustrated in green in the same
figure. It is worth mentioning that an increase in the pre-
diction horizon leads to better tracking performances thus,
imposing a trade-off between complexity and precision.

Figure 4 depicts a 3D simulation of the UAV evolution
which tracks very well the given way-points. In the same
figure we represented the projection of the trajectory on
the ground.

The predictive tracking controller was also tested in sim-
ulations with different wind conditions with a maximum
speed of 20-knots and showed good robustness. Figure 5
shows the reference trajectory in solid blue and the track-
ing performance of the UAV with and withought wind
conditions. The main limitations against improved perfor-
mance are the wind magnitude and the numerical issues
(density of linearization points, prediction horizon length,
etc.).

5. CONCLUSIONS

This paper addresses a predictive control strategy for Un-
manned Aerial Vehicles (UAVs) in the presence of bounded
disturbances. A reference trajectory is pre-specified using
differential flatness formalism. Furthermore, an “off-line”
linearization strategy of the nonlinear model of the ve-
hicle along the flat trajectory is proposed. For reducing
the computation effort we use the “nominal” behavior
of the vehicle and consider a safety region around it to
compensate for the effects of the disturbances affecting
the “real” system. Next, an optimization problem which
minimizes the tracking error for the vehicle is formulated
in a predictive control framework. Software-in-the-loop
simulations for the control of (UAVs) are presented. We
are currently working on hardware-in-the-loop simulations
and on the extension of the proposed trajectory tracking
strategy for UAVs formations with non-convex collision
avoidance constraints.

REFERENCES

Aguiar A.P. and Hespanha J.P. (2007): Trajectory-
tracking and path-following of underactuated au-
tonomous vehicles with parametric modeling uncer-
tainty. IEEE TAC, 52(8):1362–1379.



0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
−2,000

−1,000
0

1,000

2,000
y

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

250

500

750

1,000

x

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

2.5

5

7.5

10

ψ

reference

actual value (no wind)

actual value (with wind) t 0
=

39
.5

t 1
=

76
.2

t 2
=

11
2.
8

t 3
=

14
9.
5

Fig. 5. Comparison between actual and reference UAV motion.

Bemporad A. and Morari. M. (1999): Robust model
predictive control: A survey. Robustness in identification
and control, pp. 207–226.

Bencatel R., Faied M., Sousa J.B., and Girard A.R.
(2011): Formation control with collision avoidance. In
Proceedings of the 50th IEEE CDC-ECC, pp. 591–596,
Orlando, USA.

Castillo C.L., Moreno W., and Valavanis K.P. (2007): Un-
manned helicopter waypoint trajectory tracking using
model predictive control. In Proceedings of the IEEE
MCC, pp. 1–8.
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Fliess M., Lévine J., Martin P., and Rouchon P. (1995):
Flatness and defect of non-linear systems: introductory
theory and examples. International Journal of Control,
61(6):1327–1361.

Fontes F., Fontes D., and Caldeira A. (2009): Model
predictive control of vehicle formations. Optimization
and Cooperative Control Strategies, pp. 371–384.

Goodwin G.C., Seron M., and De Dona J. (2005): Con-
strained control and estimation: an optimization ap-
proach. Springer Verlag.

How J., King E., and Kuwata Y. (2004): Flight demonstra-
tions of cooperative control for UAV teams. In AIAA 3rd
Workshop and Exhibit “Unmanned Unlimited” Techni-
cal Conference, pp. 20–23.

Keviczky T. and Balas G.J. (2006): Software-enabled re-
ceding horizon control for autonomous unmanned aerial
vehicle guidance. Journal of Guidance Control and
Dynamics, 29(3):680–694.

Kim H.J., Shim D.H., and Sastry S. (2002): Nonlinear
model predictive tracking control for rotorcraft-based
unmanned aerial vehicles. In Proceedings of the 21st
American Control Conference, volume 5, pp. 3576–3581.

Li Z. and Canny J. (1993): Nonholonomic motion plan-
ning, volume 192. Kluwer Academic Pub.

Maciejowski J.M. (2002): Predictive control: with con-
straints. Pearson education.

Mayne D.Q., Rawlings J.B., Rao C.V., and Scokaert P.O.
(2000): Constrained model predictive control: Stability
and optimality. Automatica, 36:789–814
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