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Abstract This paper builds on the flexibility of the level-set

representation to model in a unified manner the expansion

of a hollow in the ground under different physical phenom-

ena. In particular, the dissolving action of a flow of water in

a saturated soil, and that of a jet of particles of water in a

non-saturated one, are represented in a common framework.

In that manner, the complex geometrical evolutions of the

hollow can be followed without the need for remeshing and

this approach allows for a smooth transition between satu-

rated and non-saturated models of the soil. Implementation

and numerical difficulties are discussed and two applications

of industrial interest are considered. The first one describes

the modeling of the piping phenomenon, and the second one

the evolution of an excavation created by a leaking duct.

Keywords Level-set method · Porous media · Piping ·

Internal erosion

1 INTRODUCTION

The requirement to capture the position and evolution of an

interface is central to many areas of engineering and science,
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including metal forging, oceanography, imaging, flame mod-

eling, melting of materials, and more generally, the model-

ing of heterogeneous or multi-phases materials. Along the

years, several methods have been devised for such prob-

lems [1]. Among the most used ones are front tracking meth-

ods, in which the mesh is refined or deformed to follow

the displacement of the interface [2], and the marker-in-cell

method [3,4], in which a large set of markers follows the

material in a lagrangian way, hence describing the position

of each phase. However, both methods induce high compu-

tational costs. Indeed, to keep the numerical accuracy to an

appropriate level, it is necessary, in the former class of meth-

ods, to re-mesh the domain when the deformations increase.

Likewise, the number of markers necessary to follow appro-

priately an interface is shown to be prohibitive for computa-

tional implementation [5].

Level-set functions [6,7] provide a very efficient and

elegant alternative to these techniques. In the simplest set-

ting, they allow to discriminate between two areas of a do-

main, with no explicit parameterization of the actual inter-

face. Level-sets are functions defined on the entire domain,

whose sign indicates the belonging to one or the other of

the two areas. Usually, their absolute value represents the

smallest distance to the interface, which is hence indicated

by the cancellation of the level-set. Conceptually, they are

constructed in a space of higher dimension than the interface

they intend to represent, with an improved mathematical be-

havior that allows for an easier manipulation.

Since the first use of level-set functions in the descrip-

tion of dynamical two-phase fluid systems [8,9], their power

has been acknowledged for the parameterization of com-

plex evolving phases. In particular, their ability to deal with

changes in topology without any remeshing has been rec-

ognized [10,11]. They have been used in several fields of

geophysics and geomechanics, including modeling of two-

phase flows and permeability estimation in reservoir simu-
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lations [11,12], tectonic plates subduction [13,14], seismic

waves travel time computation [15], and, generally, for in-

verse problems and optimal design [16–18].

Apart from this potential in considering complex geome-

tries, we want here to advocate the capabilities of the level

set representation in integrating different physical models in

a common framework. To our knowledge, this aspect has not

been emphasized before. In particular, we consider a leaking

duct, generating a hollow by dissolution and tearing of the

soil. Depending on the height of the groundwater table, two

very different physical phenomena occur. When the ground-

water table is low, the hollow is full of air, and its expansion

is mainly due to the impact of the jet of water coming out

of the leak. When the groundwater table is high, the hollow

is full of water, and the main phenomenon controlling the

evolution of the excavation is the dissolution and transport

of soil particles with the water flow. In this paper, both these

phenomena will be considered in the same framework of the

Hamilton-Jacobi equation. There, the choice of the model

of erosion (jet or flow) is entirely contained in that of the

velocity of advancement of the interface. Conceptually and

practically, this change of focus with respect to the classical

approach allows to shift very easily from one model of the

advancement of the interface to the other. In real life (e.g.,

for the rise and fall of the water table in the soil), this may

be a very common situation.

Note that this change of focus means that the questions

of whether the models of normal velocity are actually useful

for real-life applications, or whether the numerical schemes

used to compute them are accurate, are of secondary im-

portance for this paper. We will concentrate on the integra-

tion of both models in a common framework, and on the

numerical accuracy of the level set representation itself. The

latter will be described on an example representing the pip-

ing phenomenon, with only one model involved. Apart from

its interest in showing the numerical accuracy of the level

set representation, this example is also, to the knowledge of

the authors, the first application of level sets to this prob-

lem, for which it seems appealing. Indeed, piping is one

the main causes of failure of dams and embankments, while

its modeling is still based on semi-analytical [19] or experi-

mental [20,21] approaches. In particular, the semi-analytical

approaches are heavily dependent on symmetry hypotheses

that are probably not very relevant in practice. Using a level-

set parameterization for the interface between the soil and

the hollow allows to follow any geometry of the piping hole.

The paper is constructed as follows. In a first part (sec-

tion 2), we recall the main definitions and results for level set

descriptions, and introduce two examples of models for the

normal velocity of the interface (sections 2.3 and 2.4). These

two models are the ones that are used in the examples of the

last section. We then describe some numerical issues related

to the use of level-set descriptions (section 3), in particu-

Fig. 1 Two examples of 2D two-phases system (left) with the corre-

sponding level-set functions (right)

lar concerning the size of the mesh and re-distancing of the

level-set function. Finally, we present the two applications

of interest: a level-set description of the piping phenomenon

(section 4.2), and the expansion of a hollow in the ground

under two different physical phenomena (section 4.3).

2 THE LEVEL-SET DESCRIPTION

The goal of this section is to provide a general description of

the level-set approach for the representation of a multi-phase

medium. The original ideas were presented in [8]. Although

we only discuss here the case where there are two phases,

the ideas can be extended to multi-phases problems [22].

2.1 Basic principles

Let us consider a domain Ω separated into exactly two sub-

domains Ω1 and Ω2. The interface between these two sub-

domains is denoted Γ and evolves in time with a normal ve-

locity vn(x, t). Note that the definition of this velocity field

implies the choice of an ”interior” and ”exterior”. Two ex-

amples of such situations, with closed and open interfaces,

are shown in the left column of figure 1.

The main idea of the level-set approach is to consider a

function, defined on the entire domain of interest, with val-

ues that depend on the position in one phase or the other.

The most common approach consists in defining the level-

set function Φ as the distance function to the interface, with

the sign indicating the subdomain. In mathematical terms, it
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is defined by























|Φ(x)| = ℓ(x)

Φ(x) > 0 x ∈ Ω1

Φ(x) < 0 x ∈ Ω2

Φ(x) = 0 x ∈ Γ

, (1)

where ℓ(x) indicates the distance from point x to the closest

point of curve Φ = 0. Hence, the level-set function is defined

in a space with a higher dimension than the interface it at-

tempts to parameterize. However, the additional dimension

allows for an increased smoothness of the function, which

can hence be more easily manipulated. Further, the level-set

description of the interface fits properly in a Finite Element

(FE) context because the function Φ may be interpolated

using the same mesh. This allows describing arbitrary inter-

faces, not restricted to contain the mesh nodes, with an accu-

racy and regularity up to the resolution of the FE discretiza-

tion. The level-set functions corresponding to two examples

of interfaces are shown in figure 1. In these two examples,

the interfaces are lines (1D) in a 2D space, and the level-set

functions are surfaces (2D) in a 3D space.

2.2 The Hamilton-Jacobi equation

As the phases of the model evolve in time, so does the inter-

face and its level-set description. The evolution of the level-

set function Φ is determined by the normal velocity of the

interface at every point, vn(x, t). This front velocity is con-

sidered to be positive if the interface advances towards the

positive values of Φ , that is in the direction of the unit nor-

mal vector n = ∇Φ/|∇Φ |. The transport equation for Φ is

the Hamilton-Jacobi equation, and its derivation, given the

front velocity vn(x, t), is sketched below.

Let us consider a point x(t) following the interface in its

movement. Thus, at every time t,

Φ(x(t), t) = 0. (2)

The time derivative of this equation yields

∂Φ

∂ t
+∇Φ ·

∂x

∂ t
= 0. (3)

Recalling that the front velocity is precisely vn(x, t) = n ·
∂x/∂ t, with n = ∇Φ/|∇Φ |, the second term in the left-

hand-side of the previous equation is replaced by vn(x, t)|∇Φ |.

This results in the Hamilton-Jacobi equation:

∂Φ

∂ t
+ vn(x, t)|∇Φ | = 0. (4)

Note that, to this point, no hypothesis has been made on

the form of the normal velocity field vn. This equation is

therefore compatible with different physical models of the

evolution of the interface. Conversely, the only necessary

modification for passing from one model to another is to

change the form of the normal velocity. This is the property

that is stressed in this paper, and that is, to the belief of the

authors, a yet under-rated advantage of the level-set repre-

sentation. It allows for a very easy shifting, possibly back

and forth, between one model and another.

Thereafter, we present two models of erosion that can

be used within this general framework. By model of ero-

sion, what is meant is the description of the normal velocity

of the interface in different physical situations. We namely

consider two of them: the erosion by a jet of water of an air-

filled cavity within an earth matrix, and the erosion by a flow

of water of a water-filled cavity. Note that the forms of these

two models are very different and that they are solved by

very different schemes. This is typically the situation when

it appears interesting to use a unified framework using the

level-set parameterization. As already stated above, and be-

cause the choice of these models is not central to the focus

of this paper, we will not elaborate on their validation by

experimental evidence, or on the numerical accuracy of the

schemes used to compute the values of the normal velocities.

2.3 Erosion due to a jet

The first physical situation we consider is that of the erosion

by a jet of water of an air-filled cavity within the earth. The

jet of water is modeled as a set of ejected particles (small

volumes of water, drops), launched at different times and

from different points of a source. The volumes of the differ-

ent particles are denoted by Vp, p = 1,2, . . ., such that the

particles move through space as point masses mp = ρwVp,

where ρw is the density of water. The source corresponds

geometrically to a small part of the boundary. Each particle

undergoes a free flight, only submitted to gravity, starting

at time t0
p from a point x0

p of the source and with an initial

velocity v0
p. Thus, the position xp(t) and velocity vp(t) of a

particle p at time t are given by

{

xp(t) = x0
p +v0

p(t − t0
p)+g 1

2
(t − t0

p)
2

vp(t) = v0
p +g(t − t0

p)
, (5)

where g = −giz is the acceleration of gravity, with g = 9.81

m/s2, and iz points upwards.

For a given time interval [t −∆ t/2, t + ∆ t/2], the flow

is modeled using a given number of particles N, to each of

which is assigned the same mass and velocity (norm), so as

to fit the macroscopic jet values, in particular the flow, Q in

m3/s, and the velocity, in m/s. Both the location x0
p and the

direction (angle) of the initial velocity v0
p are selected ran-

domly using a proper assumption in their probability distri-

bution (for instance, uniform density for the location, Gaus-

sian distribution for the direction). Tuning the parameters
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of these probability distributions allows modeling wider or

narrower jets, with different dispersions. The velocity of the

particles is assumed to be large, in the sense that the flying

time of the particles is much lower than the time interval ∆ t.

Under this assumption, we concentrate the launching of all

the particles at the mid time of the interval, namely t0
p = t,

for p = 1,2, . . . ,N.

Given the level-set parametrization Φ(x) = 0 of the in-

terface between the earth and the air, we then calculate the

point and velocity of impact of each particle with the inter-

face as the first time t i
p (after t0

p) when the particle verifies

Φ(xp(t
i
p)) = 0, that is















t i
p = mint>t0

p

{

argΦ(xp(t)) = 0
}

xi
p = xp(t

i
p) = x0

p +v0
p(t

i
p − t0

p)+g
(t i

p−t0
p)2

2

vi
p = vp(t

i
p) = v0

p +g(t i
p − t0

p)

. (6)

When using a FE approach for the representation of the level-

set function, as described in section 3, finding xi
p and vi

p re-

duces to finding the intersection of the parabolic trajectory

of the particle p with the polygonal interface described by

the FE approximation to Φ(x) (this polygonal interface cor-

responds to linear elements, and is replaced by a piecewise

quadratic curve for elements of degree two). In the general

case, this intersection can be located very easily by simply

sampling the level set function along the 1D, curved, trajec-

tories of the particles, and detecting the first change of sign.

We then choose to model the erosion by taking the nor-

mal velocity of the interface as proportional to an averaged

normal impacting momentum. Thus, in order to assess this

normal velocity, at a given point x of the interface, and at

time t, vn(x, t), we consider the particles impacting during a

short time interval ∆ t a small surface (segment in 2D) dSx

with normal n, centered around x. The average is taken as:

vn(x, t) =
V0

dS∆ t
∑
P

n ·vi
pmp, (7)

where P is the set of particles that hit the interface on sur-

face dSx and in the time span [t −∆ t/2, t + ∆ t/2], that is

P = {p | xi
p ∈ dSx, t

i
p ∈ [t −∆ t/2, t + ∆ t/2]}, V0 is a pa-

rameter that depends on the cohesion of the material, and

dS = |dSx| is the measure of the surface dSx. If one addi-

tionally supposes that all the particles have the same mass

m = ρwQ(t)∆ t/N, where Q(t) is the flow of water coming

out of the jet at time t, this equation simplifies to

vn(x, t) =
ρwV0Q(t)

NdS
∑
P

n ·vi
p. (8)

This formulation is well adapted to a Monte Carlo resolution

because the number N of particles of water in which the jet

has been separated appears explicitely.

2.4 Erosion due to a flow

For this second model problem, we consider water flowing

through a water-filled cavity and a soil. The flow of water

is modeled using Darcy’s law [23], which, together with a

mass balance, specifies the evolution of the hydraulic head

h(x, t) = z + P(x, t)/ρwg, with z the altitude and P(x, t) the

hydraulic pressure,

∇ · (K(x, t)∇h(x, t)) = 0, (9)

The permeability K(x) describes how easily the water flows

through the medium. Note that we consider here a quasi-

static problem, so that we neglected a possible influence of

∂h/∂ t. However, it would be possible to include dynamic

effects through the inclusion of a time derivative term [24].

The two domains of our problem, namely the soil and the

cavity, are modeled using two different permeability values

{

K(x ∈ Ωs, t) = K(x ∈ Ωs) = Ks

K(x ∈ Ωc, t) = K(x ∈ Ωc) = 1000Ks

, (10)

where Ωs and Ωc are respectively the domain occupied by

the soil and the water-filled cavity, such that Ωs ∪Ωc = Ω .

Note that we suppose that the permeability coefficients do

not explicitly depend on the time variable. However, as the

definitions of the domains Ωs and Ωc does, then the value of

the permeability fields in a given point in space will change

with time.

In practice, this equation is solved using a FE method.

Other methods, in particular the eXtended FE (XFE) method

combined with the level-set representation of the interface

for the discretization in space, could have been used to in-

crease the accuracy of the approximation (see section 3.3 for

more details).

We now describe two models of flow erosion, designed

respectively for flows parallel and normal to the surface that

is being eroded. In the literature, the former type of model

appears much more often, due to its importance in the cre-

ation of gullies and rills, which is an important issue for agri-

culture in particular (see [25] for a general review). Models

dealing with the erosion of a surface under a normal flow are

more scarce, and related to problems of the oil industry [26,

27].

Starting with models for perpendicular flows, the most

widely used describes the rate of erosion per surface area

ε̇ (sometimes denoted Dc) as proportional to the hydraulic

shear stress τ [25]:

ε̇ = Kc(|τ|− τcr), (11)

where Kc is the coefficient of erosion (with values ranging

from 10−1 to 10−6 s.m−1 [20]) and τcr is a critical shear

stress (with values ranging from 6 to 160 N.m−2 [21]), both

material-dependent. Other models replace the shear stress
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by the stream power as the controlling parameter but experi-

mental evidence seems to indicate that the shear force model

is appropriate, both for laboratory and in situ cases [28].

More refined models try to include the influence of the sed-

iments detached from the soil (see for example [29,19]), or

consider probabilistic models for the erosion factors [30],

however it remains unclear whether the alternatives they pro-

vide are truly required with respect to the simpler model of

Eq. (11). Following [20,25], an approximation can be used

to derive the hydraulic shear stress as a function of the gra-

dient of the hydraulic head,

τ = ρwgℓ0∇h(x, t), (12)

where ℓ0 = 1 m in 2D problems. This finally leads to a nor-

mal velocity for the cavity-soil interface

vn(x, t) =
ε̇

ρs

=
Kc

ρs

(ρwgℓ0|∇h(x, t)|− τcr) , (13)

where ρs is the density of the soil material.

In the case of an erosion taking place along the axis of

the flow, it is not reasonable to use the shear stress as a con-

trolling parameter for erosion. Following [26], and simplify-

ing the model described there because we are only interested

in the erosion at the interface between the cavity and the soil,

we get a linear relation between the rate of erosion per sur-

face area and the norm of the Darcy flow qn = Ks∇h, which

leads to

vn(x, t) =
ε̇

ρs

= λ |∇h|, (14)

where λ is a proportionality coefficient, that would have to

be determined experimentally. If we neglect τcr in Eq. (13),

then the two equations for the normal velocity have the same

form (although derived for different directions), but with dif-

ferent proportionality coefficients a priori. As the real flow

going through an interface is probably in between that of a

normal incidence and grazing incidence, we will consider in

all cases a model for the normal velocity as in Eq. (14), with

the additional hypothesis that the proportionality coefficient

is the same for all incidences. A more refined model would

require the identification of the coefficient as a function of

the angle of incidence.

3 NUMERICAL ISSUES

In this section, we discuss several numerical points that arise

when dealing with level-set methods. In particular, the sec-

tions 3.1 and 3.2 describe the important issues of, respec-

tively, the influence of the size of the mesh on the represen-

tation of the interface, and the requirement of regular renor-

malization of the distance function.

3.1 Numerical description of the level-set

To this point, the level-set function Φ(x) was defined as a

general field. However, in practice, the level-set function is

represented as a FE approximation over a mesh, and de-

scribed by the nodal values of Φ . This means that the posi-

tion of the interface Φ = 0 is never explicitly stored. Rather,

it is recovered, when necessary, by interpolation of the val-

ues of Φ(xn) at the nodes xn of the mesh. When using linear

finite elements, the interface is therefore approximated in-

side each element it crosses by a straight line. Hence, strong

curvatures of the interface may be smoothed out if a coarse

mesh is used.

Note that this representation is totally independent of

any FE scheme that might be used for the computation of the

normal velocity that appears in the Hamilton-Jacobi equa-

tion. In particular, when using the model for the erosion by a

flow of water (section 2.4), it is possible to use two different

meshes: one for the computation of the normal velocity, and

one for representing the level-set function. In that case, it is

usually interesting to use a mesh much more refined for the

representation of the level-set than for the resolution of the

flow problem required to compute the front velocity. Due

to the explicit character of the method introduced in sec-

tion 3.2, the additional cost of the level-set transport associ-

ated with the mesh refinement is not significant. Moreover,

the refined mesh can easily be obtained from a coarse one

because there is no requirement of shape for the elements.

As they are not used for integration purposes, they can be as

deformed as required by the needs of the representation of

the curvature.

However, in practice, when a FE scheme is used for the

computation of the normal velocity, the two meshes are of-

ten taken as the same. This is mainly dictated by the sim-

plicity of the numerical implementation, and this skips an

interpolation step that would be otherwise necessary to pass

the information about the position of the interface from one

mesh to the other. Note that, when using only one FE mesh,

one should pay attention to the fact that the size of the el-

ements of the mesh should be small enough with respect

to the smoothness of both the interface and the FE solution

that is being computed (the hydraulic head in the case of the

erosion by a flow). Note, also, that this technique was not

implemented in the examples of section 4, because the mesh

used for the resolution of Darcy’s equation was fine enough

for the representation of the curvature of the interface.

3.2 Transporting the level set: solving the Hamilton-Jacobi

equation

Once vn(x j, t) is obtained from the models discussed in sec-

tions 2.3 and 2.4, the interface has to be updated solving the

Hamilton-Jacobi equation (4). Recall that this is a nonlinear
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hyperbolic advection problem. A summarized description of

the general numerical approaches to tackle this problem us-

ing FE may be found in [31], and ad-hoc strategies for the

particular case of Hamilton-Jacobi are discussed in detail

in [6]. The latter are based on upwind schemes for regular

grids. Here, we present a new technique keeping the upwind

approach in a general FE context. It is usable with unstruc-

tured meshes and allows the use of adaptivity techniques.

First, the Hamilton-Jacobi equation (4) is discretized along

the time dimension using a first-order forward Finite Differ-

ence method. We consider that the level-set function at one

point tℓ of the time grid, Φℓ = Φ(x, tℓ), is known, and we

look for the value of Φ at the next point in the grid, tℓ+1.

Thus, the Hamilton-Jacobi equation is approximated at the

time t in the span [tℓ, tℓ+1] as

Φℓ+1 −Φℓ

∆ t
+ vn(x, t)|∇Φ(x, t)| = 0, (15)

where ∆ t = tℓ+1 − tℓ. Hence, selecting the sampling time t

equal to tℓ (forward Euler type explicit scheme), the semi-

discretized Hamilton-Jacobi equation reads

Φℓ+1 = Φℓ − vn(x, tℓ)∆ t|∇Φℓ|, (16)

and Φℓ+1 can be solved for, given vn(x, tℓ) and Φℓ.

As previously mentioned, the space discretization strat-

egy is adapted to exploit the information contained in the FE

description of Φ . We are not using however a standard FE

approach, in the sense that the evolution of the nodal values

of Φ is computed independently, in a node-by-node basis.

This results in an explicit low-cost algorithm. In this paper,

we use linear FE interpolation functions, so that |∇Φℓ| is

not defined at the nodes of the mesh, but rather on each

element of that mesh. Therefore, the values at the nodes

|∇Φ | j,ℓ = |∇Φ |(x j, tℓ) are approximated by least-square fit-

ting over the elements surrounding the node x j. It is worth

noting that the least squares fitting strategy is a very flexible

tool. For instance, it allows introducing the upwind by sim-

ply increasing the weight of the elements located upstream

from the point of interest. This is an attractive feature of

the methodology because as pointed out by many authors

[6], upwinding is required to stabilize the transport schemes

in the presence of sharp fronts. In the application examples

we include in the next section, however, the solutions are

pretty stable and upwinding did not introduce any significant

improvement. The discretized form of the Hamilton-Jacobi

equation is then

Φ j,ℓ+1 = Φ j,ℓ − vn(x j, tℓ)∆ t|∇Φ | j,ℓ, (17)

Note that, following the remark of the previous section, it

might be very interesting here to use a mesh for the repre-

sentation of the level-set function independent from the one

used to compute the normal velocity field. This new mesh

could be structured and therefore allow for the use of FD

schemes for the discretization along the space dimension.

This may provide for substantial savings of computational

power.

The derivation of the Hamilton-Jacobi equation stems

from two basic hypotheses: (1) the space points for which

the equation is defined are along the interface Φ = 0, and

(2) the level-set function is a distance function. This means

that the Hamilton-Jacobi equation should not be solved on

the entire domain but rather only close to the interface. In-

deed, by solving it on the entire domain, there is no certainty

that the level-set obtained would remain a distance function

to the interface. This is particularly critical when the con-

trolling parameters on the two sides of the interface are very

different (in this paper, the ratio of permeability coefficients

is 1000). After having moved the interface (by modifying

the value at the nodes close to that interface), the value of the

level-set function at all other nodes should therefore be ob-

tained through the actual computation of the distance func-

tion. Note that this is a computationally involved step for

which specific methods can be implemented [32,33]. Note

also that some authors [9,34] have devised iterative algo-

rithms to solve the Hamilton-Jacobi equation on the entire

domain, with the added objective of obtaining directly a dis-

tance function for the solution.

3.3 FEM or XFEM

Recently, level-set descriptions for interfaces have been used

extensively in the context of XFE methods [13,22,35,36].

These methods build on the parameterization of the level-set

to enrich the FE basis using functions that contain informa-

tion on the interface. When the computation of the normal

velocity appearing in the Hamilton-Jacobi equation (17) is

performed using a FE method (for example in the case of the

erosion by a flow), these approaches can be used straightfor-

wardly. Indeed, as the level set function is already defined

for the Hamilton-Jacobi equation, it may be re-used, with

no additional cost, for the introduction of the XFE method.

Intuitively, the enriched XFE solution would increase the ac-

curacy of the numerical solution of the Darcy equation (9),

and hence of the approximation of the normal velocity. How-

ever, one must be careful that we are interested here in the

gradients of the hydraulic head, rather than in the hydraulic

head itself, and the use of the XFE method does not nec-

essarily induce better gradients. In the cases considered in

section 4, the use of a XFE method did not seem to improve

substantially the results, so that we only present results us-

ing the classical FE method. Some leads on the subject of

accuracy of the XFE method can be found in [37,38]. In any

case, this XFE method is used only for the computation of

the normal velocity, which, as stated earlier, is secondary to

the technique described in this paper.
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4 APPLICATIONS

In this section, we will present two applications: one that

aims at showing the accuracy of the level-set representation,

and the other one at illustrating the flexibility of the level-

set method for incorporating different physical models in

a common framework. The latter application provided the

original motivation for this work. In the former application,

modeling the piping phenomenon, level-set methods have

never been applied before, to the knowledge of the authors.

4.1 Methodology

The general methodology used for both applications is the

following:

1. Set the initial level-set function Φ(xi, t0) for all nodes xi

of the mesh

2. At each time step tn = t0 +n∆ t

(a) Compute the value of the normal velocity vn(xi, tn)

for all nodes xi, using one of the two available mod-

els, that is Eq. (8) or Eq. (14).

(b) Solve the discretized Hamilton-Jacobi equation (17)

and get Φ(xi, tn) for all nodes xi

(c) Reshape the level-set function Φ(xi, tn) as a distance

function from Φ(x, tn) = 0 (see section 3.2)

4.2 Modeling of the piping effect

The level-set parameterization is applied to try to represent

the piping phenomenon. This physical process takes place in

dams, levees and dykes, and is responsible for a large num-

ber of their failures. The control of this phenomenon is be-

coming increasingly important, in particular in the context

of global heating and the subsequent droughts and floods

that accompany it. The piping denotes the expansion of a

small canal within a block of soil, under the eroding action

of the water flowing through it.

Several authors investigated this phenomenon, starting

with the leading works of Bligh [39] and Lane [40], often

concentrating on the construction of global indicators of the

occurence of piping [41,42]. Recent papers try to propose

refined analyses, by modeling more accurately the transport

of the eroded sediments and the flow of water [19,43,44].

These works are encouraging as they provide a means to

reproduce extremely well experimental data [20,21]. How-

ever, as they are semi-analytical, they are limited in the type

of problems they can address. In particular, they require the

section of the pipe to be circular and the flow to be axisym-

metrical. The use of level-set methods would allow to gen-

eralize this type of approach to more complicated and real-

istic situations. Further, experimental means of detecting in

Ωc

Ωs

Fig. 2 Modeling of the piping phenomenon: a small channel Ωc in a

mass of soil Ωs opens up under the eroding action of the water flowing

from the right to the left.

situ the occurrence of piping are being developed. For ex-

ample, in [45], the authors describe the use of an electrical

probe that measures the conductivity of a mass of soil and

can assess the presence of a water-filled cavity by solving an

inverse problem. However, as the authors themselves state,

the resolution of that inverse problem may be strongly influ-

enced by the geometry of the sample. The level-set parame-

terization of the cavity may also help in that objective.

We model the piping phenomenon by describing the evo-

lution of a pipe Ωc in a mass of soil Ωs (see figure 2)).

The flow of water through both domains is modeled using

Darcy’s equation, and the expansion of the hole is provoked

by that flow, as in section 2.4 (note that in this first appli-

cation, there is only one model of erosion involved). The

boundary conditions for that problems are










h(x, t) = 1, x ∈ Γright

h(x, t) = 0, x ∈ Γleft

∇h(x, t) = 0, x ∈ Γup ∪Γbottom

, (18)

so that the gradient of hydraulic head between the left and

right sides will create a flow from the right side to the left

side. The size of the domain is 2× 2 m2, and we consider

two different initial channels: the first one with a constant

radius r0 = 20 cm (figure 3(a)) and the other one with a sine

profile of amplitude s = 5 cm and wavelength l = 50 cm

around a cylinder of constant radius r0 (figure 3(d)). The

erosion process takes place as described in section 2.4, with

λ = 10−2 m.s−1 in Eq. (14).

We first present preliminary results, showing the interest

of using the level-set parameterization in the modeling of

the piping effect. In particular, the expansion of the pipe for

the two initial profiles is described in figure 3. The first line

presents the case classically treated in the literature, and for

which experiments are available [20,21]. Using these exper-

iments, the parameters of the erosion models (λ in our case,

but other erosion models could be used) can be identified.

Once the parameters are identified, the model could then be

used for more complicated initial profiles, such as that of

the second line in figure 3. It is important to note that the

extension to other geometries and fully 3D models is not a

complicated task in the context of level-set methods.
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(a) t = 0 s (b) t = 50 s (c) t = 100 s

(d) t = 0 s (e) t = 50 s (f) t = 100 s

Fig. 3 Snapshots at different moments of the piping phenomenon, starting from a linear pipe (upper plots) or a pipe with a sine profile (lower

plots). The black dots in the upper figures indicate the point that is being followed in the numerical test of figure 6

(a) 512 elements, 289 nodes (b) 2048 elements, 1089 nodes (c) 8192 elements, 4225 nodes

Fig. 4 Three different meshes; the black boxes indicate the zoom displayed in figure 5

We now wish to study the influence of the mesh on the

representation of the level-set and on the results obtained.

We therefore consider three different meshes, plotted in fig-

ure 4, and study, firstly, the influence of the refinement on

the shape of the interface, and, secondly, the influence of the

refinement on its evolution.

Starting from the sine profile, we therefore study how

the interface is described in time, depending on the mesh

that is being used. In figure 5, a zoom on that profile is pre-

sented at an intermediate time between figures 3(d) and 3(e)

(t = 20 s, when the shape is not flat yet, but the evolution is

already visible). On the one hand, it can be observed that, for

the cruder mesh, the interface is slightly higher than for the

two other meshes. Also, there seems to be some degree of

asymmetry. On the other hand, the two finer meshes give

representations of the interface that are very similar, and
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Fig. 5 Influence of the mesh on the shape of the interface at t=20 s,

starting from a sine profile: coarse mesh (solid line, figure 4(a)), fine

mesh (dashed line, figure 4(b)), and most refined mesh (dotted line,

figure 4(c)). Only the latter mesh is represented (gray lines). This figure

is a zoom in the black boxes of figure 4

Fig. 6 Influence of the mesh on the resolution of the Hamilton-Jacobi

equation: position of the interface (black dot on figure 3) as a func-

tion of time for a constant velocity vn = 1 m/s, and for three different

meshes: coarse mesh (solid line, figure 4(a)), fine mesh (dashed line,

figure 4(b)), and most refined mesh (dotted line, figure 4(c))

symmetric. It therefore seems that the crude mesh is not fine

enough, but that both the two other meshes are appropriate

for this piping problem.

To go further than these qualitative observations, we then

start from the flat profile, and impose a constant velocity in

the Hamilton-Jacobi equation. This means that there is no

influence of the choice of a given model for the velocity,

and only the resolution of the Hamilton-Jacobi is actually

scrutinized. Physically, we expect to observe a linear open-

ing of the channel Ωc with time. Although we do not repre-

sent it here, the interface indeed remains flat throughout the

computation, and for all meshes. And, in figure 6, we plot

the height of the interface (taken at the left-most position

in the channel, on the bottom, see the black dot in figure 3)

as a function of time. As before, the two finest meshes give

results that perfectly overlap each other, and recover the ex-

pected velocity of vn = 1 m/s (the slope of the curves on fig-

ure 6). The coarsest mesh gives results that are almost good

but slightly different.

Fig. 7 Value of the normalized radius of a pipe as a function of time

computed using the level-set formulation described in this paper (thick

dashed lines), using the analytical formula of [43], or using the exper-

imental data from [20] (for tests MDHET006, WBHET001 and HD-

HET007, respectively in squares, circles and pluses).

Using the more physical model for the velocity of the

interface described in [43], again for the case of piping with

a flat profile, it is also possible to reproduce very accurately

the experimental results obtained in [20] for a wide range

of tests. As an example, in figure 7, the analytical value for

the radius of the pipe is plotted (in solid line), for three dif-

ferent tests (HDHET007, WBHET001, and MDHET006 in

the cited papers) against the experimental values. In dashed

lines, the results obtained with our method, and the applied

velocity described in [43] reproduces both the analytical and

experimental values very accurately. Note that these results

were obtained using the intermediate mesh (figure 4(b)). Over-

all, these results give us confidence in the resolution of the

Hamilton-Jacobi equation, and seem to show a good accu-

racy, even for quite coarse meshes.

4.3 Modeling of a leaking duct

We now consider the expansion of a cavity in the earth un-

der the action of a leak in a water duct. For a given level

of the water table, it is possible to choose between the two

models discussed in sections 2.3 and 2.4. When the water

table is low, the cavity if free of water and the leak may be

represented as a jet of drops of water. When the water table

is higher than the leak, the outgoing water flows in the water

retained within the cavity and the earth. However, the out-

going water evacuates to the ground, and eventually affects

the level of the water table. In particular, with clay, the evac-

uation of water is slow and the evolution of the water table

level will have to be taken into account. A scheme of the

problem is presented in figure 8, and additional hypotheses

are set in the following paragraphs.
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D
ep

th
 (

z)

Ωs

0

cΩ
Groundwater Table Level

Fig. 8 Modeling of a leaking duct: a cavity Ωc within a soil Ωs, with no

outgoing flux on the left, right and upper sides, two ducts (the dashed

holes), one of which leaking (at the location of the star), and a rising

water table (dashed line and light grey shade)

Geometry and boundary conditions The problem is mod-

eled in 2 dimensions as a rectangle of dimensions 1.2×1.2

m2. We suppose that the duct is set below the street level

so that the rectangle is bound on the top by a waterproof

concrete or asphalt cover. Further, the material in the soil is

supposed to be clay, so that the water coming out from the

leak cannot evacuate easily. We model this by allowing the

water to exit the domain only through the bottom side, and

suppose the left and right sides, at some distance from the

leak, as waterproof. Finally the duct is taken as waterproof,

except in the zone of the leak, where the hydraulic head is

set. More precisely, for the flowing phase (high water table),

we consider the following boundary conditions











∇h(x, t) = 0, x ∈ Γleft ∪Γup ∪Γright ∪ (Γduct\Γleak)

h(x, t) = h0, x ∈ Γleak

h(x, t) = h∞, x ∈ Γbottom

. (19)

For the impacting phase (low water table), we only consider

the erosion phenomenon at impact, and suppose that the wa-

ter coming out of the jet is evacuated through the bottom

part of the domain with no further erosion.

Modeling of the water table We suppose that the level of

the water table is the same throughout the domain, that is

z(x, t) = z(t). The initial level is taken at some equilibrium

level z(t0) = zref =−1 m. Further, we suppose that the drain-

ing substratum can evacuate a flow of Qe(t) = αS0(z(t)−

zref), where α = 10−3 s−1 is a material constant, related to

the permeability of the soil, and S0 = 1.4 m2 is the hori-

zontal surface at the bottom of the model, through which

the water is evacuated, supposing a unit length in the hid-

den dimension. The evolution of the water table then re-

sults of a balance between the incoming flow from the leak

Fig. 9 Evolution of the level of the water table with time. The black

dot indicates the change of models for the erosion: jet model for low

water table and flow erosion for high water table

Qi(t) = πdi(t)
2v0/4 and the drained flow Qe(t). The diame-

ter of the hole in the duct is taken as a linear function of time,

with di(0) = 0.4 mm, and ∂di/∂ t = 1 mm/day, and v0 = 35

m.s−1 is a constant that depends only on the pressure of

the water in the duct. The balance S0dz = (Qi(t)−Qe(t))dt

leads to a first order differential equation

dz

dt
+αz =

πdi(t)
2

4S0
v0 +αzref, (20)

which can be solved, beforehand and explicitly, for any time

t (see figure 9, where the level is limited by the waterproof

layer at z = 0). This model of the water table is therefore

solved independently from the problem of the expansion

of the cavity and is used only for choosing the appropriate

model for the erosion. Note that more complicated models

for the opening of the hole in the duct or the draining flow

could have been chosen with no additional difficulty.

Low water table - Erosion due to the jet of water While the

level of the water table is low enough, the water is projected

directly through the air in the cavity to the walls. Following

section 2.3, we model the jet of water as a set of drops, and

use Eq. (8) for the normal velocity of erosion. Furthermore,

we suppose that the drops of water are each coming out from

a point xp0 = xc + r0ir(θp1) at a velocity vp0 = v0ir(θp2).

The radius r0 of the leaking duct and the outgoing velocity

v0 are supposed constant for all drops of water. The unit vec-

tor ir is the first basis vector in the classical cylindrical sys-

tem centered on xc = [−0.9−0.7] m, the center of the leak-

ing duct, with θp1 and θp2 uniform random variables with

values in [135±di/2r0]
◦ and [135±22.5]◦, respectively. Fi-

nally, in Eq. (8), we take V0 = 10−4 kg−1m2s.
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High water table - Erosion due to a flow When the level

of the water table z(t), controlled by Eq. (20), reaches the

level of the leak, the jet is damped in the pool of water, and

an infiltration process starts. This process is controlled by

Darcy’s equation (9), with permeabilities defined for the soil

and the hollow by Eq. (10) and Ks = 7× 10−8 cm.s−1. As

the interface is moving, the value of the permeability in a

given point depends implicitly on time. The normal velocity

of the interface is controlled by Eq. (14), with a proportion-

ality coefficient λ = 10−2 s−1. The boundary conditions for

the computation of the hydraulic head gradient are those of

Eq. (19). It is reminded that Darcy’s law implies a quasi-

static hypothesis, which means that the groundwater table is

supposed to rise slowly.

Analysis of results Snapshots for the evolution of the cav-

ity in the soil are given in figure 10 at different moments.

The initial position of the cavity is given at the first picture.

In the first three snapshots, the water table (dashed line) is

below the level of the leak so that the erosion happens due

to the projection of the drops of water to the far wall of the

cavity. Hence the cavity is sculpted to the shape of the jet of

water, as indicated by the values taken by the random angles

θp1 and θp2. This shape is particularly well observed in the

snapshot (d), taken just before changing to the other model

of erosion. Note that the shape is not perfectly symmetrical

with respect to the angle 135◦, and this is due to the fact that

the drops of water undergo the action of gravity. As their ve-

locity is really high, the influence of gravity does not show

too much on such a short flight but still skews slightly the

shape of the cavity.

When the water table reaches the level of the leak, a pool

forms at the bottom of the cavity, which damps the jet of wa-

ter coming out of the leak. We then shift to the flow model

of erosion. The value of the hydraulic head is computed us-

ing Darcy’s law and the mass conservation equation (9). The

boundary conditions used here imply that the flow going

out of the leaks tries to evacuate towards the bottom of the

model, and hence creates an important flow - and subsequent

erosion - from the position of the leak towards the bottom of

the model. Therefore the erosion is very small at the fur-

thest part of the cavity (upper left side on the snapshots) and

much larger close to the duct. The results of the computation

confirm the intuitive analysis.

5 CONCLUSIONS

In this paper, a new feature of the level-set representation of

the expansion of a hollow in the ground has been described.

Namely, the flexibility allowed in terms of modeling was ad-

vocated, and backed up by an example where different phys-

ical phenomena influence that expansion depending whether

the soil is saturated or not. To the knowledge of the authors,

this aspect of the level-set representations was not properly

illustrated or stressed previously, and constitutes the main

novelty of this paper.

Further, the application of level-set methods for the rep-

resentation of the piping phenomenon was performed. This

example involves only one model, and allowed to discuss

some aspects related to implementation and numerical accu-

racy of the level-set representation. Also, it is, to the knowl-

edge of the authors, the first application of level-set methods

to the representation of the piping phenomenon, for which it

may have a significant impact.

The erosion models used in the examples are rather crude,

and aimed at showing the possibilities of the approach pre-

sented in the paper. However, it should be emphasized that

the level-set representation can be very easily generalized

to 3D problems and even more complex geometries, so that

more difficult problems are now within reach.
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