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Abstract

In this paper, we present a novel approach that allows to couple a determinis-

tic continuum model with a stochastic continuum one. The coupling strategy

is performed in the Arlequin framework, which is based on a volume coupling

and a partition of the energy. A suitable functional space is chosen for the

weak enforcement of the continuity between the two models. The choice of

this space ensures that the mean of the stochastic solution equals the deter-

ministic solution point-wise, and enforces appropriate boundary conditions

on the stochastic dimension. The proof of the existence of the solution of the

mixed problem is provided. The numerical strategy is also reviewed, in par-

ticular with a view at the Monte Carlo method. Finally, examples show the

interest of the method, and possible strategies for use in adaptive modeling.
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1. Introduction

Classical deterministic models provide global predictions that are satis-

factory for many industrial applications. However, when one is interested in

a very localized behavior or quantity, or when multiscale phenomena come

into play, these models may not be sufficient. For instance, the limited het-

erogeneity of a material modeled as a continuum might have no influence

on its behavior on a large scale, while the study of a local stress intensity

factor would strongly depend on the local heterogeneity of the mechanical

parameters. Unfortunately, for these problems, the information necessary

to parameterize the relevant, very complex, models is usually not available.

Stochastic methods have therefore been proposed and now appear unavoid-

able in multiscale modeling.

Although the use of stochastic models and methods has expanded rapidly

in the last decades, the related numerical costs are still often prohibitive.

Hence, the application of these methods in a complex or industrial context

remains limited. An important field of research is therefore concerned with

the reduction of the costs associated with the use of stochastic methods,

for example by using iterative methods specially adapted to the structure

of the matrices arising in the Stochastic Finite Element (FE) method [1,

2], using reduced bases for the representation of random fields [3], or using

special domain decomposition techniques for parallel resolution on clusters

of computers [4].

The present paper proposes an alternative to these purely mathemati-

cal/numerical approaches through the coupling of two models: one deter-

ministic and one stochastic. The general goal is that of modeling a global
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problem in a mean or homogeneous way where it yields sufficient accuracy,

while retaining a stochastic model where needed. Hence, additional com-

plexity is added in the model only where required, and the general approach

is both more elegant and numerically cheaper than a global all-over stochas-

tic model would be. Further, the cuts on computational costs mean that

industrial applications come within reach.

The core idea for this paper, which is the choice of the operator and

functional space for the coupling (Section 3.2) was proposed originally in [5].

It is here further described, in particular by adding the proof of existence and

uniqueness of a solution for the mixed problem (Theorem 3.1), and showing

how a Monte Carlo approach can be considered for the resolution of that

problem (Section 3.4.2).

This work is closely related to two previous works in the literature [6, 7].

However, in [6], the theoretical basis, which is different from the Arlequin

formulation, is less general. In particular, it is only aimed at coupling a

deterministic Boundary Element method with a stochastic FE method. In

the recent work [7], the authors aim at coupling two stochastic models, one

continuous, and one atomistic. However, many theoretical questions are left

out. In particular, the coupling is performed between realizations of the

stochastic operators, while we try to describe here the coupling at the level

of the stochastic operators.

In the first part of this paper, we will present each of the two models that

will be used: a deterministic continuum model with constant parameters (the

”classical” one), and its stochastic counterpart, where the parameter varies

randomly in space and is modeled as a random field. This first section will
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be concluded by a brief review of the uses and limitations of each of these

models, taken separately, and the interest of using coupling approaches. The

second part will describe the main novelty of the paper, that is the description

of a general coupling approach for the two models described above, in the

Arlequin framework [14, 15]. Finally, applications in 1D and 2D will show

the efficiency and interest of the method. In particular, a first hint at the

use of this approach in the context of adaptivity will be described.

2. Description of the two mono-models

In this section, we describe the two models that will be considered in this

paper: a continuum scalar mechanics model, with deterministic coefficients,

and the same type of model with stochastic coefficients. Some indications

will also be given concerning the uses and limitations of each of these two

models in physical applications. The two models that are described in this

section will be referred to as mono-models, in opposition to the coupled model

that will be considered in the next section. In the section of applications,

we will compare extensively the solutions obtained using the coupled model

with those obtained with each of the two mono-models.

2.1. The deterministic continuum mono-model

Let us consider a domain Ω of Rd, with outgoing normal vector n and

smooth boundary ∂Ω, separated into Dirichlet and Neumann boundaries ΓD

and ΓN , such that ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅, and ΓD 6= ∅ (figure 1,

left). We consider Poisson’s equation, with a deterministic scalar parameter

K > 0, considered here constant, a bulk loading field f(x), defined on Ω,

and a surface loading field gn(x), defined on ΓN . Supposing for notational
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Figure 1: Description of the two mono-models: deterministic mono-model with constant

coefficient K (left) and stochastic mono-model with heterogeneous coefficient K(x) (right)

simplicity that the Dirichlet boundary condition is homogeneous, the weak

formulation for this problem reads: find u ∈ V such that

a(u, v) = ℓ(v), ∀v ∈ V , (1)

where a : V × V → R and ℓ : V → R are defined, respectively, by a(u, v) =
∫

Ω
K∇u · ∇v dx, and ℓ(v) =

∫

Ω
fvdx+

∫

ΓN

gnvdx, and

V = {v ∈ H1(Ω), v|ΓD
= 0}. (2)

Endowed with the inner product (u, v)V =
∫

Ω
∇u · ∇v dx, and associated

norm ‖u‖2V =
∫

Ω
|∇u|2 dx, V is a Hilbert space. The problem (1) can be

shown to have a unique solution u, for instance using Lax-Milgram theo-

rem [8, chapter 2]. This unique solution can be approximated, for example,

by the Finite Element method.

2.2. The stochastic continuum mono-model

Let us now consider the same domain Ω, but this time with a random

fluctuating mechanical parameter. Let us model this parameter by a random
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field K ∈ L2(Θ, L∞(Ω)), where (Θ,F , P ) is a complete probability space,

with Θ a set of outcomes, F a σ-algebra of events of Θ, and P : F → [0, 1]

a probability measure. We additionally assume (as in [9] for example) that

this field is bounded and uniformly coercive, that is to say ∃Kmin, Kmax ∈
(0,+∞), such that

0 < Kmin ≤ K(x) ≤ Kmax <∞, ∀x ∈ Ω, almost surely. (3)

The weak formulation of the corresponding stochastic boundary value

problem reads: find u ∈ W such that

A(u,v) = L(v), ∀v ∈ W (4)

where A : W × W → R and L : W → R are defined, respectively, by

A(u,v) = E
[∫

Ω
K∇u · ∇v dx

]

, and L(v) =
∫

Ω
f E[v] dx +

∫

ΓN

gnE[v] dx,

E[·] =
∫

Θ
· dP denotes the mathematical expectation,

W = L2(Θ,V), (5)

and V is defined in Eq. (2). Endowed with the inner product (u,v)W =

E [(u,v)V ] = E
[∫

Ω
∇u · ∇v dx

]

, and associated norm ‖u‖2W = E [‖u‖2V ] =
E
[∫

Ω
|∇u|2 dx

]

, W is a Hilbert space.

As in the previous case, using Lax-Milgram theorem, it can be proved that

this problem has a unique solution u (see for instance [9]). An approximation

of that solution can then be obtained, for example, by using a Stochastic FE

method [10, 11] or a Monte Carlo approach [12].

Remark 2.1. We assume here that the loads f and g are deterministic but

this should not be seen as a restriction of the method. In particular, the
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mixed formulation of the next section and its numerical approximation can

be developed with both the parameter K(x) and the loads modeled as random

fields.

Remark 2.2. The existence and uniqueness of the solution of the above

stochastic boundary value problem can also be proved with less constraining

boundary conditions. In particular, the case when

W =

{

L2
(

Θ,H1(Ω)
)

; E[v] = 0, ∀x ∈ ΓD;

∫

ΓD

vdx = 0, a.s.

}

(6)

still works. The homogeneous boundary condition is therefore not imposed

anymore almost surely and almost everywhere. Rather, the space average

of the displacement over the Dirichlet boundary cancels almost surely. This

type of boundary condition is similar to what is done within the Arlequin

framework in section 3.2.

2.3. Use of the mono-models and interest of coupling approaches

The mono-model described in section 2.1 is interesting when the mate-

rial is considered on a scale at which homogenization can take place. This

statement is intrinsically linked to the quantities of interest that we aim to

evaluate. In particular, the estimation of the average displacement over a

given area might be well evaluated using such a homogenized mono-model.

On the other hand, considering local quantities with this mono-model is

not adequate. For example, following the path of the tip of a fracture can

probably not be performed using this model. As a general pattern, the deter-

ministic mono-model of section 2.1 will be appropriate for the evaluation of

average quantities in macro-scale problems. In that setting, the FE method
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can be very efficiently implemented and yields accurate results for a relatively

low cost.

The stochastic mono-model tries to take into account, to some extent,

the inherent heterogeneity of the material, without falling into the pits of

• really modeling the material at a smaller scale, by considering a fully

different physical setting, e.g. polycrystalline mechanics;

• having to identify the exact value of the parameter field in each point in

space, which, in a fully heterogeneous setting, would result in a infinite

number of scalar parameters to be identified.

By introducing a stochastic field for the parameter, we consider a random

heterogeneous field that is parameterized only by a few quantities (typically,

the mean, the autocorrelation, and the correlation length) and takes into

account a possible uncertainty related to the identification of the parameter

field. This approach is much richer than the previous homogeneous one, but

at the cost of a more expensive solution process. Roughly speaking, we have

added one dimension to the size of the problem.

Often, the solution of the refined model is too expensive, while the details

provided by the coarse model are not sufficient. Hence, we propose in the

next section a coupled approach, for which both models are considered, each

on a different (and overlapping) part of the total domain. Note that this

requires that each of the models be appropriate where it expresses itself.

In particular, this means that only local features of the refined model are

required for a good evaluation of the global solution (see the applications in

section 4 for more details).
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Remark 2.3. The Arlequin method was originally designed to perform the

coupling of different physical models (e.g. shell and 3D continuum [13], con-

tinuum and atomistic [7], ...). Hence the generalization of the approach pre-

sented in this paper for continuum-continuum coupling to different types of

physical models, for which one of the two is stochastic, is not expected to

yield any additional difficulty. Other examples of coupling will be presented

in forthcoming papers.

3. A general deterministic-stochastic coupling approach

In this section, we describe the construction of the coupled model, includ-

ing features of the deterministic continuum mono-model on part of the do-

main, and features of the stochastic continuum mono-model on another one.

As this construction is performed in the Arlequin framework [14, 15, 13, 16],

we first recall this method on a more classical deterministic-deterministic

continuum model. Then, the stochastic-deterministic case, which is the core

of this paper, is described.

3.1. The Arlequin method for coupling two deterministic continuum models

Let us introduce two overlapping subdomains of the domain Ω: Ω1, on

which the first model will express itself, and Ω2, for the second model. We

further select a subdomain Ωc of the overlap Ω1 ∩ Ω2 over which the two

models will communicate. The parts over which only one model is described

and the part of the overlap over which no communication takes place (Ω1 ∪
Ω2)\Ωc will be called free, in the sense that each model expresses itself with

no constraint there.
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1 c
2

Figure 2: Definition of the different subdomains, with emphasis on the coupling area Ωc

on which both models express themselves.

We consider here the case where the two models are deterministic and

similar. This is useful in the context of mesh refinement, as the two models

are the same but are not discretized similarly [14, 15, 13]. Hence, a coarse

finite element basis (supported by a coarse mesh) will be used on Ω1 to ac-

count for large scale deformations and stresses, and a refined one (supported

on a fine mesh) will be used on Ω2 to reproduce more accurately some local

effects of interest.

The Arlequin method allows to couple these two models through the

resolution of the following mixed problem: find (u1, u2,Φ) ∈ V1 × V2 × Vc

such that


























a1(u1, v) + C(Φ, v) = ℓ1(v), ∀v ∈ V1

a2(u2, v)− C(Φ, v) = ℓ2(v), ∀v ∈ V2

C(Ψ, u1 − u2) = 0, ∀Ψ ∈ Vc

, (7)

where the bilinear forms a1 : V1 × V1 → R, a2 : V2 × V2 → R and C :

Vc × Vc → R are defined, respectively, by a1(u, v) =
∫

Ω
α1K∇u · ∇v dx,
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a2(u, v) =
∫

Ω2

α2K∇u · ∇v dx, and

C(u, v) =

∫

Ωc

(κ0uv + κ1∇u · ∇v) dx, (8)

with κ0 and κ1 two constants (see for example [13] for details), the linear

forms ℓ1 : V1 → R and ℓ2 : V2 → R and defined, respectively, by ℓ1(v) =
∫

Ω1

α1fvdx+
∫

ΓN

α1gnvdx and ℓ2(v) =
∫

Ω2

α2fvdx+
∫

ΓN

α2gnvdx, the weights

are chosen such that (see figure 3)



























α1, α2 ≥ 0 in Ω1 ∪ Ω2

α1 + α2 = 1 in Ω1 ∪ Ω2

α1, α2 constant in (Ω1 ∪ Ω2)\Ωc

, (9)

and the functional spaces are V1 = {v ∈ H1(Ω1), v|ΓD
= 0}, V2 = {v ∈

H1(Ω2)} and Vc = {v ∈ H1(Ωc)}.

1

0 α

α

1

2

Ω
Ω Ω

1
c

2

Figure 3: Example of definition of the functions α1 and α2 in the case when Ω2 is not

embedded in Ω1, as a function of the position, in 1D.

With reasonable assumptions (in particular, that Ωc 6= ∅), the Arlequin

system (7) can be shown to have a unique solution [15]. This solution can

be approximated by the Finite Element method.
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Remark 3.1. For notational simplicity, this has been derived in the case

where the patch Ω2 is totally included inside the domain Ω. In particular, the

patch does not intersect the Dirichlet boundary condition, i.e. ∂Ω2 ∩ΓD = ∅.
More general results can be obtained [16].

3.2. The Arlequin method for deterministic-stochastic coupling

We now wish to superpose, in the Arlequin framework, the following

two models: a deterministic continuum model (as in Sec. 2.1), in Ω1; and

a stochastic continuum model (as in Sec. 2.2), in Ω2. We will therefore

consider two models of the parameter field: a deterministic one, K, assumed

(for simplicity) constant on the domain Ω1; and a stochastic one, K(x),

modeled as a random field on Ω2. We further assume that K verifies on

Ω2 conditions similar to the ones described in Sec. 2.2 on Ω. Finally, for

the coupling approach to make sense, the two models should correspond one

to the other, through homogenization [18]. In particular, in 1D, one should

have K = E[K−1]−1.

The stochastic-deterministic Arlequin problem reads: find (u1,u2,Φ) ∈
V1 ×W2 ×Wc such that



























a1(u1, v) + C(Φ, v) = ℓ1(v), ∀v ∈ V1

A2(u2,v)− C(Φ,v) = L2(v), ∀v ∈ W2

C(Ψ, u1 − u2) = 0, ∀Ψ ∈ Wc

, (10)

where the bilinear forms a1 : V1 × V1 → R, A2 : W2 × W2 → R, and

C : Wc ×Wc → R are defined by

a1(u, v) =

∫

Ω1

α1K∇u · ∇v dx, (11)
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A2(u,v) = E

[
∫

Ω2

α2K ∇u · ∇v dx

]

, (12)

and

C(u,v) = E

[
∫

Ωc

(κ0uv + κ1∇u · ∇v) dx

]

, (13)

where the linear forms ℓ1 : V1 → R and L2 : W2 → R are defined, respec-

tively, by ℓ1(v) =
∫

Ω1

α1fvdx +
∫

ΓN

α1gnvdx and L2(v) =
∫

Ω2

α2fE[v]dx +
∫

ΓN

α2gnE[v]dx, and the functional spaces W2 and Wc are given by

W2 = L2(Θ,V2), (14)

and

Wc =

{

ψ(x) + θIc(x)|ψ ∈ Vc,

∫

Ωc

ψdx = 0,θ ∈ L2(Θ,R)

}

, (15)

with V2 = H1(Ω2) and Vc = H1(Ωc), and where the indicator function I(x)

is such that Ic(x ∈ Ωc) = 1 and Ic(x /∈ Ωc) = 0. The condition imposed

here on ψ is not necessary for the definition of the space Wc. It is however

presented here in view of the redundancy that arises when the discretization

of the corresponding fields is contemplated. Indeed, a deterministic rigid

body mode (here, a constant field) can be described equivalently as (ψ =

0,θ = 1), where θ = 1 is taken as dirac function in the stochastic dimension,

or (ψ = I(x),θ = 0). One could instead use the condition E[θ] = 0, but

this implies a global condition in the stochastic dimension, and is hence not

appropriate for the Monte Carlo solution proposed in section 3.4.2.

Note that the space Wc can be seen as composed of random fields with a

spatially varying mean and perfectly spatially correlated randomness. Thanks

to the specific structure of that space, the last line of the system (10) can be
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written equivalently, ∀Ψ = ψ(x) + θIc(x) ∈ Wc,

0 = C(Ψ, u1 − u2) (16)

= E

[
∫

Ωc

(κ0(ψ + θIc)(u1 − u2) + κ1∇ψ · ∇(u1 − u2)) dx

]

(17)

= C(E [Ψ] , u1 − E [u2]) + κ0E

[

θ

∫

Ωc

(u1 − u2)dx

]

. (18)

Therefore, this condition imposes that the (ensemble) average of the field u2

should be equal to the field u1, in all points of Ωc, and that the variability

of the space average quantity
∫

Ωc
(E [u2]− u2)dx should cancel. In other

words, this means that some degree of homogenization takes place within

the coupling zone. In particular, if that zone is not big enough with respect

to the correlation lengths of the fields K(x) or u2(x), the Arlequin scheme is

expected to yield results that would be different from those obtained with the

stochastic monomodel. It would mean that there is not enough localization

of the variability and stochasticity for the Arlequin scheme to make sense.

Remark 3.2. The indicator function I(x) is a generator of the kernel of the

acoustic operator we are considering here. If we were to consider elasticity,

the definition of the mediator space would be the superposition of a space-

fluctuating average (like here), and six rigid-body movements with random

coefficients.

Theorem 3.1. If the weight functions do not cancel on their respective do-

mains of definition, including the overlapping area (i.e. ∃ α0 > 0 such that

α0 < α1(x) in Ω1 and α0 < α2(x) in Ω2), the problem (10) admits a unique

solution.

Proof. To prove the existence and uniqueness of this system of equations, we
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will follow the theory of Brezzi [19], and more specifically the steps of [14, 15],

where the reader can find more details on a similar proof. To come closer

to the format used in the cited papers, we will rewrite the system as: find

(u,Φ) ∈ V ×Wc such that










A(u,v) + Ĉ(Φ,v) = L(v), ∀v ∈ V

Ĉ(Ψ,u) = 0, ∀Ψ ∈ Wc

, (19)

with V = V1 ×W2, A(u,v) = a1(u1, v1) +A2(u2,v2), with u = (u1,u2) ∈ V
and v = (v1,v2) ∈ V , Ĉ(Φ,u) = C(Φ, u1 −u2), and L(v) = ℓ1(v1) +L2(v2).

To ensure the existence and uniqueness of a solution to this problem, we

must check a property of coercivity of the bilinear form A on the kernel of Ĉ

(with respect to the second argument), and the inf-sup condition on Ĉ (the

continuity of the linear and bilinear forms defined here is trivial).

To check the coercivity of the bilinear form, we construct the sequence

of normalized functions vn = (vn1 ,v
n
2 ) in the kernel NWc

(Ĉ) = {v ∈ V|∀Ψ ∈
Wc, Ĉ(Ψ,v) = 0} (with ‖vn‖ = 1, ∀n > 0) that converges strongly to

v = (v1,v2), with ∇v1 = 0 almost everywhere on Ω1 and ∇v2 = 0 almost

everywhere in Ω2 and almost surely. The former condition, along with the

homogeneous Dirichlet boundary condition in V1 ensures that v1 = 0 almost

everywhere on Ω1. The latter condition implies, by definition of Wc (see

Eq. (15)) and a continuity argument, that v2 ∈ Wc. Because v1 = 0, and

because the rigid body modes for u2 on Ωc are contained in Wc, this implies

Ĉ(u2,u) = −C(u2,u2) = 0, and, since C is a scalar product, u2 = 0

almost everywhere in Ωc and almost surely. The extension to Ω2 comes

again from ∇v2 = 0. Hence, the limiting sequence verifies v = 0, which is in

contradiction with the initial hypotheses, and proves the coercivity of A on

15



NWc
(Ĉ). The key concepts for this part of the proof are the positivity of α1

and α2 on their respective domains of definition, and the fact that the rigid

body modes for u2 on Ωc are contained in Wc.

To prove the inf-sup condition on Ĉ, we recall that, because Wc is in-

cluded inside the restriction of W2 to the space support Ωc, it is possible

to prolongate continuously any element Ψ ∈ Wc into an element Ψ2 ∈ W2.

Then, choosing v = (0,−Ψ2) ∈ V , we have

sup
v∈V,‖v‖V 6=0

Ĉ(Ψ,v)

‖v‖V
≥ C(Ψ,Ψ2)

‖Ψ2‖W2

, (20)

where ‖v‖2V = ‖v1‖2V1
+ ‖v2‖2W2

, ‖v1‖2V1
=

∫

Ω1

v21 + |∇u1|2dx, and ‖v2‖2W2
=

E[
∫

Ω2

v2
2 + |∇v2|2dx]. Using the continuity of the prolongation operator,

∃γ1 > 0, ‖Ψ2‖W2
≤ γ1‖Ψ‖Wc

, where ‖Ψ‖2Wc
= E[

∫

Ωc
Ψ2

2 + |∇Ψ2|2dx]. Fur-

ther, the definition of C (Eq. (13)) gives C(Ψ,Ψ2) ≥ min(κ20, κ
2
1)‖Ψ‖2Wc

,

which yields the desired inf-sup condition, with a positive constant γ:

sup
v∈V,‖v‖V 6=0

Ĉ(Ψ,v)

‖v‖V
≥ γ‖Ψ‖Wc

, (21)

Remark 3.3. At the beginning of this section, we introduced a condition of

compatibility between the deterministic and stochastic models K = E[K−1]−1

(in 1D). However, this condition is not necessary for the mixed problem (10)

to be well-posed. It is only necessary for the results to be meaningful, in the

sense that the two models represent the same physical behavior at different

scales. More precisely, in the classical Arlequin formulation, the weight func-

tions α1 and α2 are requested to be a partition of unity over the coupling

domain, while this is not the case anymore here. What is required is that the

16



homogenization, at any point x in the coupling zone, of α1K + α2K be K.

In 1D in particular, this means K−1 = E[(α1(x)K + α2(x)K(x))−1]. More

details on this and the convergence of the solution of the Arlequin problem to

the solutions of the deterministic and stochastic mono-models will be given

in a forthcoming paper.

3.3. Resolution of the deterministic-stochastic coupled system

In the previous section we presented the mixed problem (10) and proved

that it admits a unique solution. Here, we describe two concurrent methods

to compute this solution: one based on a finite element discretization of both

space and random dimensions over an appropriate tensor functional basis,

and one based on a classical finite element discretization for space, while

the random dimension is treated through a Monte-Carlo approach. As the

discretization in space is treated in the same manner for both approaches,

we begin with this.

3.4. Finite Element discretization in space

We therefore associate to the domain Ω1 a mesh T1, composed of elements

E1, to the domain Ω2 a mesh T2, composed of elements E2, and to the domain

Ωc a mesh Tc, composed of elements Ec. We look for approximate functions

of the elements of V1, V2 and Vc in the functional spaces

VH
1 = {v ∈ P1(E1), v|ΓD

= 0}, (22)

VH
2 = {v ∈ P1(E2)}, (23)

and

VH
c = {v ∈ P1(Ec)}, (24)
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composed of linear functions on each of the elements of the meshes. We then

choose the bases {v1ℓ (x)}1≤ℓ≤m1
, {v2ℓ (x)}1≤ℓ≤m2

, and {vcℓ(x)}1≤ℓ≤mc
for the

functions in VH
1 , VH

2 , and VH
c , respectively. We then introduce the matrices

A1, A2, C1, and C2, with elements

A1,ij =

∫

Ω1

α1K∇v1i · ∇v1j dx, (25)

A2,ij =

∫

Ω2

α2K∇v2i · ∇v2j dx, (26)

C1,ij =

∫

Ωc

(

κ0v
1
i v

c
j + κ1∇v1i · ∇vcj

)

dx, (27)

C2,ij =

∫

Ωc

(

κ0v
2
i v

c
j + κ1∇v2i · ∇vcj

)

dx, (28)

and the vectors S1, S2, and Sc, with elements

S1,i =

∫

Ωc

v1i dx, (29)

S2,i =

∫

Ωc

v2i dx, (30)

Sc,i =

∫

Ωc

vci dx. (31)

The mixed system (10) can now be written, after space discretization

only:

E













































A1 0 C1 κ0S1 0

0 A2 −C2 −κ0S2 0

CT
1 −CT

2 0 0 ST
c

κ0S
T
1 −κ0ST

2 0 0 0

0 0 Sc 0 0













































U1

U2

Ψ

θ

Λ













































=























F1

F2

0

0

0























, (32)

where the coordinates of the vectors F1 and F2 are given by F1,i = ℓ1(v
1
i ) and

F2,i = L2(v
2
i ) and U1, U2 and Ψ are the vectors of coordinates of u1, u2, and
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the deterministic part of Φ, in the bases of VH
1 , VH

2 , and VH
c , respectively.

The vector Λ contains the lagrange multipliers used to enforce the condition

in the definition of Wc (15). We emphasize here that only A2, U2 and θ are

random.

3.4.1. Spectral-like approaches

We now discretize the random dimension using some spectral form, such

as a polynomial chaos expansion [10]. In particular, we choose an approxi-

mating space as the span of the polynomial chaos basis of order n and degree

p, {Γ̂ℓ[ξ]}1≤ℓ≤N , in conjunction with the previous bases for the space dimen-

sion. N is the number of elements in the polynomial chaos basis, which

depends both on n and p, ξ is a vector of independent random variables not

necessarily gaussian (see [20]), and the Γ̂ℓ are the corresponding orthogonal

polynomials [20]. We expand the parameter field K, the solution u2 and θ

in these bases, and finally obtain the matrix A2 for the stochastic part of the

mixed system

Ajℓ,JL =
N
∑

i=1

cijJ

∫

Ω2

α2(x)ki(x)∇v2ℓ (x) · ∇v2L(x) dx, (33)

where cijJ = E
[

Γ̂i[ξ]Γ̂j[ξ]Γ̂J [ξ]
]

, ki(x) = E[K(x)Γ̂i(ξ)], as well as the vectors

of coordinates U2 and θ of U2 and θ, respectively. Note that the double

indices (j, ℓ) and (J, L) each correspond to only one index in the matrix form
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of the system. The mixed system (10) can now be written:























A1 0 C1 κ0S1 0

0 A2 −C2 −κ0S2 0

CT
1 −CT

2 0 0 ST
c

κ0S
T
1 −κ0ST

2 0 0 0

0 0 Sc 0 0













































U1

U2

Ψ

θ

Λ























=























F1

F2

0

0

0























. (34)

Although the form of this matrix system is very similar to that of Eq. (32), the

size of the latter is much smaller than the former because A2 is a Nm2×Nm2

matrix whileA2 is am2×m2 matrix, with N often very large. Note also that,

for notational simplicity, we have used the same name F2 for two different

quantities in the two systems. The detail of these quantities is irrelevant

here.

3.4.2. Monte-Carlo approach

We now turn to a discretization of the random dimension based on the

Monte-Carlo approach. The general idea is to note that only A2, U2, and

θ are random in equation (32), and to perform a static condensation of the

large matrix with respect to the two latter quantities.

As the part of the stiffness matrix that should be condensated is not nec-

essarily positive definite, we introduce an additional set of degrees of freedom

β to control the rigid-body modes of the coupling area (see more details in the

literature of domain partitioning, for example [21]). We therefore introduce

B =











0 S1

−CT
2 0

0 0











, (35)
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A∗ =











A1 C1 0

CT
1 0 ST

c

0 Sc 0











−1

, (36)

where the inverse matrix should be understood in the pseudo-inverse sense,

K∗ =





A2 −S2

−ST
2 0



− BTA∗B, (37)

F∗ =





F2

0



− BTA∗











F1

0

0











, (38)

and a matrix R of vectors spanning the null space of A∗ (a vector in acoustics

and a matrix in elasticity).

The condensation of system (32) then leads to:

E















K∗ BTR

RTB 0















U2

θ

β





















=

















F∗

RT











F1

0

0



























. (39)

The system (39) can then be solved by the Monte Carlo method. Re-

alizations of A2 are drawn following the appropriate probability law, and

statistics of the solution vector [UT θ]T can then be evaluated from the cor-

responding realizations. The vector of solutions [UT
1 Ψ Λ]T is finally retrieved

by expansion back to the original system (32).

Remark 3.4. This approach is the one that will be used for the applications

proposed in the next section. However, that should not be seen as a state-

ment by the authors that the Monte-Carlo resolution is more efficient than
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the spectral approach. Indeed the matrix system to be solved by Monte Carlo

is much smaller, but the matrices are non-sparse. Nevertheless, the imple-

mentation of the Monte-Carlo approach is much simpler than the other one,

and was chosen here mainly for that reason. Also it should be noted that

the rates of convergence of both the Monte Carlo and the spectral approaches

are different and dependent and the quantity of interest. Grossly, the Monte

Carlo is expected to provide an accurate estimate of the first few moments of

a quantity of interest for a reasonable cost, while the spectral solution should

be preferred for the estimation of higher moments;

4. Examples of application

Two examples are proposed in this section to illustrate the interest of

the coupling strategy, in terms of efficiency in particular. For the first one

in a mono-dimensional case, we describe the three different possible mod-

eling approaches: deterministic mono-model, stochastic mono-model, and

deterministic-stochastic coupled model, and compare the results obtained.

For a bi-dimensional case, we assume that the stochastic mono-model is not

available, and only the results of the Arlequin method are presented.

4.1. 1D Bar in traction

The first application we describe here is a very simple one that allows a

full investigation of the behavior of the method. We consider a simple bar of

unit length in traction under imposed displacements, with an unit bulk load.

All lengths and stresses are normalized for simplicity.
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4.1.1. Deterministic mono-model

The deterministic mono-model of this bar is controlled by a deterministic

stiffness K = 1. The displacement field u verifies, almost everywhere:

d

dx

(

K
du

dx

)

+ 1 = 0, (40)

with the boundary conditions u(0) = 0 and u(1) = 1. The analytical solution

for the deterministic mono-model is u = x(3− x)/2 and du/dx = 3/2− x.

4.1.2. Stochastic mono-model

The stochastic mono-model is controlled by the stochastic field K(x),

which we choose to model as a uniform field with bounds ln 2 and 2 ln 2

(arithmetic mean E[K] = 3 ln 2/2 ≈ 1.04, geometric mean 1/E[1/K] = 1,

standard deviation σK = ln 2/2
√
3 ≈ 0.20), and exponential correlation with

correlation length Lc = 10−2. This field obviously verifies conditions (3).

Remark 4.1. A uniform random variable with bounds 0 < α < β has arith-

metic mean (β + α)/2, geometric mean ln(β/α)/(β − α), and standard devi-

ation (β − α)/2
√
3.

The stochastic displacement field verifies, almost surely and almost ev-

erywhere:
d

dx

(

K
du

dx

)

+ 1 = 0, (41)

with the boundary conditions u(0) = 0 and u(1) = 1, almost surely. The

solution for the stochastic mono-model is

u(x) =

∫ x

0

K∗ − x′

K(x′)
dx′, (42)
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where K∗ verifies 1 =
∫ 1

0
K

∗−x′

K(x′)
dx′ almost surely, and

du

dx
=

K∗ − x

K(x)
. (43)

With the parameters above, and assuming that K∗ ≈ 1/E[1/K] = 1, almost

surely, (because the correlation length is much smaller than the total length

of the rod, and with some ergodicity assumptions), one gets E[u] = x(3−x)/2
and E[du/dx] = 3/2 − x. The standard deviations σu and σdu/dx and other

statistical quantities can also be evaluated numerically (using Monte Carlo

sampling for example).

In figure 4, we plot the displacements u for the deterministic mono-model,

as well as the mean E[u] and the 90%-confidence interval for u, for the

stochastic mono-model, evaluated using 10000 Monte Carlo trials. In both

cases, u and E[u] are perfectly overlapping. This is due to the fact that

homogenization is indeed taking place and that E[1/K(x)] ≈ 1/K, almost

everywhere.
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Figure 4: Value of the displacement (left figure) and gradient (right figure) for the deter-

ministic mono-model u (solid line), the mean of the stochastic mono-model E[u] (dashed

line, overlapping the solid line) and the 90%-confidence interval for the stochastic mono-

model (grey patch).
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4.1.3. Deterministic-stochastic coupled approach

We now move on to the Arlequin coupling model, for which we choose

a domain Ω1 = [0, 1], a domain Ω2 = [0.3, 0.7], and a coupled zone Ωc =

[0.3, 0.5] ∪ [0.6, 0.7]. The domain Ω1 is discretized using 10 elements of

constant length 0.1. The domain Ω2 is discretized using 4000 elements of

constant length 10−4. The meshes are therefore embedded and no mesh in-

terpolation is required. In the Arlequin formulation, the mediator space Wc

defined by Eq. (15) is chosen here with Vc = V2. The coupled zone is therefore

discretized following the same mesh as that of domain Ω2. The Monte-Carlo

approach was followed, as described in section 3.4.2, and 10000 samples were

used. In this 1D case, the results are obtained almost instantaneously. The

results for u1 (on domain Ω1) and u2 (on domain Ω2, in terms of the mean

and 90%-confidence interval) are plotted in figure 5, and compared to the

results obtained with the stochastic mono-model in figure 6.
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Figure 5: Displacement (left) and gradient of the displacement (right) for the solution of

the Arlequin problem in terms of u1 (solid line), E[u2] (dashed line, overlapping the solid

line over Ω2), and 90%-confidence interval for u2 (grey patch).

It can be observed that the averages of both the displacement and the

gradient, as well as the confidence interval for the gradient compare well on
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Figure 6: Comparison, in terms of displacement (left) and gradient of the displacement

(right), of the Arlequin solution u2 (solid line for the mean and grey patch for the 90%-

confidence interval) and the solution of the stochastic mono-model us (dashed lines for

the mean and the 90%-confidence interval).

the part where the second model expresses itself (that is Ω2\Ωc = [0.5, 0.6]).

However this is not the case for confidence interval of the displacement. To

analyze this, we plot in figure 7 the correlation between the value of the

displacement u at the position x = 0.55 (which is a random variable) with

the values of K at all positions (which is a random field). For this 1D case,

the gradient at x = 0.55 is here a very local quantity (in the sense that it

is not influenced by the variability of K(x) at distant positions), while the

displacement in x = 0.55 is not.

In the same figure 7, we plot the same two correlations but evaluated

based on the Monte-Carlo samples used in the Arlequin model, therefore

only available over Ω2. Except the faster decrease of the correlation for the

displacement, which is due to the influence of the shape function α2 in factor

of K in the integrals of the weak formulation (see equation (12)), they are

perfectly well represented. This seems to indicate that it is possible, only

based on the Arlequin solution, to evaluate the quality of the estimation of
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Figure 7: Value of the correlation between the random field K(x) at all points and the

displacement in position x = 0.55 (left figure) and the gradient in position x = 0.55 (right

figure), for the stochastic mono-model (dashed line) and the Arlequin model (solid line).

the confidence interval for a given quantity of interest by considering the

localization of the correlation of that quantity of interest with the stochastic

data (here K). More specifically, and before further studies, it could be said

that the support of the correlation should be included in the non-coupled

zone of the model (that is Ω2\Ωc = [0.5, 0.6]). Further research is however

needed to refine this idea. It will be discussed in a forthcoming paper.

4.2. 2D sample in traction

We now consider a 2D sample Ω inscribed in the box [−3, 3]× [−1, 1] (see

figure 8). The sample is submitted to an imposed displacement, with no bulk

load. The boundary conditions are u(x = −3, y) = 0, u(x = 3, y) = 1, and

∇u · n = 0 for the other edges, almost surely.

The Arlequin model is used to approximate the solution of the previous

problem by coupling a deterministic model described by a stiffness K = 1

with a stochastic one described by a stochastic stiffness K(x), modeled as

an uniform field with bounds 0.3194 and 2.3027, and exponential correla-
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Figure 8: Geometry of the 2D sample

tion with correlation length Lc = 0.2 in each direction. We choose the

domain Ω1 to cover the entire sample, while the domain Ω2 is given by

Ω2 = Ω ∩ {(x, y)|x ∈ [−1.2, 1.2]}, and a coupled zone Ωc = Ω ∩ {(x, y)|x ∈
[−1.2,−0.6]∪[0.6, 1.2]}. The domain Ω1, described by a deterministic model,

is discretized using 292 elements. The domain Ω2 is discretized using a finer

mesh composed of 6272 elements. The meshes are embedded and no mesh

interpolation is required. As in the previous case, the space support of the

mediator space Wc, defined by Eq. (15) is chosen to overlap the space sup-

port V2. The coupled zone is therefore discretized following the same mesh

as that of domain Ω2. The Monte-Carlo approach was followed, as described

in section 3.4.2, and 10000 samples were used. Note that, even on this simple

example, it is not possible to solve the full fine scale problem, because the

correlation length of the stochastic field is very small and must be larger

than the size of the elements in order that the stochastic realizations be well

sampled. However, by reducing the zone in which randomness is considered,

the stochastic-deterministic Arlequin coupling method allows to overcome

the size limitation.
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The displacement and the gradient are investigated along a line L0 (de-

fined by {(x, y)|y = 0}, see figure 8). The results for u1 (on domain Ω1) and

u2 (on domain Ω2, in terms of the mean and 90%-confidence interval) are

plotted in figure 9.
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Figure 9: Displacement (left) and gradient of the displacement (right) for the solution of

the Arlequin problem in terms of u1 (solid line), E[u2] (dashed line, overlapping the solid

line), and 90%-confidence interval on u2 (grey patch).

As in the previous example, we plot in figure 10 the correlation between

the value of the displacement u at the position defined by the point M of

coordinates (x = 0, y = 0) (which is a random variable) with the values of

K(x) everywhere on the domain (which is a random field). As previously,

Figure 10: Value of the correlation between the random field K(x) in all elements and the

displacement (left figure) and gradient (right figure) at position M = (x = 0, y = 0) for

the Arlequin model.
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we observe that the correlation for the gradient is much more local than that

for the displacement. Here, the solution for the stochastic mono-model is not

available, so that more precise conclusions cannot be drawn, but we expect

the same as before to hold true: the gradient evaluated by the Arlequin

method is a good approximation to the gradient evaluated using the mono-

model solution, while this is not the case for the displacement. It is expected

that the support of the correlation should be included in the free zone of the

model (that is Ω2\Ωc). Further research is however needed in that direction.

5. Conclusions

In this paper, we have presented a method that allows to couple two mod-

els, one stochastic and one deterministic. The presentation, and in particular

the choice of the mediator space, was mainly concentrated on the random

dimension. The ”space” part of the coupling was chosen in a very similar

way as in deterministic-deterministic coupling cases considered previously in

the Arlequin framework. Hence, it is expected that the pattern followed in

this paper can be extended quite straightforwardly to other type of coupling,

and in particular to those for which the two models are different (here both

models were continuum models).

The formulation that is proposed is both elegant, in the sense that the

complexity is localized only where needed, and computationally reasonable,

as this decreasing complexity goes along with a lower numerical cost. Both

the existence and uniqueness of the solution of the mixed problem and nu-

merical considerations for the computation of approximations of that solution

have been considered. Finally, a first attempt to quantify the appropriate-
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ness of the approach for the evaluation of local quantities of interest has been

discussed. This will be completed in a future work by a more general ap-

proach for adaptive simulation within the stochastic-deterministic Arlequin

framework.
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[9] I. Babuška, R. Tempone, G. E. Zouraris, Galerkin finite element aprox-

imations of stochastic elliptic partial differential equations, SIAM J.

Numer. Anal. 42 (2004) 800–825.

[10] R. G. Ghanem, P. D. Spanos, Stochastic finite elements: a spectral

approach, Springer-Verlag, 1991.

[11] G. Stefanou, The stochastic finite element method: past, present and

future, Comp. Meths. Appl. Mech. Engr. 198 (2009) 1031–1051.

32



[12] C. P. Robert, G. Casella, Monte Carlo statistical methods, Springer,

2004.

[13] H. Ben Dhia, G. Rateau, The Arlequin method as a flexible engineering

design tool, Int. J. Numer. Meths. Engr. 62 (2005) 1442–1462.

[14] H. Ben Dhia, Multiscale mechanical problems: the Arlequin method,

Comptes Rendus de l’Académie des Sciences - Series IIB 326 (1998)

899–904.

[15] H. Ben Dhia, G. Rateau, Mathematical analysis of the mixed Arlequin

method, Comptes Rendus Acad. Sci. - Series I - Math. 332 (2001) 649–

654.

[16] H. Ben Dhia, Further insights by theoretical investigations of the multi-

scale Arlequin method, Int. J. Multiscale Comp. Engr. 6 (2008) 215–232.

[17] S. P. Xiao, T. Belytschko, A bridging domain method for coupling

continua with molecular dynamics, Comp. Meths. Appl. Mech. Engr.

193 (2004) 1645–1669.

[18] G. W. Milton, The theory of composites, Cambridge Monographs on

Applied and Computational Mechanics, Cambridge University Press,

2002.

[19] F. Brezzi, On the existence, uniqueness and approximation of

saddle-point problems arising from lagrangian multipliers, Revue

Française d’automatique, informatique, recherche opérationnelle. Anal-

yse numérique 8 (1974) 129–151.

33



[20] C. Soize, R. G. Ghanem, Physical systems with random uncertainties:

chaos representations with arbitrary probability measures, SIAM J. Sci.

Comp. 26 (2004) 395–410.

[21] C. Farhat, F.-X. Roux, A method of finite element tearing and inter-

connecting and its parallel solution algorithm, Int. J. Numer. Meths.

Engr. 32 (1991) 1205–1227.

34


