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Abstract

In this paper, we look at the complexity and redatalnerability characteristics of Smartgrids.
Typical characteristics of complex systems, sucke#fsorganization, emergence, chaotic behavior
and evolution, are considered with respect to Synds as future energy infrastructures. These
characteristics are categorized as inherent, cigdleesponse, or acquired. This guides the
identification of major sources of uncertainty lre tinfrastructure. Topological and behavioral

characteristics of Smartgrids are also exploretl Wie aim of identifying potential vulnerabilities.
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We additionally discuss the assumptions, limitatiand degree of precision of Smartgrids

modeling.
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1. Introduction

In this paper, we look at Smartgrid systems fromphint of view of their complexity and
vulnerability related to their characteristics. Treamework of analysis is similar to that of other
engineered complex systems, e.g. transportatioasimtictures, energy networks,
telecommunication systems. These systems are ¢tbarad by a large number of elements with
complex interconnections, nonlinear and discontisumperation, and the involvement of multiple
actors with diverse backgrounds. Further, unceregnypically exist in the characterization of the
system elements and their interconnections (RAXX). As a result, the modeling and analysis of

such systems by reductionist methods are likefgitpand holistic approaches are needed.

In the context of such complex systems, while itue that their structural backbones are created
by the engineers who develop the constituent copsrof the system, the connections of such
components within the systems are not necessdrideaigned.” In many instances, undersigned
or even undesired connections ‘emerge’ from systeotution so as to meet the demand under
given operation constraints (Ottino, 2004). Comgstems can be said to evolve from the design
blueprints to complex structures and behaviorsutin@ngineering, updatingndintegration
processes. At thengineering procedevel, elements are assembled by design to praoptieal,
consistent and reliable operation, as well as fanat safety (Ottino, 2004). In general, this is
achieved with engineered systems which magdmeplicatedout not yeicomplexOttino, 2004).
The engineering process is usually organized natghical methods in top-down approaches,
managed on a linear timeline organization (Rous@3R0n principlethe final product of such
process could be reduced to pieces and reassemlbiledyt losing its function. Vulnerability may
arise in these systems, particularly from desigiefdcts due to calculation errors or simplification

during the design process.

As the system ‘lives’, itsipdating and integration occurs by insertion of new technology and

extension of capacity to meet service demands thghrequired performance. This creates a need
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for connection between the engineering of the systed the ever-changing domains of society,
economy, legislation and politics, which determgegvice demands and generate constraints. In
virtue of this connection, the originally compliedt engineered system becomes complex with
hallmarks of adaptation, self-organization and emet behavior, which constitute opportunities

but pose also vulnerabilities, mostly due to undesn complication during the integration process

(Ottino, 2004).

One classic example of a complex system is theratelnitially built in the United States in the
middle of the 20th century as an information techggltool for anti-missile purposes, the Internet
has become pervasive. It now penetrates our sfflfo@uses and public spaces, supported by the
increasing use of personal computing devices. Tati@yinternet is a global platform for
commercial and social interactions, used regulayl20% of the world’s population in 2008
(OECD, 2008). Using widespread and standard engieservices with easy access to
information, communication and data sharing, therhret increases the efficiency of economic
activities and considerably increases social ictezas (OECD, 2008). Its evolution continuously
demands creation of new policy frameworks, to “emaga innovation, growth and change, and
develop appropriate governance that does not stiflativity or affects the openness of the
Internet” (OECD, 2008). As a backbone and enaldleonvergence across multiple fields
(engineering, social, economic, finance and pdigithe Internet is a good example of a complex

engineered system.

Returning to the concept of a Smartgrid, this texmsed to identify the architecture of emerging
new energy infrastructures, which use ICT-drivelericonnectedness to achieve several goals.
These goals include improvements to coordinatioenefrgy generation by diverse energy sources
(including renewables); improved transmission amstridbution for increased efficiency to meet
increasing demand, and improved design to ensotegiion and resiliency to the vulnerabilities of

aging and failing components, natural disastershamdan attacks. At regional, national and world



levels, Smartgrid research, development and dematiwst is working toward achieving these goals
by creating interconnections between energy infuasire elements, such as producers and
consumers, and further introducing intelligent ngemaent of electricity balance in the grid (Coll-

Mayor, Paget, & Lightner, 2007; Hammons, 2008).

The Internet is particularly relevant as referecamplex system in our exploration of Smartgrids.

In a sense, the Smartgrid concept may be regasiszfearing to a kind of 'Internet of Energy.'
While using the Internet as the basis of connedietween various elements of the energy grid, the
Smartgrid concept additionally borrows from theehiet in the way Smartgrids conceive of the
energy grid. Smartgrids, just like the Internét) at creating a global, interconnected network of
energy actors, while at the same time going furiyamonitoring, managing and optimizing energy

flows.

The remaining of the paper is organized as folldestion 2 explains the complexity of Smartgrid
systems in terms of ‘typical’ characteristics ofrqmex systems and categorizes these
characteristics as engineering, updating and iategr processes. Further analysis identifies
potential vulnerabilities associated with each ahtaristic. Section 2 concludes with a nominal
ranking of potential vulnerabilities. Section 3 deélses methods available for Smartgrids analysis
aimed at modeling of characteristics illustrategrevious sections. The last section of the paper
provides conclusions and further discussion otatjias for modeling and analysis of Smartgrids

complexity.
2. Identification of Smartgrids complexity

In order to understand the complexity level of Signaals, this Section recalls classical general
characteristics of complex systems (Figure 1), ftbenpoint of view of both topological and
behavioral properties. Properties of particulagvahce for Smartgrids are emphasized. Each

characteristic will be further analyzed from thermpaf view of Smartgrids and allocated to groups
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enabling identification of primary sources of systeulnerability related to the processes of

engineering, updatingndintegration
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Figure 1: Characteristics of complex systefiNESCI, 2005)

2.1. Characteristics of complexity in Smartgrids

2.1.1. Architecture
System architecture is the core characteristiotegithe topological and/or logic structure linking

the elements of the system through their interiaiat System architecture is therefore responsible
for system behavioral features such as adaptivites emergence and evolution. A common
structure is hierarchical organization, typical @ological, taxonomic, genealogical and somatic
organization of biological systems. The adaptive amdlutionary mechanisms of organisms of
such systems, trying to maintain or increase thess in the face of changing environmental

conditions, are driven by their hierarchical sturat-interactive architecture (Nederbragt, 1997).
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Complex engineered systems, such as the Interretifest pronounced hierarchical structuring
with highly connected nodes related to “isolateld-systems, forming a mantle-like mass of peer-
connected nodes” (Duncan, 2007). Apart from thesgmee of hierarchical interdependencies, the
overall system structuring itself and the wiringtbé different elements in it is very complex to
model. Currently, many empirical and theoretical rapphes attempt to analyze the structure of
complex networks by graph theory of different Isvef abstraction — unweighted graphs for pure
topological characterization, weighted graphs fitrikauting physical meaning to the connections,
planar graphs to account for physical constraifitgpical categorization based on the nodes
connectivity distribution considerfee-scale (inhomogeneous) networks, and smalldvarid
random (homogeneous) networks. In this view, tiohigecture of Smartgrid systems is considered
to be a relevant feature of future electricity natg, which needs careful consideration for its
possible influence in the system’s evolution andpgateon. On the other hand, system architecture
not only lays down the topological map of systemdtre, but also allows taking into account the
differences between its elements and connectiohghvware heterogeneous physically, functionally

and in role.

2.1.2. Heterogeneity of elements and connections
Heterogeneity refers to the differences in the elas) their interconnections and roles within the

system hierarchical organization, often with higiieected core elements and low-connected
periphery nodes. Heterogeneity is strong in curedettricity systems, with in architectures in the
form of hierarchical trees where production famht are connected by centralized high-voltage
transmission stems to transformation substatiameedl in their turn by distribution branches to
final consumers. Notably, Smartgrid systems aimewblving towards more decentralized
architectures, with a more homogeneous distributbbnheterogeneous production sources of
different nature and size, including renewable giest These will need to penetrate the network at
all levels, homogeneously. The arising grid patteerms a sort of neural or vascular system,

manifesting in some conditions structured into-sefiilarities.



2.1.3. Self-similarities
Also called fractals, self-similarities are complsystem structures as "a rough or fragmented

geometric shape that can be split into parts, e&g¥hich is (at least approximately) a reduced-size
copy of the whole" (Mandelbrot, 1982). Where saifilarities are present in a complex system,
they amount to the presence of similar propertteallehierarchical levels, similar complexities at
different scales without a unique characteristze $or their structures. Assertion of the existeoice

a fractal structure in a given complex system ddpem the possibility of ascribing to that struetur
specific dimensionless numbers indicating the matfrself-similarity in the structure or behavior
in the complex system. The dimensionless quantifinaof a fractal structure permits fractals to
exhibit the property of scalability. These asp@&étBactals are expressed in an instructive strattu
analogy between a human biological circulatory aystind the Internet. The principle of fractal
structuring of veins, characterized by an efficier@chanism of blood distribution with minimum
structure and shortest path, was borrowed to sthdyoptimal design of the Internet network
(Caldarelli, Marchetti, & Pietronero, 2000). A foer structural analogy can be found in the
extension of the Internet concept into Smartgrithvoeks. The Smartgrid concept exhibits fractal
structuring insofar as a particular Smartgrid maytain an ‘energy automation network’ for
‘positive energy building’ inside district Smartgsi, district Smartgrids inside city Smartgrids and
so forth. Here, the ‘energy automation network’ stdntes the mini Smartgrid network, involving
consumers, local renewable energy producers, toatagion and storage facilities. Smartgrids for
‘positive energy building’ manifest clear periodicgelf-similarities, with district Smartgrids
included in energy flows management with respeday and season energy demand fluctuations.

Certainly, self-similarities appear as an eviddraracteristic of Smartgrids system structuring.

2.1.4. Self-organization and decomposability
Two other characteristics related to the structiirengineered systems atecomposabilitand

self-organizationThe former relates to the divisibility of the syststructure into subsystems, and



into further separate elementary elements. Eléistrecids seem to exhibit a structural property of

decomposability, especially evident within the fedgatterns envisioned for Smartgrids structures.

Self-organization refers mostly to the behavioealtfire of a complex system capable of re-
organizing its isolated elements and subsystersciotherent patterns without intervention from
external influences or a central authority. Faaraple, the open system of the Internet, affected by
a continuous growth in the number of componentstgnigchnologies evolution, tends to self-
organize into stable patterns through the creatifgrarticular niches of services or user ‘coalitions
Such flexibility allows the Internet to adapt contously to changes in the local environment, while
maintaining coherence of structure and reliabitgervice (Granic, 2000). In this sense, self-
organization constitutes mostly an adaptive andugiom property of complex dynamic systems,
spontaneously emerging from the interactions offifferent system components. In this view, the
possibility that Smartgrids will possess such carpy will depend on the level of autonomy of

the system from other systems, and the number amahaics of Smartgrids users. For the moment,
the role and involvement of consumers in the medmasiof the electricity network management
are not clearly defined, but the potential fordea-resilient self-organization, responsible fdreot

properties such as emergence, adaptive learning\aidtion, is ripe for exploitation.

2.1.5. Emergence
Induced by the complex non-linear interconnectiogtsvben the separate system elements,

subsystems and fractals at a micro level, emergsre@roperty of complex systems, which
appears only at a macro level manifesting itselfi®yarising of novel and coherent structures,
patterns and behavioral properties (Goldstein, 1998inly due to self-organization processes,
emergent behavior appears more evident in compteardic systems without a clear central
authority, where some even small local changesveviato unpredictable forms of high-level
organization and behavior. In the case of the hatersocial bookmarking or tagging leads to an
emergent effect in which information resourcesrarerganized according to users’ priorities.

Social networks are not only used for networkingwiiends, but are also exploited for gathering
9



and communicating relevant users’ information, @srdinating system-wide actions of entire
segments of population: the recent dramatic fadtted to revolutions in Northern Africa countries
and acts of terrorism in Russia prove how in sometries liberty of speech is tolerated only in
social blogs, and manifestation or rescue expeditioremergency situations are organized directly
by massive use of the Internet. Electricity gridgéhalso shown emergent behavior in the past,
where local failures have evolved into unexpeceestade failure patterns with transnational, cross-
industry effects. In this sense, Smartgrids are algected to be characterized by emergent
behavior, also in connection to the above menti@eddorganization mechanisms of complex
systems and depending to the extent and type imkdaowvolvement of users in the energy

management process.

2.1.6. Adaptive learning
Adaptive learning allows a system to adjust ithaecture and behavior into a stable coherent

pattern under external pressures, using long-teemmony experience feedback to anticipate future
unfavorable changes in system functioning. Thigptateon process is made possible by a set of
internal mechanisms, named detectors and effe@i®SCI, 2005). The system collects the
information on acting external pressures throughd#tectors. Then, effectors, such as locomotion,
communication, manipulation and expulsion, activaignge the state of certain components,
subsystems and/or their interrelations to keegyiséem in equilibrium under the acting external
forces. Feedback mechanisms play an indispensaleléor the anticipation of future changes in
support of system equilibrium. The dynamic feedbeolt learning process provides changes in
time to the system components and their interaatthrough the successive consideration and
evaluation of external and internal factors (NESXDD5). In complex engineered systems like the
Internet, the adaptive learning process partlysatin the ability of self-organization driven bydbc
changes. As the Smartgrid concept strongly reliea system of intelligent and sustainable
management of power flows, adaptive learning meshasiare expected to be a central feature of
design, operation and control.

10



2.1.7. Evolution and growth mechanisms
When the external pressures applied to a systesedXcritical values’ beyond which adaptive

learning mechanisms are inefficient, the systeforised to evolve. In the absence of a central
authority governing system changes, the evolutippaocess resembles natural selection in
biological systems resulting in the consequentatisarance of elements associated with low
adaptive fitness. The Internet, for example, isgtagluct of the evolution of its constitutive
software and hardware technologies, information@rdmunication services and applications, and
also faces the creation of new ways of use, suehcanmerce. Unlike biological systems,
complex engineered systems are also exposed ttacbgsowth of user portfolios. Future
Smartgrid complex systems will both evolve in thegwypical of analogous biological systems,

and they will incorporate unanticipated new eleraent

2.1.8. Chaos
Chaos theory is used to describe and explain vepoocesses occurring in complex systems, e.g.

earth atmosphere and aerodynamics processes @82s,Macek, 2010), chemical processes (Lee,
1996) and information and communication procesSéeil, Wang, & Han, 2004). In these
processes chaos is used to characterize the capanibn-linear dynamic systems to produce an
unpredictable change in large-scale behavior aidden shift in system pattern, in response to fine-
scale changes in initial conditions (Baas, 2002n¢#¢, the well-known aphorism, that butterfly
wings flapping can cause a tornado (Lorenz, 19Bi@yineered chaotic systems are characterized
by high sensitivity to changes, but also by mixamgl periodicity. These two last properties are
mainly responsible for the formation of complexctad structures as a manifestation of chaotic
properties within a complex system. On the othedh#he fractal structure resulting in ‘positive
energy building’ within Smartgrids is more a mandaatructuring aimed at facilitating electricity
flows management than an emerging result of chaetitution. However, even if Smartgrids

patterns will be mainly characterized by ‘artifiCistructuring, some periodic daily or seasonaf-sel
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similarities, for example in energy consumption hetrabetween building and district Smartgrids,

are likely to arise in manifestation of chaotic bebeal patterns.

2.1.9. Multidisciplinary relations
Multidisciplinary relations are an integral partesfgineered complex systems. Smartgrids in

particular involve a number of engineering and eagineering disciplines for defining the
successful implementation of new energy systergspg.creation of necessary legislative
frameworks for technologies use, finding adequiai@nice models for innovative projects

elaboration, providing incentive support and elalion of standards, and securing social

acceptance and participation.

2.1.10. Vague boundaries
Through the integration process, complex enginegystéms become open systems with

interactions with the environment. Their multip&ations with non-engineering domains and with
other engineered systems result in difficultieb@findary definition. Necessarily, then the

modeling of the complex system limits depends orotheerver’s scope of analysis rather than an
intrinsic property of the system. In some assedatnalyses of analogous systems, other
organizational categories are proposed. For examplegal theory, some theorists argue that
while the law of countries is usefully charactedzs systemic, international law lacks a systemic
quality and is better described as an ‘order’ whintbracts with national legal systems. This
example illustrates the extent to which ascriptbrsystem qualities’ may depend on the purposes
and initial scope analysis of investigators, rathan any inherent features of the phenomena which
in practice, as in the case of international artbnal law, may appear seamlessly interlinked

(Culver & Giudice, 2010).

2.1.11. Self-healing and attacks resistance
As discussed above, Smartgrids potentially exlailmtimber of topological and behavioral

characteristics typical of complex systems. In iddj they are intended to have specific

characteristics arguably conceived as core to tharfgrids concept: according to a popular vision

12



of ‘intelligent electricity grids’, they will posss a range of additional properties suchef
healingandresistancdo external natural disasters and human attackdg@ini, Lilliestam, Haas,
& Patt, 2009; Breuer, Povh, Retzmann, Urbanke, &nvald, 2007; Chassin, 2010; Fox-Penner,
2010). These two particular characteristics arateel to adaptive learning and evolutionary
mechanisms. However, to mark their importancetiermartgrid concept we will consider these

properties apart.

2.2. Categorization of Smartgrids complexity characteristics

In order to explore and explain the complexity ofaBtgrids, this Section maps the characteristics
of complexity discussed in Section 2.1 into threancategories inherent challenge-response
andacquiredcharacteristics (Table 1). These categories dreeatkin relation to the three
processes afngineeringupdatingandintegrationof complex engineered systems. The first
inherentcategory contains characteristics of Smartgridesys designed at thlengineeringprocess
level. Properties such as the heterogeneity of @srand connections as well as system
architecture, are considered as inherent charatitsrof system complexity amenable to control
and, therefore, of minimum uncertainty impact ona8grid functioning. The second category
includeschallenge-responseharacteristics. Inspired by the underlying Snmrattgstrategy of a
flexible and transparent energy management corioefite reinforcement of electricity
infrastructure reliability (Hledik, 2009), thesearhcteristics result from the continuaysdating
process in response to the evolution of the chgdlertio the Smartgrid function. In this context,
adaptive learning and self-healing are desirabdspctive characteristics for effective challenge-
response by smart electricity infrastructures. Ruthe uncertain and somewhat unpredictable
evolving environment, the challenge-response ptaseof Smartgrids could not be guaranteed
through design process, and their achievementisbenge itself. Eventually, the third category of
acquired characteristics includes self-organizagomergence and chaos which arise as a

consequence of thetegrationof the system in the complex socio-economical remment which

13



drives its functioning. This category regroups tiegor sources of uncertainty on the functioning of

Smartgrids.
Table 1
Categorization of Smartgrids complexity charactics
Smartgrids complexity characteristics
I nherent Challenge-response Acquired
(engineering) (updating) (integration)
Architecture Adaptive learning Vague boundaries
Heterogeneity Evolution and growth  Self-organizatio
Self-similarities Self-healing Emergence
Decomposability Attack resistance Chaos
Multidisciplinary
relations

Note that this categorization may not be excluaissome characteristics could be mapped into
more than one category. For example, evolutiondcbalconsidered as both a challenge-response
and acquired characteristic. On the one handptiigerty can provide Smartgrids the challenge-
response characteristic needed for flexibility imdiang the uncertain stresses upon the system. On
the other hand, evolution may have uncertain negatifects on Smartgrids functioning resulting

in increasing of vulnerabilities and incapabilitydorrectly respond to challenges of electricity
demand. This may occur under specified conditiarsn the next Section, characteristics such as
adaptive learning, evolution and growth can noygmbduce a positive impact on the Smartgrid

functioning, but can also turn into vulnerabilitieshe absence of a central authority.

In this respect, not only the uncertain properniethe acquired category, but also inherent complex
system characteristics could become vulnerabitityses. For example, topological properties of
Smartgrids could induce behavioral vulnerabilityfagilitating disturbance propagation within the
network of connections, giving rise to cascadingcpsses which would impair system functioning.
This leads to the need to identify sources of gatknulnerability within the system characteristic

and ranking them according to their impact on Sgnat$ development and functioning.

2.3. Mapping complexity into vulnerability
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This Section points at potential vulnerabilitiedden in the complexity characteristics of

Smartgrids.

2.3.1. Architecture
As mentioned above, Smartgrid systems will be dged mainly on the backbone of existing

infrastructures. Traditional electricity grid art#gture is organized in a strong hierarchical
infrastructure with only few centralized electrjcttansmission channels from energy producers to
load consumers (Figure 2a). This type of orgarorais characterized by unidirectional power flow
and vertical control and operation. This centralibeerarchical structure is widely used for systems
modeling and presents a relatively transparenegsysirganization with clearly identifiable
elements of topology, purpose and control. Thetesy structure is regarded as supplying
organizational advantages and facilitating systemnitoring, fault detection and correction (Pattee,
1973). Current electricity architecture definesadig an authority domain and a role for each actor
on the energy market, as well as operation andactien modes between the diverse elements. In
this view, the major vulnerability of electricityids architecture comes from their scale-free
organization standing on a limited number of caighly connected nodes of production sources
and few unidirectional transmission channels thhowich cascading failure propagation may
occur in the absence of bypass transmission (HBlaespsack, Cotilla Sanchez, & Barrows, 2010;

Rosas | Casals, 2009; Zio, 2007).

Failure isolation

Producers O ‘
O O Transmission & Q ‘ O
Distribution
o @ o
@) e
O O S Power rerouting 4 ©
@) 0] b)
Consumers O
a)
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Figure 2: a) Centralized hierarchical structure; Bailure isolation in homogeneously
distributed networks.

Smartgrids design is likely to implement a struetwith more homogeneous connected nodes

(Figure 2b), capable to reroute power supply aathis undamaged lines (Rosas | Casals, 2009).

2.3.2. Heterogeneity of elements and connections
Strong heterogeneity of elements and connectiomsinirent electricity grids, which will serve the

foundation for Smartgrids, is translated into higénsitivity to direct attacks on a node or
connection (Crucitti, 2003; Zio, 2007). The highlnerability to direct attacks of scale-free
networks can be smoothed by allocating supplemertahections and elements for a more
homogeneously distributed architecture. In homogesenetworks, the networks’ tolerance of
errors is similar for the case of random failuresl @irect attacks, independent of network size

(Rosas-Casals, Valverde, & Solé, 2007).

2.3.3. Self-similarities
Looking at fractal properties for engineering amh+@ngineering complex systems, it appears that

it is not the presence of self-similarities, buthea their absence which may render Smartgrids
vulnerable (Caldarelli, Marchetti, & Pietronero, BQ@oldberger & West, 1987; Krummel et al.,
2008; Song, Havlin, & Makse, 2006). For exampler¢hare nearly no fractals in the current scale-
free architecture of electricity grids connectedhwenergy production to form the core production
sub-system. In this setting, a direct attack omagpction hub may result in the failure of the core
production sub-system (Song, Havlin, & Makse, 200®)r this reason, Smartgrids are likely to
seek fractal architectures, where consumers am@upgd around distributed production sources
without strong connections with other productiomswuThis needs to emerge from more sustainable

evolution and growth mechanisms of the system (Sdaglin, & Makse, 2006).

2.3.4. Self-organization and decomposability
By enabling ‘disassembly’ of a complex system itdcsubsystems and their components,

decomposability allows understanding and categtozaf system elements. Low decomposability
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implies potential vulnerability as the system isu@ctterized by massive elements with limited
capacity for adaptation and evolution in respoonsecarly emerging challenges. On the other hand,
high decomposability translates into a large nunadb@omponents, connections and interrelations,
which may make the system difficult to control, ahds vulnerable. Another situation of
vulnerability may arise from significant variatiookdecomposability level across the Smartgrid,

resulting in system stiffness and possible insitadsl

As for the self-organization process, its impadighificant in systems without central authority;
for Smartgrids it may turn into vulnerability dep@mglon the extent and type of active involvement

of users.

2.3.5. Emergence
A situation in which a large amount of informatigrexchanged within technologies at a period of

high electricity demand, can lead to a vulnerabledition of the system, similar to Internet
networks and information traffic congestion (Chéfgng, & Han, 2004). This emergent behavior
could be driven by small changes in users behawvidresult in grid dysfunction. However,
emergence can also offer opportunities to findiesgisolutions in the recombination of evolved
structures and processes, renewal of system comfsoaed new connection trajectories to satisfy
demands (Rosas | Casals, 2009). For Smartgrids;aurid imagine using the bookmarking
mechanism to make social participation more vis#nld involve people in energy infrastructure
design and operation by communication of their majgrectations and needs, as well as to take
into account their feedback during system updatethis view, emergence process driven in
reasonable proportion between social participatiah central authority will make Smartgrids more

resilient to environmental changes without losimgiit functional capacity.

2.3.6. Adaptive learning
Adaptive learning is a challenge-response propehtigh results from the tradeoff between

consumer involvement and control by the centrahauitly in the energy management process. On

one side, intense consumer involvement can inithsstic behavior in the electrical system; on the
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opposite side, strong control by the central autyhoenders the system rigid, missing opportunities
for service efficiency, and exercise of the sysgemsilience and adaptation capacity. These raise
the uncertainties in the level of extent of adapl®agning property in Smartgrids, as well as in the

suitable functioning of its mechanism.

2.3.7. Evolution and growth mechanisms
Smartgrids may be exposed to vulnerabilities emgrfiom the growth mechanisms of the system.

Restricted by technical constraints and transmissagacity, the extension of current electricity
grids is done by preferential attachment, wheragkliz connected nodes attract new links. This is
a typical mechanism of growth of complex networkslifferent nature (Barabasi, Albert, & Jeong,
2000; Boccaletti, Latora, Y. Moreno, Chavez, & HgaB006). The result of this particular
mechanism of growth is that it reinforces the ‘sefabe’ nature of electrical systems and, as a
consequence, makes them vulnerable to directetkatéand propagation of cascading failures. This
means that electricity system growth must be cdgefabnitored in order to anticipate possible
critical decision points at which infrastructurevdldpment must be steered in a preferred direction.
In this sense, the resilient mechanism for elatyrinfrastructure growth is likely to be based on
the repulsion process between the hubs at allhesagtles, when the hubs prefer to grow by
connections to less-connected nodes (Song, Ha&/IMiakse, 2006). On the other hand, user
involvement in the energy management process mageadrastic shifts in system evolution,

leading to unexpected events and system vulnetiabili

2.3.8. Chaos
The extent of system exposure to chaos is relatéuktlevel of influence of the controlling central

authority. In the case of Smartgrids, chaos mesganainly after the integration process, due to the
influence of system-affecting non-engineering fagtehich are difficult to forecast and control,
including social acceptance and participation. Githee nature of these factors, modeling scenarios

of chaotic behavior at the design stage is a ahgilhgy forecasting problem of multidisciplinary
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nature, since realistically the major interrelatiansong elements arise after system

implementation.

2.1.9. Multidisciplinary relations
The nature and dynamics of multidisciplinary redat which will affect the Smartgrids life cycle

are difficult to forecast and control, and the tethuncertainties may hide potential vulnerabgitie

2.1.10. Vague boundaries
Imprecise definition of Smartgrid boundaries atdlesign stage driven by ‘preconceived’

engineering views on current energy challengedteesulosses of information about the patterns of
interconnections with influencing non-technicalttas and their possible underestimation. Even in
the case of well-engineered, smart electricity ngangent, vulnerabilities in Smartgrid systems can
arise if relevant influencing factors are neglected, social involvement and participation in the

design and operation processes.

2.1.11. Self-healing and attacks resistance
These two properties were underlined as specifiar@mnds characteristics within adaptive learning

and are considered as challenge-response chaséicterin the case of their strong influence, the
adaptive learning property will dominate the evi@atprocess and obstruct system upgrades, which
will be restrictive for Smartgrids development. Téfere, these properties must be considered

carefully.

2.4. Vulnerability ranking

Most of the complexity characteristics discusseth@previous Section are candidate sources of
Smartgrid system vulnerability.. Their ranking wispect to their potential impact on the most
valuable system resources and functionalitiesexftatal network is an objective of vulnerability
assessment, because it can guide allocation anecpaot at the design and operation phases.
However, at this stage of development of the Smidrtgpncept, ranking vulnerabilities by the

importance of their expected impact would be arelpfhlly abstract exercise. A preliminary
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qualitative ranking could follow the categorizatioihSmartgrids complexity characteristics of

Table 1 and their mapping into inherent, challeregponse and acquired categories, each of them
related to the engineering, updating and integngtimcesses of Smartgrids as complex engineered
systems. The engineering process can be regarged\ading the designer with full control of a
given Smartgrid’s topological and behavioral projest In this view, in this first category the
characteristics manifesting vulnerabilities couldsbbordinated and their consequences reduced. In
the updating process, the level of designer invoket is lower and the vulnerabilities to which
Smartgrids may be exposed are more difficult tor@br@ind avoid, without intervening associated
environments, e.g. social and economic contexts.sBtond category regroups vulnerabilities of
more unforeseen character than at the enginedagg.sThe last category expresses the most
uncertain characteristics of Smartgrids, capableroflucing echo effects in different contexts with
consequences which are difficult to predict. Fos teason these characteristics are considered to

potentially highly lead to vulnerable states of Signad systems.

3. Methods of vulnerability analysis

This Section takes a comparative approach to exgpbor of options for modeling and analysis of
the vulnerability characteristics of Smartgrid gyss (Kroger & Zio, 2011). By taking into account
the peculiarities of Smartgrid infrastructures, samethods regarded as most suitable have been
selected. Obviously, statistical analysis of geti@neand failure records cannot be used at the
current early stage of Smartgrid systems developtogntedict failures and time lapses between
them. Also, the probabilistic analysis approacledu® model and predict the stochastic system
state transition process may be difficult to purkresuch large systems with many multi-state

components linked in complex patterns of intercatinas.

The methods selected for the purposes of this fgagiscussion are risk analysis, complex network
theory and agent-based modeling and simulationléT2lb The description of these approaches is

organized as follows: for each method we supplyiet befinition of the problem it addresses, and
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analysis procedure and results are provided; finatlvantages and disadvantages for the analysis

of Smartgrid systems are briefly discussed and®gited in Table 2.

3.1. Risk analysis

Risk analysis of complex systems aims at the ifleation of vulnerabilities for complex systems,
prioritizing them according to a combination of gtitative and qualitative indicators. The
procedure for the analysis of network systems Skeartgrids is based on logical structural
modeling by directed or undirected graphs and @mabyf structural particularities under different
uncertainty scenarios. Vulnerability ranking carblased on heuristic risk factors at the component
level, which are the combination of complexity aegtexity indicators at the system level (Yacoub

& Ammar, 2001).

The risk analysis framework is poorly suited tolgsia of Smartgrids and large-scale electricity
systems in general, which hold multidisciplinary geations and can experience a very large
number of scenarios of uncertain occurrence, dewaop and consequence. For this reason,
application of risk analsys is limited to simpldiease studies. Examples of suitable case studies
include the analysis of the chaotic behavior obaplex industrial system in terms of stochastic
variations in its technical parameters (Bruzzon®42@nd the analysis of existing multidisciplinary

relations in the context of project managementr@mment (Biffl, Moser, & Winkler, 2010).

3.2. Complex network theory

Complex network theory provides a means for reprtasg the inherent structural characteristics of
large-scale networks (Boccaletti, Latora, Y. More@Gbavez, & Hwang, 2006). It also allows
describing the architecture evolution and growtltinamisms (Song, Havlin, & Makse, 2006; Watts
& Strogatz, 1998). Complex network theory alsoves some connections to non-engineering
domains, for example, by taking into account geplgical and social constraints (Barth, 2010). In

this view, most challenge-response and acquirethctexistics are considered by this approach.
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Yet, complex network theory can be used mostly forediminary vulnerability analysis limited to
capturing the topological and behavioral bottleseakSmartgrids (Kroger & Zio, 2011). The
approach consists in modeling by unweighted graépdsopological configuration of the network
(Watts & Strogatz, 1998). For accounting of theceleity networks characteristics, weighted and
planar graphs can be used (Boccaletti, Latora, 8tedo, Chavez, & Hwang, 2006). Weighted
graphs allow including the heterogeneous charatiesiof components and interconnections, while

planar graphs enable introducing technical, s@sidl geographical constraints in the analysis.

3.3. Agent-based modeling and simulation

The agent-based model and simulation approach slliomprinciple, for accurate representation of
complex dynamic systems. The agent-based methzapable of simulating almost all challenge-
response and acquired characteristics of Smartgratde 2 provides relevant examples of the
diverse properties which can be simulated by abased methods. The integration of physical
models for the representation of engineering andargineering factors with their complex
relations, must be rendered computationally feasibbrder to represent realistically the complex

behaviors of large-scale systems in reasonablest{Kmger & Zio, 2011).

However, the accurate representation of multipfamonents and connections in multiple agents
appears to be a complicated task, with a large reumibparameters whose values need to be
determined on the basis of data and informationrttay be unavailable for some components and
connections. It is therefore expected that for $gnals, the agent-based approach can be used for
studying only specific geographically limited aredsulnerability in the system (Kroger & Zio,

2011).
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Table 2.
Categorization of approaches for vulnerability ass®ent of Smartgrids

Characteristics/Analysis Risk analysis Complex network theory Agent-basedehing and simulation
method
Self-organization and| No No Yes (Grimm & Railsback, 2006; Wolf,
decomposability Holvoet, & Leuven, 2003)
Emergence No No Yes (Kroger & Zio, 2011; Schlapfer
S Kessler, & Kroger, 2008)
= Chaos Only for engineering analysis No Yes (Wolf, Holvoet, & Leuven, 2003)
g (Bruzzone, 2004)
< Multidisciplinary In analysis of multi-disciplinary Partly with planar graphs (Barth, 2010;| Yes (Grimm & Railsback, 2006;
relations projects management (Biffl, Moser, & Waxman, 2002) Schlapfer, Kessler, & Kroger, 2008)
Winkler, 2010)
Vague boundaries No No No
Self-healing and No No No
& attacks resistance
2 2| Adaptive learning No No Yes (Grimm & Railsback, BDO
% g-). Evolution and growth| No Selective pressure andepesttial Yes (Mitchell & Newman, 2002)
5 < attachment mechanism (Watts &
Strogatz, 1998), hub repulsion growth
(Song, Havlin, & Makse, 2006)
Architecture Graph theory for complex systems | Generation of complex infrastructures | Accurate and realistic simulation modsé
modeling and further analysis with | with graphs theory (Boccaletti, Latora, Yof dynamic complex systems including
heuristic risk measures (Kroger & ZipMoreno, Chavez, & Hwang, 2006; Wattsphysical laws (Kroger & Zio, 2011)
e 2011; Yacoub & Ammar, 2001) & Strogatz, 1998)
% Heterogeneity of Weighted graph concept (Wilson & | Weighted graphs (Boccaletti, Latora, Y| Explicit modeling of autonomous agen
< elements and Boyd, 2008) Moreno, Chavez, & Hwang, 2006) and their interactions

A1

connections

Self-similarities

No

Kronecker product graph mogil
Moreno, Kirshner, Neville, &

Yes (Batty, 2007)

Vishwanathan, 2010)
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5. Conclusions

We have looked at Smartgrids from an original pointiew of understanding their complexity.
Topological and behavioral characteristics ‘tygicdlcomplex systems have been considered in the
context of their instantiation in a typical or ii&martgrid. Further categorization of these
characteristics has been made with regards tonp@eering, updating and integration processes,
which characterize a system life cycle. The indare that arise concern mainly the uncertain
impact, that these complexity characteristics maglmn Smartgrids vulnerabilities, and the
possibility to foresee it, counteract and avoidnheundbility factors. System-acquired properties are
considered most uncertain, and thus most diffimuttontrol. Inherent characteristics, shaped

mostly during design stage, do not pose partiowérerabilities, and may be easier to avoid.
Challenge-response properties occupy an intermeed@ition between inherent and acquired

characteristics.

The analysis of the methods available for the walbiity assessment of complex engineered
systems has taken into account the ranking of $mastvulnerabilities. Complex network theory
seems suitable for preliminary analysis and ideaiifon of critical areas, with agent-based

modeling following up as most adapted to the detlsitudy of the identified vulnerable zones.
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