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Bayesian Subset Simulation: a kriging-based subset simulation algorithm

for the estimation of small probabilities of failure

Ling Li∗, Julien Bect, Emmanuel Vazquez

SUPELEC Systems Sciences (E3S)
Signal Processing and Electronic Systems Department

Gif-sur-Yvette, France

Abstract: The estimation of small probabilities of failure from computer simulations is a classical problem
in engineering, and the Subset Simulation algorithm proposed by Au & Beck (Prob. Eng. Mech., 2001) has
become one of the most popular method to solve it. Subset simulation has been shown to provide significant
savings in the number of simulations to achieve a given accuracy of estimation, with respect to many other
Monte Carlo approaches. The number of simulations remains still quite high however, and this method can be
impractical for applications where an expensive-to-evaluate computer model is involved.

We propose a new algorithm, called Bayesian Subset Simulation, that takes the best from the Subset Simulation
algorithm and from sequential Bayesian methods based on kriging (also known as Gaussian process modeling).
The performance of this new algorithm is illustrated using a test case from the literature. We are able to report
promising results. In addition, we provide a numerical study of the statistical properties of the estimator.

Keywords: Computer experiments, Sequential design, Subset Simulation, Probability of failure

1. INTRODUCTION

In this paper, we propose an algorithm called Bayesian Subset Simulation (BSS), that combines the Bayesian
decision-theoretic framework from our previous studies [1, 2] with the Subset Simulation algorithm [3].

Let Γ = {x ∈ X : f(x) > u} denote the excursion set of a function f : X → R above a threshold
u ∈ R. We are interested in estimating the probability α(u) := PX(Γ), which corresponds to the probability
of failure of a system for which f is a function of performance (see, e.g., [2]). If the probability α(u) is

small, estimating it using the Monte Carlo estimator α̂MC
m = 1/m

∑m
i=1 1f(Xi)>u, Xi

i.i.d∼ PX, requires a large
number of evaluations of f . If the performance function f is expensive to evaluate, this leads to use a large
amount of computational resources, and in some cases, it may be even impossible to proceed in reasonable
time. Estimating small probabilities of failure with moderate computational resources is a challenging topic.

When α(u) is small, the main problem with the estimator α̂MC
m is that the sample size m must be large in

order to get a reasonably high probability of observing at least a few samples in Γ. In the literature, importance
sampling methods have been considered to generate more samples in the failure region Γ. However, the success
of this kind of methods relies greatly on prior knowledge about the failure region Γ and on a relevant choice for
the proposal sampling distribution.

The idea of Subset Simulation is to decompose the difficult problem of generating samples in the failure region
into a series of easier problems, by introducing intermediate failure events. Let u0 = −∞ < u1 < u2 < . . . <

uT = u be a sequence of increasing thresholds and define a corresponding sequence of decreasing excursion
sets Γ0 := X ⊇ Γ1 ⊇ · · · ⊇ ΓT := Γ, where Γt := {x ∈ X : f(x) > ut}, t = 1, . . . , T . Notice that
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Γt =
⋂t

i=1 Γi. Then, using the properties

{
α(u0) = 1 ,

α(ut+1) = α(ut)PX(Γt+1|Γt) , t ≥ 0 ,
(1)

α(u) can be rewritten as a product of conditional probabilities:

α(u) = PX

(
ΓT

)
=

T−1∏

t=0

PX(Γt+1|Γt) . (2)

Thus, the idea of Subset Simulation is to replace the problem of estimating the small probability α(u) by that
of estimating the higher conditional probabilities PX(Γt+1|Γt), 0 ≤ t < T .

In [3], a standard Monte Carlo simulation method is used to estimate PX(Γ1) = PX(Γ1|Γ0). For the other
conditional probabilities, a Markov Chain Monte Carlo method is used to simulate samples in Γt, and then
PX(Γt+1|Γt) is estimated using a Monte Carlo method. Due to the direct use of Monte Carlo method, the
number of evaluations needed remains still quite high. For many practical applications where the performance
function corresponds to an expensive-to-evaluate computer model, it is not applicable. Note that the Subset
Simulation algorithm has recently caught the attention of the Sequential Monte Carlo (SMC) community: using
standard tools from the SMC literature, [4] derives several theoretical results about some very close versions of
the Subset Sampling algorithm.

In this work, we propose an algorithm that takes advantage of a Gaussian process prior about f in order to
decrease the number of evaluations needed to estimate the conditional probabilities PX(Γt+1|Γt). The Gaussian
process model makes it possible to assess the uncertainty about the position of the intermediate excursion
sets Γt, given a set of past evaluation results. The idea has its roots in the field of design and analysis of
computer experiments (see, e.g., [5, 6, 7, 8, 9, 10, 11]). More specifically, kriging-based sequential strategies
for the estimation of a probability of failure are closely related to the field of Bayesian global optimization
[12, 13, 14, 15, 16, 17].

The paper is organized as follows. In Section 2, we give a detailed presentation of our new Bayesian Subset
Simulation algorithm. In Section 3, we apply the algorithm on an example from the literature, and we perform
numerical simulations to investigate the performance of the proposed algorithm. A comparison with Subset
Simulation and classical Monte Carlo methods is provided. Finally, we conclude in Section 4.

Remark. An algorithm involving kriging-based adaptive sampling and Subset Simulation has been recently
proposed by V. Dubourg and co-authors [18, 19] to address the problem of Reliability-Based Design Optimiza-
tion (RBDO). Their approach is different from the one proposed in this paper, which addresses the problem of
reliability analysis.

2. BAYESIAN SUBSET SIMULATION ALGORITHM

2.1. Algorithm

Our objective is to build an estimator of α(uT ) from the evaluations results of f at a number of points
X1,X2, . . . ,XN ∈ X. Let ξ be a random process modeling our prior knowledge about f , and for each n ≥ 0,
denote by Fn the σ-algebra generated by X1, ξ(X1), . . . ,Xn, ξ(Xn). A natural Bayesian estimator of α(ut)
using nt evaluations is the posterior mean

α̂t = Ent
(α(ut)) = Ent

(∫

X

1ξ>ut
dPX

)
=

∫

X

gt dPX, (3)
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where gt : x ∈ X 7→ Pnt

(
ξ(x) > ut

)
and En (resp. Pn) denotes the conditional expectation (resp. conditional

probability) with respect to Fn (see [2]). Note that, gt(x) can be readily computed for any x using kriging (see,
e.g., [2]).

Assume now that PX has a probability density function pX and consider the sequence of probability density
functions qt, 0 ≤ t ≤ T , defined by

qt(x) =
1

α̂t

pX(x) gt(x). (4)

We can write a recurrence relation similar to (1) for the sequence of Bayesian estimators α̂t:

α̂t =

∫
gt(x) pX(x) dx = α̂t−1

∫
gt(x)

gt−1(x)
qt−1(x) dx. (5)

The idea of our new algorithm, that we call Bayesian Subset Simulation, is to construct recursively a Monte
Carlo approximation ̂̂αT of the Bayesian estimator α̂t, using (5) and sequential Monte Carlo simulation (SMC)
(see, e.g., [20]) for the evaluation of the integral with respect to qt−1 on the right-hand side. More precisely,
denoting by m the size of the Monte Carlo sample, we will use the recurrence relation

̂̂αt = ̂̂αt−1 ×
1

m

m∑

i=1

gt(Y
i
t−1)

gt−1(Y i
t−1)

, 1 ≤ t ≤ T, (6)

where variables Y 1
t−1, . . . , Y

m
t−1 are distributed according to1 the density qt−1, which leads to

̂̂αT =

T−1∏

t=0

1

m

m∑

i=1

gt+1(Y
i
t )

gt(Y i
t )

. (7)

The connection between the proposed algorithm and the original Subset Simulation algorithm is clear from the
similarity between the recurrence relations (1) and (5), and the use of SMC simulation in both algorithms to
construct recursively a “product-type” estimator of the probability of failure (see also in [20], Section 3.2.1,
where this type of estimator is mentioned in a very general SMC framework).

Our choice for the sequence of densities q1, . . . , qT also relates to the original Subset Simulation algorithm.
Indeed, note that qt(x) ∝ Ent

(
1ξ>ut

pX
)
, and recall that q̃t ∝ 1ξ>ut

pX is the distribution used in the Subset
Simulation algorithm at stage t. (This choice of instrumental density is also used by [22, 23] in the context of
a two-stage kriging-based adaptive importance sampling algorithm. This is indeed a quite natural choice, since
q̃T ∝ 1ξ>u pX is the optimal instrumental density for the estimation of α(u) by importance sampling.)

2.2. Implementation

This section gives implementation details for our Bayesian Subset Simulation algorithm, the principle of which
has been described in the Section 2.1. The pseudo-code for the algorithm is presented in Table 1.

The initial Monte Carlo sample Y0 = {Y 1
0 , . . . , Y

m
0 } is a set of independent random variables drawn from the

density q0 = pX—in other words, we start with a classical Monte Carlo simulation step. At each subsequent
stage t ≥ 1, a new sample Yt is produced from the previous one using the basic reweight/resample/move
steps of SMC simulation (see [20] and the references therein). In this article, resampling is carried out using a
multinomial sampling scheme, and the move step relies on a fixed-scan Metropolis-within-Gibbs algorithm as
in [3] with a Gaussian-random-walk proposal distribution for each coordinate (for more information on these
techniques, see, e.g., [24]).

1By “distributed according to”, it is not meant that Y 1

t−1, . . . , Y
m
t−1 are independent and identically distributed. This is never the

case in sequential Monte-Carlo techniques. What we mean is that the sample Y 1

t−1, . . . , Y
m
t−1 is targetting the density qt−1 in the sense

of, e.g., [21].
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Table 1: Algorithm of Bayesian Subset Simulation

a) Initialize (Stage 0):

1. Generate a MC sample Yt = {Y 1
0 , . . . , Y

m
0 }, drawn according to the distribution PX

2. Initial DoE In = {(X1, f(X1)), . . . , (Xn0
, f(Xn0

))} (maximin)

3. Choose kriging model, estimate parameters kθ

b) At each stage t(t = 1 . . . T ):

1. Compute the kriging predictor f̂ t−1
n , and choose threshold ũt−1

2. Select and evaluate Nt new points using a SUR sampling criterion for the threshold ut.

3. Update In, adjust intermediate threshold ut−1 according to f̂ t−1
n

4. Regenerate a new sample Yt:

4.1 reweight: calculate weights: wt
i ∝ gt(Y

i
t−1)/gt−1(Y

i
t−1)

4.2 resample: generate a sample Ỹt−1,i according to weights

4.3 move: for each i ≤ m, Y i
t ∽ K

(
Ỹt−1,i, ·

)

c) The final probability of failure is calculated by

α̂ =

T−1∏

t=0

( 1

m

m∑

i=1

gt+1(Y
i
t )

gt(Y i
t )

)

A number Nt of evaluations of the performance function is done at each stage of the algorithm. This number
is meant to be much smaller than the size m of the Monte Carlo sample—which would be the number of
evaluations in the classical Subset Sampling algorithm. For the initialization stage (t = 0), we choose a
space filling set of points Y0 as usual in the design of computer experiments [25]. At each subsequent stage,
we use Nt iteration of a SUR sampling strategy [2] targeting the threshold ut to select the evaluation points.
Adaptive techniques to choose the sequence of thresholds and the number of points per stage are presented in
the following sections.

Remark 1. The resampling step could most certainly benefit from more elaborate schemes, such as the residual

resampling scheme [26, 27, 28]. The comparison of resampling schemes is left for future work.

2.3. Adaptive choice of the thresholds ut

It can be proved that, for an idealized2 Subset Simulation algorithm with fixed thresholds u0 < u1 < · · · <
uT = u, it is optimal to choose the thresholds to make all conditional probabilities PX

(
Γt+1|Γt

)
equal to some

constant value (see [4], Section 2.4). This leads to the idea of choosing the thresholds adaptively in such a way
that, in the product estimate

α̂SubSamp
T =

T∏

t=1

1

m

m∑

i=1

1Γt

(
Y i
t−1

)
,

2assuming that Y 1

t , . . . , Y m
t are independent and identically distributed according to qt.
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each term but the last is equal to some predefined constant p0. In other words, ut is chosen as the (1 −
p0)-quantile of Yt−1. This idea was first suggested by [3] in Section 5.2, on the heuristic ground that the
algorithm should perform well when the conditional probabilities are neither too small (otherwise they are hard
to estimate) nor too large (otherwise a large number of stages is required). The asymptotic behavior of the
resulting algorithm, when m is large, has been analyzed by [4].

In Bayesian Subset Simulation, we propose to choose the thresholds adaptively using a similar approach. More
precisely, considering the product form of the estimator (7), we suggest to choose ut in such a way that

1

m

m∑

i=1

gt+1(Y
i
t )

gt(Y i
t )

= p0.

The equation can be easily solved since the left-hand side is a strictly decreasing function of ut.

Remark 2. Note that [4] proved that choosing adaptive levels in Subset Simulation introduces a positive bias

of order 1/m, which is negligible compared to its standard deviation.

2.4. Adaptive choice of the number Nt of evaluation at each stage

In this section, we propose a technique to choose adaptively the number Nt of evaluations of the performance
function that must be done at each stage of the algorithm.

Let us assume that t ≥ 1 is the current stage number; at the beginning of the stage, nt−1 evaluations of the
performance function are available from previous stages. After several additional evaluations, the number of
available observations of f is n ≥ nt−1. Then, for each i ∈ {1, . . . ,m}, the probability of misclassification3

of x ∈ X with respect to the threshold ut is

τt,n(x) = min
(
pn(x, ut), 1− pn(x, , ut)

)
,

where pn(x, u) = En

(
1ξ(x)>u

)
(see [2]). We shall decide to stop adding new evaluations at stage t when

1

m

m∑

i=1

τt,n
(
Y i
t−1

)
≤ η,

for some prescribed η > 0.

3. NUMERICAL RESULTS

In this section, we apply the proposed algorithm on a simple 2D test case from the structural reliability literature.
The problem under consideration is the deviation of a cantilever beam, with a rectangular cross-section, and
subjected to a uniform load [29, 30]. The performance function is:

f(x1, x2) = 18.46154 − 7.476923 × 1010
x1
x23

. (8)

The uncertain factors are x1 and x2, which are supposed to be independent and normally distributed, as specified
in Table 2. We use u = 17.8 as the threshold for the definition of the failure event. The probability of failure,
which will be used as reference estimator, obtained using α̂MC

m with m = 108, is approximately 3.85 × 10−5

(with a coefficient variance of about 1/
√
mα ≈ 1.61%). Figure 1 shows the distribution of the input factors

along with a contour plot of f . Notice that the failure region is quite far from the center region of the input
distribution.
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Table 2: Random input factors
Variable Distribution Mean m Standard deviation σ

x1 N 0.001 0.0002

x2 N 250 37.5

0 0.5 1 1.5 2
x 10

−3

180

200

220

240

260

280

300

320
Input distribution

f(x)=u

Figure 1: Input distribution and contour plot of the performance function

In the Bayesian Subset Simulation algorithm, we set an initial design of size N0 = 10 which is equal to five
times the dimension d of the input space (In the literature, very little is known about the problem of choosing
N0, however some authors recommend to start with a sample size proportional to the dimension d, see [31]).
Concerning the choice of N0, we decide to apply a greedy MAXMIN algorithm and sequentially choose the
points which will maximize the minimal Euclidean distance between any two points in the initial Monte Carlo
sample Y0. At each stage, we choose a Monte Carlo sample of size m = 1000. A Gaussian process with
constant unknown mean and a Matérn covariance function is used as our prior information about f . The
parameters of the Matérn covariance functions are estimated on the initial design by REML (see, e.g., [32]).
In this experiment, we follow the common practice of re-estimating the parameters of the covariance function
during the sequential strategy, and update the covariance function after each evaluation. The target conditional
probability between successive thesholds is set to p0 = 0.1. The intermediate threshold ut is chosen by the
criterion (2.3). The proposal distribution qt for a Gibbs sampling is a Gaussian distribution N (0, σ2), where
σ2 is specified in Table 2. The stopping criterion for the adaptive SUR strategy is set to ηt = 10−6 (for
t = 1, . . . , T − 1) and ηT = 10−7.

Figure 2 shows the Design of Experiment (DoE) selected by the algorithm at stage t = 1, 2, 3 and the last stage
for one run. Table 3 lists the number of evaluations (rounded to integer) at each stage averaged over 50 runs.
We can see that an average total of evaluations N =

∑T
i=0Nt = 104 are needed for our proposed Bayesian

Subset Simulation, while for Subset Simulation, the number is 1000 + 900× 4 = 4600.

3See [2] Section 2.4 for more information
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Table 3: Average number of evaluations at each stage.
Nt 1 2 3 4 5

Sub-Sim 1000 900 900 900 900

Bayesian Sub-Sim 14 17 17 18 28
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−3

100

200

300

400

N
t
 = 14 (t=1)

 

 

MC sample at stage t
Final threshold u
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t

Design of Experiment

x1

x
2
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0 0.4 0.8 1.2 1.6 2
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−3
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= 18 (t=3)

x1

x
2

0 0.4 0.8 1.2 1.6 2
x 10

−3

100

200

300

400
DoE (t=T)

 

 

MC sample at stage t=T
Final threshold u
DoE
Initial design
intermediate u

t

x1

x
2

ut, t = 1, . . . , T

Figure 2: Evaluations selected by the Bayesian Subset Simulation strategy at stage t = 1, 2, 3 and the final
Design of Experiment (DoE).

To evaluate the statistical properties of the estimator, we consider the absolute relative bias

κ =

∣∣∣∣
E(α̂)− α

α

∣∣∣∣ (9)

and the coefficient of variation

cov =
δ(α̂)

α
, (10)

where E(α̂) is the average mean and δ(α̂) is the standard deviation of the estimator α̂.

Table 4 shows the results of the comparison of our proposed Bayesian Subset Sampling algorithm with the
Subset Simulation algorithm in [3]. Crude Monte Carlo sampling is used as the reference probability of failure.
For the fairness of the comparison, we set the same intermediate probability p0 = 0.1, and sample size m =

1000 in both methods. Fifty independent runs are performed to evaluate the average of both methods. For
Bayesian Subset Simulation method, as N is different for each run, we show the minimal and maximal of N
from 50 runs.
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Table 4: Compare with Monte Carlo approach and Subset Simulation
Method m N α̂ (10−5) δ(α̂) (10−5) κ cov

MCS 108 108 3.8500 0.062 0 1.6%

Sub-Sim 1000 4600 3.9078 2.470 1.5% 63.2%

Bayesian Sub-Sim 1000 [94, 109] 3.7020 0.618 4.4% 16.7%

4. CONCLUSION

In this paper, we propose a new algorithm called Bayesian Subset Simulation for estimating small probabilities
of failure in a context of very expensive simulations. This algorithm combines the main ideas of the Subset
Simulation algorithm and the SUR strategies developed in our recent work [2].

Our preliminary results show that the number of evaluations is dramatically decreased compared to the original
Subset Simulation algorithm, while keeping a small bias and coefficient of variation.

Our future work will try to improve further the properties of our algorithm regarding the bias and the variance
of the estimator. We shall also test and validate the approach on more challenging examples.
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