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Romain Benassi, Julien Bect, and Emmanuel Vazquez SUPELEC, Gif-sur-Yvette, France Abstract. We consider the problem of optimizing a real-valued continuous function f using a Bayesian approach, where the evaluations of f are chosen sequentially by combining prior information about f , which is described by a random process model, and past evaluation results. The main difficulty with this approach is to be able to compute the posterior distributions of quantities of interest which are used to choose evaluation points. In this article, we decide to use a Sequential Monte Carlo (SMC) approach.

Overview of the contribution proposed

We consider the problem of finding the global maxima of a function f : X → R, where X ⊂ R d is assumed bounded, using the expected improvement (EI) criterion [START_REF] Mockus | The application of Bayesian methods for seeking the extremum[END_REF][START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF]. Many examples in the literature show that the EI algorithm is particularly interesting for dealing with the optimization of functions which are expensive to evaluate, as is often the case in design and analysis of computer experiments [START_REF] Santner | The design and analysis of computer experiments[END_REF]. However, going from the general framework expressed in [START_REF] Mockus | The application of Bayesian methods for seeking the extremum[END_REF] to an actual computer implementation is a difficult issue.

The main idea of an EI-based algorithm is a Bayesian one: f is viewed as a sample path of a random process ξ defined on R d . For the sake of tractability, it is generally assumed that ξ has a Gaussian process distribution conditionally to a parameter θ ∈ Θ ⊆ R s , which tunes the mean and covariance functions of the process. Then, given a prior distribution π 0 on θ and some initial evaluation results ξ(X 1 ), . . . , ξ(X n0 ) at X 1 , . . . , X n0 , an (idealized) EI algorithm constructs a sequence of evaluations points X n0+1 , X n0+2 , . . . such that, for each n ≥ n 0 ,

X n+1 = argmax x∈X ρn := θ∈Θ ρ n (x; θ)dπ n (θ) , (1) 
where π n stands for the posterior distribution of θ, conditional on the σ-algebra F n generated by X 1 , ξ(X 1 ), . . . , X n , ξ(X n ), and

ρ n (x; θ) := E n,θ ((ξ(X n+1 ) -M n ) + | X n+1 = x) is the EI at x given θ, with M n = ξ(X 0 ) ∨ • • • ∨ ξ(X n
) and E n,θ the conditional expectation given F n and θ. In practice, the computation of ρ n is easily carried out (see [START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF]) but the answers to the following two questions will probably have a direct impact on the performance and applicability of a particular implementation: a) How to deal with the integral in ρn ? b) How to deal with the maximization of ρn at each step?

We can safely say that most implementations-including the popular EGO algorithm [START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF]-deal with the first issue by using an empirical Bayes (or plug-in) approach, which consists in approximating π n by a Dirac mass at the maximum likelihood estimate of θ. A plug-in approach using maximum a posteriori estimation has been used in [START_REF] Lizotte | An experimental methodology for response surface optimization methods[END_REF]; fully Bayesian methods are more difficult to implement (see [START_REF] Benassi | Robust Gaussian process-based global optimization using a fully Bayesian expected improvement criterion[END_REF] and references therein). Regarding the optimization of ρn at each step, several strategies have been proposed (see, e.g., [START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF][START_REF] Gramacy | Particle learning of Gaussian process models for sequential design and optimization[END_REF][START_REF] Bardenet | Surrogating the surrogate: accelerating Gaussianprocess-based global optimization with a mixture cross-entropy algorithm[END_REF][START_REF] Ginsbourger | DiceOptim: Kriging-based optimization for computer experiments[END_REF]).

This article addresses both questions simultaneously, using a sequential Monte Carlo (SMC) approach [START_REF] Chopin | A sequential particle filter method for static models[END_REF][START_REF] Del Moral | Sequential Monte Carlo samplers[END_REF] and taking particular care to control the numerical complexity of the algorithm. The main ideas are the following. First, as in [START_REF] Gramacy | Particle learning of Gaussian process models for sequential design and optimization[END_REF], a weighted sample

T n = {(θ n,i , w n,i ) ∈ Θ × R, 1 ≤ i ≤ I} from π n is used to approximate ρn ; that is, I i=1 w n,i ρ n (x; θ n,i ) → I ρn (x)
. Besides, at each step n, we attach to each θ n,i a (small) population of candidate evaluation points {x n,i,j , 1 ≤ j ≤ J} which is expected to cover promising regions for that particular value of θ and such that max i,j ρn (x n,i,j ) ≈ max x ρn (x).

Algorithm and results

At each step n ≥ n 0 of the algorithm, our objective is to construct a set of weighted particles

G n = γ n,i,j , w ′ n,i,j , γ n,i,j = (θ n,i , x n,i,j ) ∈ Θ × X, w ′ n,i,j ∈ R , 1 ≤ i ≤ I, 1 ≤ j ≤ J (2) 
so that i,j w ′ n,i,j δ γn,i,j → I,J π ′ n , with

dπ ′ n (γ) = gn (x | θ) dλ(x) dπ n (θ) , x ∈ X , θ ∈ Θ , γ = (θ, x),
where λ denotes the Lebesgue measure, gn

(x | θ) = g n (x | θ)/c n (θ), g n (x | θ
) is a criterion that reflects the interest of evaluating at x (given θ and past evaluation results), and c n (θ) = X g n (x | θ)dx is a normalizing term. For instance, a relevant choice for g n is to consider the probability that ξ exceeds M n at x, at step n. (Note that we consider less θs than xs in G n to keep the numerical complexity of the algorithm low.)

To initialize the algorithm, generate a weighted sample T n0 = {(θ n0,i , w n0,i ), 1 ≤ i ≤ I} from the distribution π n0 , using for instance importance sampling with π 0 as the instrumental distribution, and pick a density q n0 over X (the uniform density, for example). Then, for each n ≥ n 0 :

Step 1: demarginalize -Using T n and q n , construct a weighted sample G n of the form (2), with x n,i,j

iid ∼ q n , w ′ n,i,j = w n,i gn(xn,i,j|θn,i) qn(xn,i,j )cn,i , and c n,i =

J j ′ =1 gn(x n,i,j ′ |θn,i) qn(x n,i,j ′ ) .
Step 2: evaluate -Evaluate ξ at X n+1 = argmax i,j

I i ′ =1 w n,i ′ ρ n (x n,i,j ; θ n,i ′ ).
Step 3: reweight/resample/move -Construct T n+1 from T n as in [START_REF] Chopin | A sequential particle filter method for static models[END_REF]: reweight the θ n,i s using w n+1,i ∝ πn+1(θn,i) πn(θn,i) w n,i , resample (e.g., by multinomial resampling), and move the θ n,i s to get θ n+1,i s using an independant Metropolis-Hastings kernel.

Step 4: forge q n+1 -Form an estimate q n+1 of the second marginal of π ′ n from the weighted sample X n = {(x n,i,j , w ′ n,i,j ), 1 ≤ i ≤ I, 1 ≤ j ≤ J}. Hopefully, such a choice of q n+1 will provide a good instrumental density for the next demarginalization step. Any (parametric or non-parametric) density estimator can be used, as long as it is easy to sample from; in this paper, a tree-based histogram estimator is used.

Nota bene: when possible, some components of θ are integrated out analytically in (1) instead of being sampled from; see [START_REF] Benassi | Robust Gaussian process-based global optimization using a fully Bayesian expected improvement criterion[END_REF].

Experiments. Preliminary numerical results, showing the relevance of a fully Bayesian approach with respect to empirical Bayes approach, have been provided in [START_REF] Benassi | Robust Gaussian process-based global optimization using a fully Bayesian expected improvement criterion[END_REF]. The scope of these results, however, was limited by a rather simplistic implementation (involving a quadrature approximation for ρn and a non-adaptive grid-based optimization for the choice of X n+1 ). We present here some results that demonstrate the capability of our new SMC-based algorithm to overcome these limitations.

The experimental setup is as follows. We compare our SMC-based algorithm, with I = J = 100, to an EI algorithm in which: 1) we fix θ (at a "good" value obtained using maximum likelihood estimation on a large dataset); 2) X n+1 is obtained by exhaustive search on a fixed LHS of size I × J. In both cases, we consider a Gaussian process ξ with a constant but unknown mean function (with a uniform distribution on R) and an anisotropic Matérn covariance function with regularity parameter ν = 5/2. Moreover, for the SMC approach, the variance parameter of the Matérn covariance function is integrated out using a Jeffreys prior and the range parameters are endowed with independent lognormal priors.

Results. Figures 1(a) and 1(b) show the average error over 100 runs of both algorithms, for the Branin function (d = 2) and the log-transformed Hartmann 6 function (d = 6). For the Branin function, the reference algorithm performs better on the first iterations, probably thanks to the "hand-tuned" parameters, but soon stalls due to its non-adaptive search strategy. Our SMC-based algorithm, however, quickly catches up and eventually overtakes the reference algorithm. On the Hartmann 6 function, we observe that the reference algorithm always lags behind our new algorithm.

We have been able to find results of this kind for other test functions. These findings are promising and need to be further investigated in a more systematic large-scale benchmark study. 

Fig. 1 .

 1 Fig. 1. A comparison of the average error to the maximum (100 runs)