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Abstract: Traditionally, probability distributions are used in risk analysis to represent the uncertainty 
associated to random (aleatory) phenomena. The parameters (e.g., their mean, variance, …) of these 
distributions are usually affected by epistemic (state-of-knowledge) uncertainty, due to limited experience 
and incomplete knowledge about the phenomena that the distributions represent: the uncertainty framework 
is then characterized by two hierarchical levels of uncertainty. Probability distributions may be used to 
characterize also the epistemic uncertainty affecting the parameters of the probability distributions. However, 
when sufficiently informative data are not available, an alternative and proper way to do this might be by 
means of possibilistic distributions. 
In this paper, we use probability distributions to represent aleatory uncertainty and possibility distributions to 
describe the epistemic uncertainty associated to the poorly known parameters of such probability 
distributions. A hybrid method is used to hierarchically propagate the two types of uncertainty. The results 
obtained on a risk model for the design of a flood protection dike are compared with those of a traditional, 
purely probabilistic, two-dimensional (or double) Monte Carlo approach. To the best of the authors’ 
knowledge, this is the first time that a hybrid Monte Carlo and possibilistic method is tailored to propagate 
the uncertainties in a risk model when the uncertainty framework is characterized by two hierarchical levels. 
The results of the case study show that the hybrid approach produces risk estimates that are more 
conservative than (or at least comparable to) those obtained by the two-dimensional Monte Carlo method. 
 
Keywords: hierarchical levels of uncertainty; possibility distributions; epistemic dependence 
 
1. INTRODUCTION 
In risk analysis, uncertainty is typically distinguished into two types: randomness due to inherent variability 
in the system behavior (objective, aleatory, stochastic uncertainty) and imprecision due to lack of knowledge 
and information on the system (subjective, epistemic, state-of-knowledge uncertainty) (Apostolakis, 1990). 
We are interested in the framework of two hierarchical levels of uncertainty, referred to as “level-2” setting 
(Limbourg and de Rocquigny, 2010): the models of the aleatory events (e.g., the failure of a mechanical 
component, the variation of its geometrical dimensions and material properties, …) contain parameters (e.g., 
probabilities, failure rates, …) that are epistemically-uncertain, i.e., known with poor precision. 
 
In current risk analysis, both types of uncertainty are represented by means of probability distributions 
(USNRC, 2009). In such a case, the uncertainty propagation can be carried out by a two-dimensional (or 
double) Monte Carlo (MC) approach (Rao et al., 2007). However, in some situations, the lack of complete 
knowledge, information and data impairs the probabilistic representation of epistemic uncertainty. A number 
of alternative representation frameworks have been proposed to handle such cases (Aven and Zio, 2010), 
e.g., fuzzy set theory (Klir and Yuan, 1995), evidence theory (Helton et al., 2008), possibility theory (Baudrit 
et al., 2006 and 2008) and interval analysis (Ferson et al., 2007). 
 
In this paper, we use probability distributions to describe aleatory uncertainty and possibility distributions to 
describe the epistemic uncertainty in the parameters of the (aleatory) probability distributions. For the 
propagation of this hybrid (probabilistic and possibilistic) uncertainty representation, the MC technique 
(Kalos and Withlock, 1986) is combined with the extension principle of fuzzy set theory (Zadeh, 1965) in a 
“level-2” hierarchical setting (Baudrit et al., 2008). This is done by i) a fuzzy interval analysis to process the 
uncertainty described by possibility distributions and ii) a repeated MC sampling of the random variables to 
process aleatory uncertainty (Baudrit et al., 2008; Baraldi and Zio, 2008). 
 
The joint hierarchical propagation of probabilistic and possibilistic representations of uncertainty is applied 
to a risk model for the design of a flood protection dike (Limbourg and de Rocquigny, 2010); the 



 

 

effectiveness of the hybrid method is compared to that of a traditional two-dimensional MC approach. To the 
best of the authors’ knowledge, this is the first time that a hybrid Monte Carlo and possibilistic method is 
embraced to propagate the uncertainties in a risk model when the uncertainty framework is characterized by 
two hierarchical levels. 
 
The remainder of the paper is organized as follows. In Section 2, the hybrid method for uncertainty 
propagation is described; in Section 3, the flood model considered for the uncertainty propagation task is 
presented; in Section 4, the results of the joint hierarchical propagation of aleatory and epistemic 
uncertainties through the flood model of Section 3 and the comparison with the two-dimensional MC 
approach are reported and commented; in Section 5, some conclusions are provided. 
 
2. JOINT HIERARCHICAL PROPAGATION OF ALEATORY AND E PISTEMIC 
UNCERTAINTIES IN A “LEVEL-2” FRAMEWORK 
We consider a model whose output is a function ( )nYYYfZ  ..., , , 21=  of n  uncertain variables Yj, j = 1, 2, …, n, 

whose uncertainty is described by probability distributions )( ..., ),( ..., ),( ),( 21
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θ , j = 1, 2, …, n: the rationale for this choice lies in the 

fact that a possibility distribution defines a family of probability distributions (bounded above and below by 
the so called possibility and necessity functions, respectively, that are special cases of plausibility and belief 
functions), which represents the expert’s inability to select a single probability distribution and, thus, the 
imprecision in his/her knowledge of the uncertain parameters. 
 
In extreme synthesis, the propagation of the hybrid uncertainty information can be performed by combining 
the Monte Carlo (MC) technique (Kalos and Withlock, 1986) with the extension principle of fuzzy interval 
analysis (Zadeh, 1965) by means of the following main steps (Baudrit et al., 2008): 
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3. repeat step 2. above for another possibility value α ∈  (0, 1]. 

 
For clarity, in Figure 1 the procedure for sampling the thi −  random interval [ ]i

j
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j
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,  for the generic 

uncertain variable jY  is illustrated. Let us suppose that the probability distribution of jY  is normal with 

parameters { } { }σµθθ ,, 2,1, == jjjθ ; the mean 1,jθµ =  is represented by a triangular possibility distribution with 

core c = 5 and support [a, b] = [4, 6] and the standard deviation 2,jθσ =  is a fixed point-wise value 

( 42, == jθσ ). With reference to the operative procedure outlined above, a possibility value α  (e.g., 3.0=α  

in Figure 1 left) is selected and the corresponding α-cut for 1,jθµ =  is found, i.e., [ ] [ ]αααα
θθµµ ,1,,1, ,, jj

=  = [4.3, 

5.7] (step 1. above). The cumulative distribution functions j

j

YF
θ

 are constructed using the upper and lower 

values of µ , i.e., 3.4,1, == αα
θµ

j
 and 7.5,1, == αα θµ j  (Figure 1 right); then, a random number i

ju  (e.g., 

7.0=i

ju  in Figure 1 right) is sampled from a uniform distribution in [0,1) and the interval [ ]i

j

i

j
yy αα ,,

,  is 



 

 

computed as [ ] ( ) [ ] ( )






 −

∈

−

∈

i

j

Yi

j

Y uFuF j

j
j

jj

j

j
j

jj

1

],[

1

],[
,

,

,
,

sup ,inf
θ

θθθ

θ
θθθ

α
α

αα

 = [ ] ( ) [ ] ( ) =






 −

∈

−

∈

i

j

Yi

j

Y uFuF jj
1

],[

1

],[
sup ,inf µ

µµµ
µµµµ

αα
αα

 

[ ] ( ) [ ] ( )




 −

∈

−

∈
7.0sup ,7.0inf

1

]7.5,3.4[

1

]7.5,3.4[

jj YY FF µ
µ

µµ
 = [ ]8.7 ,4.6  (step 2. above). 

 

-10 -5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

Figure 1. Left: triangular possibility distribution of the mean µ of the normal probability distribution of Yj ~ 
N(µ, 4) = N(θ); in evidence the α-cut of level α = 0.3 [ ] [ ] == αα

αα µµθθ ,, ,1,,1, jj
[4.3, 5.7]. Right: cumulative 

distribution functions of Yj built in correspondence of the extreme values 3.4=
α

µ  and 7.5=αµ  of the α-cut 

[ ]αα
µµ ,  of µ. 

 
For each set A contained in the universe of discourse ZU  of the output variable Z , the output of the 
algorithm is represented by a set of plausibility functions ( ]{ }1,0:)( ∈αα APl  and a set of belief functions 

( ]{ }1,0:)( ∈αα ABel , obtained in correspondence of the different possibility values α ∈  (0, 1] selected at step 
1. above; these sets of functions are then synthesized into the plausibility Pl(A) and belief Bel(A) of A as 

∫
1

0

)( αα dAPl  and ∫
1

0

)( αα dABel , respectively (Baudrit et al., 2006). Notice that Pl(A) and Bel(A) bound above 

and below, respectively, the probability P(A) of A, i.e., Bel(A) ≤ P(A) ≤ Pl(A). In this view, the likelihood of 
the value ( )Yf  passing a given threshold z  can then be computed by considering the belief and the 
plausibility of the set ( ]zA ,∞−= ; in this respect, ( ]( )zYfBel ,)( ∞−∈  and ( ]( )zYfPl ,)( ∞−∈  can be interpreted 

as bounding cumulative distributions ( ]( )zYfBelzF ,)()( ∞−∈= , ( ]( )zYfPlzF ,)()( ∞−∈= . 
 
Finally, it is worth noting that performing an interval analysis on α-cuts assumes total dependence between 
the uncertain parameters. Actually, this procedure implies strong dependence between the information 
sources (e.g., the experts or observers) that supply the input possibility distributions, because the same 
confidence level (1 – α ) is chosen to build the α-cuts for all the uncertain parameters (Baudrit et al., 2006). 
 
3. CASE STUDY: FLOOD PROTECTION DESIGN 
3.1. The model 
The model considered calculates the maximal water level of the river (i.e., the output variable of the model, 

cZ ), given several parameters (i.e., the input variables of the model) (Limbourg and de Rocquigny, 2010): 
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where: Q  is the yearly maximal water discharge (m3/s); mZ and vZ are the riverbed levels (m asl) at the 
upstream and downstream part of the river under investigation, respectively; sK  is the Strickler friction 
coefficient; B  and L  are the width and length of the river part (m), respectively. The input variables are 
classified as follows: constants: 300=B m, 5000=L m; uncertain variables: Q , mZ , vZ , sK . 
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3.2. The input variables: physical description and representation of the associated uncertainty 
In this Section, a detailed description of the uncertain input variables is given together with the explanation 
of the reasons underlying the choices of their description by probability and possibility distributions. 
 
3.2.1. The yearly maximal water flow, Q 
The Gumbel distribution ( )βα ,qGum  is a well-established probabilistic (aleatory) model for maximal flows 

(Limbourg and de Rocquigny, 2010): 
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The extreme physical bounds on variable Q  are (Limbourg and de Rocquigny, 2010): 10min =Q m3/s, which 
is a typical drought flow level (irrelevant within a flood study); 10000max =Q m3/s, which is three times larger 
than the maximal flood ever occurred. 
 
The parameters α  and β  in (2) are affected by epistemic uncertainty; however, a large amount of data (i.e., 
149 annual maximal flow values) is available for performing statistical inference on them. In particular, the 
point estimates αµ̂  and βµ̂  and the corresponding standard deviations ασ̂  and βσ̂  have been obtained for the 

parameters α  and β  of the Gumbel distribution (2) by performing Maximum Likelihood Estimations 
(MLEs) with the 149 data available: the method has provided 1013ˆ =αµ m3/s, 558ˆ =βµ m3/s, 48ˆ =ασ m3/s and 

36ˆ =βσ m3/s (Limbourg and de Rocquigny, 2010). A probabilistic treatment of this epistemic uncertainty has 

been proposed in the original paper by Limbourg and de Rocquigny (2010): in particular, 
α ~ ) )(( 48,1013ˆ,ˆ)( NNp == αα

α σµα  and β ~ )( == ββ
β σµβ ˆ,ˆ)( Np  )( 36,558N . 

 
In this paper, the Gumbel shape of the aleatory probability distributions (2) is retained but the epistemic 
uncertainty on the parameters is represented in possibilistic terms. To do so the normal probability 
distributions )(ααp  and )(ββp  used in Limbourg and de Rocquigny (2010) are transformed into the 

possibility distributions ( )απα  and ( )βπβ  by normalization, i.e., ( )
)(sup
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supports of the possibility distributions ( )απα  and ( )βπβ  are set to [ ] ][ 1061 ,965ˆˆ ,ˆˆ =+− αααα σµσµ  and 
[ ] ][ 594 ,523ˆˆ ,ˆˆ =+− ββββ σµσµ , respectively, according to the suggestions by Limbourg and de Rocquigny 

(2010). 
 
3.2.2. The upstream and downstream riverbed levels, Zm and Zv 

The minimum and maximum physical bounds on variables mZ  and vZ  are 5.53min, =mZ m and 48min, =vZ m 

(given by plausible lower geomorphologic limits to erosion) and 57max, =mZ m and 51max, =vZ m (given by 

plausible upper geomorphologic limits to sedimentation), respectively. Normal distributions truncated at the 
minimum and maximum physical bounds have been selected in Limbourg and de Rocquigny (2010) to 
represent the aleatory part of the uncertainty, i.e., mZ ~ )( ZmZmN σµ ,  and vZ ~ )( ZvZvN σµ , . An amount of 29 data 
has been used in the reference paper by Limbourg and de Rocquigny (2010) to provide the point estimates 

03.55ˆ =Zmµ m, 19.50ˆ =Zvµ m, 45.0ˆ =Zmσ m, 38.0ˆ =Zvσ m for parameters Zmµ , Zvµ , Zmσ  and Zvσ , respectively, by 
means of the MLE method. However, according to Limbourg and de Rocquigny (2010) there is large 
uncertainty about the shape of the probability distributions of mZ  and vZ ; as a consequence the authors 
embrace a conservative “level-2”, using the MLE method to provide also standard deviations as a measure of 
the uncertainty on the point estimates Zmµ̂ , Zvµ̂ , Zmσ̂  and Zvσ̂ : in particular, 08.0ˆ

ˆ =
Zmµσ , 07.0ˆ

ˆ =
Zvµσ , 06.0ˆ

ˆ =
Zmσσ  

and 05.0ˆ
ˆ =

Zvσσ . Using this information, Limbourg and de Rocquigny (2010) model the epistemic uncertainty 

associated to the parameters Zmµ , Zvµ , Zmσ  and Zvσ  by normal distributions, i.e., Zmµ ~ ( )
ZmZmN µσµ ˆ

ˆ,ˆ , 

Zvµ ~ ( )
ZvZvN µσµ ˆ

ˆ,ˆ , Zmσ ~ ( )
ZmZmN µσσ ˆ

ˆ,ˆ  and Zvσ ~ ( )
ZvZvN σσσ ˆ

ˆ,ˆ . 

 
In this paper, the shapes of the aleatory probability distributions for mZ  and vZ , i.e., )( ZmZmN σµ ,  and 

)( ZvZvN σµ , , are kept unaltered with respect to those of Limbourg and de Rocquigny (2010); on the contrary, 
the information produced by the MLE method on parameters Zmµ , Zvµ , Zmσ  and Zvσ  , i.e., the point estimates 



 

 

Zmµ̂ , Zvµ̂ , Zmσ̂ , Zvσ̂  and the corresponding standard deviations 
Zmµσ ˆ

ˆ , 
Zvµσ ˆ

ˆ , 
Zmσσ ˆ

ˆ , 
Zvσσ ˆ

ˆ , is used to build possibility 

distributions for Zmµ , Zvµ , Zmσ  and Zvσ  by means of the Chebyshev inequality (Baudrit and Dubois, 2006). 
The classical Chebyshev inequality defines a bracketing approximation on the confidence intervals around 
the known mean µ  of a random variable Y, knowing its standard deviation σ . The Chebyshev inequality 
can be written as follows: 

( )
2

1
1

k
kYP −≥≤− σµ  for 1≥k .      (3) 

 
Formula (3) can be thus used to define a possibility distribution π  that dominates any probability density 
function with given mean µ  and standard deviation σ  by considering intervals [ ]σµσµ kk +− ,  as α-cuts of 

π  and letting ( ) ( ) ασµπσµπ ==+=−
2

1

k
kk . This possibility distribution defines a probability family which 

has been proven to contain all probability distributions with mean µ  and standard deviation σ  (Baudrit and 
Dubois, 2006). 
 
In this case, the point estimates Zmµ̂ , Zvµ̂ , Zmσ̂  and Zvσ̂  produced by the MLE method, are used in (3) as the 
means of the parameters Zmµ , Zvµ , Zmσ  and Zvσ , whereas the errors 

Zmµσ ˆ
ˆ , 

Zvµσ ˆ
ˆ , 

Zmσσ ˆ
ˆ  and 

Zvσσ ˆ
ˆ  associated to the 

estimates Zmµ̂ , Zvµ̂ , Zmσ̂  and Zvσ̂  are used in (3) as the standard deviations of the parameters Zmµ , Zvµ , Zmσ  

and Zvσ  in order to build the corresponding possibility distributions Zmµπ , Zvµπ , Zmσπ and Zvσπ ; the supports of 
the possibility distributions are obtained by extending two times the standard deviation 

Zmµσ ˆ
ˆ , 

Zvµσ ˆ
ˆ , 

Zmσσ ˆ
ˆ  and 

Zvσσ ˆ
ˆ  in both directions with respect to the estimates Zmµ̂ , Zvµ̂ , Zmσ̂  and Zvσ̂ . 

 
3.2.3. The Strickler friction coefficient, Ks 
The Strickler friction coefficient sK  is perhaps the most critical source of uncertainty: actually, it is a 
simplification of a much more complex hydraulic model. The absolute physical limits of sK  are ][ ][ 60,5, =ba  
(Limbourg and de Rocquigny, 2010): 5<sK  corresponds to an extremely sinuous shape of the canal, with 
large dents and strong vegetation; 60=sK  corresponds to a canal with smoothest earth surface, rectilinear, 
without any vegetation. 
 
There is an underlying natural variability in the friction coefficient sK  since it is affected by unpredictable 
events modifying the river status (erosion/sedimentation, etc.): this variability is plausibly inferred as a 
normal distribution, i.e., sK ~ )( KsKsN σµ ,  (Limbourg and de Rocquigny, 2010). Unfortunately, the mean 
value Ksµ  of this Gaussian distribution is highly uncertain and difficult to measure; actually, direct 
measurement is impossible and data may only be retrieved through indirect calibration noised by significant 
observational uncertainty: this is reflected in only a very small series of 5 data sets available with ± 15% 
noise (Limbourg and de Rocquigny, 2010). The sample mean Ksµ̂  and standard deviation Ksσ̂  of these five 
data sets equal 27.8 and 3, respectively. In order to reflect the full amount of imprecision generated by the 
indirect measurement, the minimal sample mean 63.23ˆ

min =µ  and the maximal sample mean 97.31ˆ
max =µ  are 

also calculated, all measurements being conservatively assumed to be biased in the same direction. 
Moreover, since the low sample size adds another sort of “statistical” epistemic uncertainty to the values minµ̂  
and maxµ̂ , the 70% confidence bounds on the mean estimates minµ̂  and maxµ̂  are also computed as 

3.22
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min =− Ksσµ , respectively. In Limbourg and de Rocquigny (2010), these 

considerations result in the following uncertainty quantification for sK : 
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In this paper, the shape of the aleatory probability distribution of sK , i.e., )( KsKsN σµ ,  in (4) is retained; 
however, differently from the original paper, a possibility distribution is associated to Ksµ . In particular, a 
trapezoidal possibility distribution is here proposed: the support is chosen to be 
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trapezoidal distribution contains the most likely values of the parameter Ksµ , in this case it is set to 
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8.27ˆ =Ksµ  (which is assumed to be the most likely value for Ksµ ) the “statistical” epistemic uncertainty due to 

the low sample size (i.e., the quantity 
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4. APPLICATION 
In this Section, the following approaches are considered and compared in the task of hierarchically 
propagating aleatory and epistemic uncertainties in a “level-2” framework: i) the hybrid Monte Carlo (MC) 
and possibilistic approach of Section 2; ii) a two-dimensional (double) MC approach: a) assuming 
independence between the epistemically-uncertain parameters of the aleatory probability distributions; b) 
assuming total dependence between the epistemically-uncertain parameters of the aleatory probability 
distributions. This choice has been made to perform a fair comparison with the hybrid MC and possibilistic 
approach, which implicitly assumes by construction total dependence between the epistemically-uncertain 
parameters (see Section 2)1. 
 
It is worth noting that the probability distributions here used in the two-dimensional MC approach for Q , mZ  
and vZ  and for the corresponding epistemically-uncertain parameters are the same as those proposed in the 
original paper by Limbourg and de Rocquigny (2010) (and recalled in Section 3.2.1 and 3.2.2); the only 
exception is represented by the probability distribution for Ksµ , which for consistency and coherence of the 
comparison is here obtained by normalization of the trapezoidal possibility distribution described in Section 

3.2.3, i.e., 
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For simplicity, we start by comparing approaches ii.a and ii.b. above., i.e., double MC assuming 
independence and total dependence between the uncertain parameters, respectively. Figure 2 top left shows 
the upper and lower cumulative distribution functions of the model output cZ  obtained by the double MC 
approach assuming independence (ii.a) and total dependence (ii.b), respectively. In this case, assuming total 
dependence between the uncertain parameters is shown to lead to a smaller gap between the upper and lower 
cumulative distribution functions of the model output cZ  than assuming independence. This can be easily 
explained by analyzing the input-output functional relationship considered, i.e., 
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vc  in (1): it can be seen that one of the input variables (i.e., Q ) appears at the 

numerator of the expression, whereas others (i.e., sK  and mZ ) appear at the denominator, and another one 
appears both at the numerator and at the denominator (i.e., vZ ). In such a case, the highest possible values 
for the model output cZ  are obtained with a combination of high values of both Q  and vZ  (i.e., in other 
words, high values of the corresponding uncertain parameters α , β , Zvµ  and Zvσ ) and low values of both sK  
and mZ  (i.e., in other words, low values of the corresponding uncertain parameters Ksµ , Ksσ , Zmµ  and Zmσ ); 
conversely, the lowest possible values for the model output cZ  are obtained with a combination of low 
values of both Q  and vZ  and high values of both sK  and mZ . These extreme situations (which give rise to 

                                                 
1  It is very important to note that the condition of total epistemic (or state-of-knowledge) dependence between 
parameters of risk models is far from unlikely. For example, consider the case of a system containing a number of 
physically distinct, but similar/ nominally identical components whose failure rates are estimated by means of the same 
data set: in such situation, the distributions describing the uncertainty associated to the failure rates have to be 
considered totally dependent (Apostolakis and Kaplan, 1981; USNRC, 2009).  



 

 

the largest separation between the upper and lower cumulative distribution functions, i.e., to the most 
“epistemically-uncertain” and, thus, conservative case), can be obtained only in case ii.a above, i.e., 
assuming independence between the epistemically-uncertain parameters. Actually, if a pure random 
sampling is performed among independent uncertain parameters, all possible combinations of values can be 
in principle generated, since the entire ranges of variability of the uncertain parameters can be explored 
independently: thus, in some random samples, high values of Q  and vZ  may be combined by chance with 
low values of both sK  and mZ , whereas in other random samples low values of both Q  and vZ  may be 
combined by chance with high values of both sK  and mZ . Conversely, such “extreme” situations cannot 
occur if there is total dependence between the uncertain parameters (i.e., case ii.b above). Actually, in such a 
case high (low) values of both Q  and vZ  can only be combined with high (low) values of both sK  and mZ , 
giving rise to values of output cZ  which are lower (higher) than the highest (lowest) possible: in other words, 
the separation between the upper and lower cumulative distribution functions produced in case ii.b is always 
smaller than that produced by the “extreme” situations described above (which are possible only in case ii.a). 
 
A final, straightforward remark is in order. The considerations made above about what combinations of 
parameter values would lead to the most conservative results (i.e., to the largest gap between the upper and 
lower cumulative distribution functions) are strictly dependent on the input-output relationship considered: 
obviously, a different model (with different functional relationships between inputs and outputs) would 
require different combinations of input values in order to obtain the most conservative results. For example, 
for the hypothetical model zyxw /)*(=  the most conservative results (i.e., the largest separation between the 
upper and lower cumulative distribution functions) would be obtained by imposing total dependence 
between x  and y  and opposite dependence between z  and both x  and y . 
 
We now move on to compare i. and ii.a. Figure 2 top right shows the upper and lower cumulative 
distribution functions of the model output cZ  obtained by the double MC approach assuming independence 
between the uncertain parameters (case ii.a) and the plausibility and belief functions produced by the hybrid 
MC and possibilistic approach (case i). The results are very similar, which is explained as follows. First of 
all, there is obviously a strong similarity between the shapes of the probability distributions of the 
epistemically-uncertain parameters used in the double MC approach and the corresponding possibility 
distributions used in the hybrid approach. For example, the ranges of variability of the uncertain parameters 
are the same for both the probability and the possibility distributions considered (see Sections 3.2.1-3.2.3); in 
addition, some of the possibility distributions employed in the hybrid approach (e.g., those of parameters α  
and β  of the Gumbel distribution for Q ) are obtained by simple normalization of the probability 
distributions employed in the double MC approach (Section 3.2.1); finally, the trapezoidal probability 
distribution used in the double MC approach for the Strickler friction coefficient sK  is obtained by simple 
normalization of the trapezoidal possibility distribution proposed in the present paper and described in 
Section 3.2.3. In addition to the similarity between the probability and possibility distributions considered, 
the second motivation for the similarity between the results lies in the characteristics of the two algorithms 
used to propagate the uncertainties. In the double MC approach, a plain random sampling is performed from 
the probability distribution of the epistemically-uncertain parameters, which are considered independent: as a 
consequence of this independence, in principle all possible combinations of values of the parameters can be 
sampled, since the entire ranges of variability of the parameters are explored randomly and independently. In 
the hybrid approach, the same confidence level α  is chosen to build the α-cuts for all the possibility 
distributions of the uncertain parameters; then, the minimum and maximum values of the model output cZ  
are identified letting the uncertain parameters range independently within the corresponding α-cuts (step 2. of 
the procedure in Section 2): thus, even in this way, once a possibility level α  is selected, all possible 
combinations of parameter values can be explored, since the α-cuts of all the parameters are exhaustively 
searched to maximize/minimize the model output cZ .  
 
As final comparison, Figure 2 bottom shows the upper and lower cumulative distribution functions of the 
model output cZ  obtained by the double MC approach assuming total dependence between parameters (case 
ii.b) and the hybrid MC approach (case i.) (which assumes total dependence between parameters). From the 
consideration made above it is clear why the gap is smaller between the cumulative distributions in the two-
dimensional MC approach assuming total dependence between the uncertain parameters (case ii.b) than 



 

 

between the plausibility and belief functions produced by the hybrid approach (case i.)2: actually, in case ii.b 
only a limited set of combinations of uncertain parameter values can be randomly explored, whereas in case 
i. once a value for α  is selected, all possible combinations of uncertain parameter values are exhaustively 
searched to maximize/minimize the output (giving rise to a larger separation between the plausibility and 
belief functions). In this respect, it is with recalling that the hybrid and the double MC approaches represent 
the epistemic uncertainty in radically different way: in particular, in the hybrid method, possibility 
distributions are employed which identify a family of probability distributions for the epistemically-uncertain 
parameters; on the contrary, in the double MC approach, only a single probability distribution is assigned to 
represent the epistemic uncertainty associated to the parameters. 
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Figure 2. Comparison of the CDFs of Zc obtained by: i) the two-dimensional MC approach, considering both 
independence and total dependence between the epistemically-uncertain parameters (top, left); ii) the hybrid 
MC and possibilistic approach and the two-dimensional MC approach assuming independence between the 
epistemically-uncertain parameters (top, right); iii) the hybrid method and the two-dimensional MC method 

assuming total dependence between the epistemically-uncertain parameters (bottom). 
 
A final remark is in order with respect to the results obtained. Since in this case the hybrid MC and 
possibilistic approach gives rise to a larger separation between the plausibility and belief functions than the 
double MC approach (assuming total dependence between the epistemically-uncertain parameters), it can be 
considered more conservative. As a consequence, embracing one method instead of the other may 
significantly change the outcome of a decision making process in a risk assessment problem involving 
uncertainties: this is of paramount importance in systems that are critical from the safety view point, e.g., in 
the nuclear, aerospace, chemical and environmental fields. A quantitative demonstration of this statement is 
given in what follows.  
 
The final goal of the uncertainty propagation is to determine i) the dike level necessary to guarantee a given 
flood return period or ii) the flood risk for a given dike level. With respect to issue i) above, the quantity of 
interest that is most relevant to the decision maker is the 99% quantile of cZ , i.e., 99.0

cZ , taken as the annual 
maximal flood level. This corresponds to the level of a “centennial” flood, the yearly maximal water level 
with a 100 year-return period. With respect to issue ii) above, the quantity of interest that is most relevant to 

                                                 
2  As before, notice that this comparison is fair because both methods assume total dependence between the 
epistemically-uncertain parameters. 
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the decision maker is the probability that the maximal water level of the river cZ  exceeds a given threshold 

*z , i.e., ( )*zZP c ≥ ; in the present report, *z  = 55.5 m as in Limbourg and de Rocquigny (2010). Table 1 

reports the lower ( 99.0

,lowercZ ) and upper ( 99.0

,uppercZ ) 99th percentiles obtained from the two limiting cumulative 

distributions and the corresponding ( )*zZLowerBound c ≥  and ( )*zZUpperBound c ≥ . In addition, as synthetic 
mathematical indicators of the imprecision in the knowledge of cZ  (i.e., of the separation between the lower 
and upper cumulative distribution functions), the following percentage widths have been reported: 
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, , upperclowerc ZZ  with respect to the percentile 99.0

,probcZ  obtained by a 

traditional, one-dimensional pure probabilistic approach of reference, i.e., an approach where the 
parameters of the aleatory probability distributions are fixed, known values (see Limbourg and de 
Rocquigny (2010) for details); 
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probc zZP *>  obtained by a one-dimensional 

pure probabilistic approach of reference (see Limbourg and de Rocquigny (2010) for details). 
 

Table 1. Comparison of the lower and upper values of Zc percentiles and threshold exceedance probability 
obtained by the three method analyzed; the respective percentage widths W of the intervals are also reported. 

Method Zc
0.99 [m] (Pure prob. = 55.34m) P[Zc ≥ 55.5](Pure prob. = 0.0076) 

  [[[[ ]]]]990990 .
,

.
, , upperclowerc ZZ  [[[[ ]]]]%ZcW  [LowerBound, 

UpperBound] 
[[[[ ]]]]%*W  

Hybrid MC and possibilistic 
(total dependence) 

[54.79, 56.03] 2.2 [0.0024, 0.0241] 286 

Double MC (independence) [54.56, 56.06] 2.7 [0.0013, 0.0293] 368 
Double MC (total dependence) [54.05, 55.50] 0.8 [0.0042, 0.0111] 91 

 
The considerations reported above are confirmed: there is a similarity between the values of the indicators 
relative to the hybrid MC and possibilistic approach (case i.), and to the double MC approach assuming 
independence among the uncertain parameters (case ii.a); on the contrary, there is a significant difference 
between the values of the indicators relative to the hybrid method and to the double MC approach assuming 
total dependence between the uncertain parameters (case ii.b). In particular, one additional consideration 
concerning this latter comparison is worth to be done. Analyzing, for instance, the probability that the 
maximal water level of the river cZ  exceeds the threshold *z  = 55.5 m, [ ]5.55* =≥ zZP c , it can be seen that 
the hybrid approach is much more conservative than the double MC approach assuming total dependence 
between parameters: in fact, for instance, the upper bounds of [ ]*zZP c ≥  are 0.0241 and 0.0111 for cases i. 
and ii.b, respectively. Thus, in this case the use of the double MC approach would lead to underestimate by 
about 54% the probability that the maximal water level of the river cZ  exceeds the threshold *z  = 55.5 m: in 
other words, it would lead to underestimate by about 54% the “failure probability” of the dike and, at the 
same time, the flood risk. The same consideration holds for the dike level necessary to guarantee a 100 year-
return period represented by the 99% quantile 99.0

cZ  of the water level of the river; for example, the upper 

bounds of 99.0

cZ  are 56.03m and 55.50m for cases i. and ii.b, respectively. Thus, also in this case the use of the 
double MC approach would lead to a slight underestimation of the dike level necessary to guarantee a 100 
year flood return period. Therefore, even if the double MC approach purposedly tries to separate variability 
from imprecision, differently from the hybrid approach, it treats lack-of-knowledge in the same way as it 
treats variability (i.e., using probability distributions): as a consequence, in some cases, it may fail to produce 
reliable and conservative results, which can raise great concerns from the safety point of view. 
 
5. CONCLUSIONS 
A hybrid method has been applied for the joint propagation of probabilistic and possibilistic uncertainty 
representations onto a flood model in a “level-2” framework. The results obtained have been compared with 
those produced by a double MC approach. In particular, the following analyses have been performed: 

1. a comparison between two-dimensional MC approaches assuming total dependence and 
independence between the parameters, respectively, highlighting that in this case study, assuming 



 

 

independence among parameters leads to a larger gap between the cumulative distributions of the 
model output than assuming total dependence; 

2. a comparison between the hybrid approach and the two-dimensional MC approach assuming 
independence between the epistemically-uncertain parameters, showing that in this case study, the 
cumulative distribution functions of the model output produced by the two approaches are similar; 

3. a comparison between the hybrid and the two-dimensional MC approach assuming total dependence 
between the parameters, showing that the gap between the plausibility and belief functions of the 
model output produced by the hybrid approach is larger than the gap between the upper and lower 
CDFs produced by the two-dimensional MC method (i.e., the results produced by the hybrid 
approach are more conservative). This has been quantitatively confirmed by way of the risk model 
for the design of a flood protection dike through the computation of i) the dike level necessary to 
guarantee a 100 year flood return period and ii) the flood risk for a given dike level. In fact, both 
quantities have been underestimated by the double MC approach with respect to the hybrid 
approach. 

 
The considerations above confirm that embracing different methods for jointly propagating aleatory and 
epistemic uncertainties may generate different results, thus producing significant changes in the outcomes of 
decision making processes in risk assessment problems involving uncertainties: this is of paramount 
importance in systems that are critical from the safety view point, e.g., in the nuclear, aerospace, chemical 
and environmental fields. 
 
It seems advisable to conclude that, if nothing is known about the dependence or independence relationship 
between the epistemically-uncertain parameters, it may be advisable to resort to the hybrid MC and 
possibilistic approach because its risk estimates are more conservative than (or at least comparable to) those 
obtained by the double MC approach assuming dependence (or independence) between the epistemically-
uncertain parameters. 
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