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An Adaptive Redundancy Scheme for TCP with Network Coding

To address the inability of the standard TCP protocol to distinguish between congestive losses and random packet losses produced by the noisy channel, in this paper we propose an adaptive algorithm to dynamically adjust the redundancy factor R of the TPC/NC protocol proposed by Sundararajan et al. by adding some additional functionalities to the original network coding layer. We define a loss differentiation scheme to adjust R, based on the Vegas Loss Predictor and the collective feedback information of ACKs and duplicates ACKs, which are both indicators of the network condition. In that way the source adjusts intelligently R based on the network conditions, avoiding unnecessary TCP rate reduction due to packet losses induced by the noisy channel and preventing the network from entering in a congestion state. Our TPC/NC implementation with our adaptive scheme is full-duplex, and can manage multiple TCP connections simultaneously. Simulation results over realistic network scenarios using

OPNET Modeler show that our adaptive scheme in conjunction with the standard TCP/NC produces better TCP-throughputs than the standard TCP/NC, TCP-Reno, TPC New Reno, and TCP Reno with SACKS.

I. INTRODUCTION

Network Coding (NC) is a technique that offers a lot of potential in today's applications by allowing nodes to send out packets that are linear combinations of previously received information, instead of delivering the information to their destination in the standard store-andforward-manner [START_REF] Ahlswede | Network information flow[END_REF], [START_REF] Robert Li | Linear network coding[END_REF]. The main benefits of NC are the potential throughput improvements and a high degree of robustness, which is translated into loss resilience [START_REF] Fragouli | Network coding: an instant primer[END_REF]. Despite all the benefits of NC , we still lack of many real network coding implementations.

In [START_REF] Sundararajan | Network coding meets TCP[END_REF] Sundararajan et al. propose a new TCP-friendly protocol that interfaces network coding with TCP by introducing a new coding layer in the TCP/IP stack between TCP and IP, with the idea of using the benefits of NC and to improve TCP throughput. In this layer TCP segments are encoded at the sender and decoded at the receiver. In [START_REF] Sundararajan | Interfacing network coding with TCP: an implementation[END_REF] the authors also describe several important practical aspects of incorporating NC with TCP-Reno, as the TCP-compatible sliding window code, and new rules for acknowledging bytes to the TCP layer. Redundancy of information added by the sender is used to cover non congestion losses from TCP congestion control, and simulation results in [START_REF] Sundararajan | Network coding meets TCP[END_REF], [START_REF] Sundararajan | Interfacing network coding with TCP: an implementation[END_REF] show an improvement in TCP throughput for a constant value for R.

Setting R without having an estimation of the network conditions, as the packet loss rate of the channel and the congestion in the network at any point in time, could lead to TCP times outs when R is too low to match TPC's sending rate to the rate at which data is received at the receiver because of the losses, or, on the other hand, if R is too large, the losses can be [START_REF] Floyd | The NewReno modification to TCP's fast recovery algorithm[END_REF] DRAFT recovered, the congestion in the network could increase and the TCP throughput decrease . As the correct approach is to increase the transmission rate when the channel is dropping packets [START_REF] Tanenbaum | Computer Networks[END_REF], [START_REF] Peterson | Computer Networks: A Systems Approach[END_REF], we would like to increase R in these situations to compensate losses, as for example when TCP-Reno probing for available bandwidth believes that it has reached the network congestion state when it wrongly identifies the reception of duplicates ACKs (DUPACKS) caused by the noisy channel as a sign of congestion, resulting in an unnecessary reduction of the transmission rate, and in a similar manner decrease R when the reception of DUPACKS are really caused by a congested network.

We propose a new adaptive algorithm to adjust R that uses the feedback information available at hand, namely packet drops and packets backlogged based on the Vegas Loss Differentiation algorithm [START_REF] Brakmo | TCP vegas: end to end congestion avoidance on a global Internet[END_REF] to define a loss differentiation scheme, and based on this information adjust R, helping the TCP congestion control mechanism to properly reduce its congestion windows only when there exists congestion in the network, and reacts to packets drops in a smooth manner.

This paper evaluates the performance of TCP/NC with adaptive R vs the standard TCP/NC protocol, as well as with the standard TCP congestion control flavors, namely TCP-Reno, arrived packets in the coding buffer. To convey information about the linear combination, the NC header is added to the coded packet, which contains information about the coefficients used to mix the packets, the starting and last byte SEQ of each packet involved in the mix, and the first byte that has not been ACKed. The original packets are retained in the coding buffer until an appropriate TCP ACK arrives from the receiver side.

On the receiver side, upon receiving a new linear combination, the decoder places it in a decoding buffer, appends the corresponding coefficients to the decoding matrix ( which contains the coefficients used to mix already seen packets received), and performs Gaussian elimination.

This process helps identify the "newly seen" packet (if it exists). Then the receiver sends a TCP cumulative ACK to the sender requesting the first unseen packet in order, like in conventional TCP. The Gaussian elimination may result in a new packet being decoded. In this case the decoder delivers this packet to the receiver TCP. Any ACK generated by the receiver TCP is suppressed and not sent to the sender. These ACKs may be used for managing the decoding buffer. An important point is that the introduction of the new NC layer does not require any change in the basic features of TCP. For more detail, the reader is referred to [START_REF] Sundararajan | Interfacing network coding with TCP: an implementation[END_REF].

III. ADAPTIVE TCP/NC PROTOCOL

A. Adaptive redundancy factor

The main idea behind coding is to mask the losses on the channel from TCP. In other words, we wish to correct the losses without relying on the ACK's.

Linear combinations generated using NC should be able to correct any loss of the W packets involved in the linear combinations that have not yet been ACKed. R linear combinations on average are sent to the IP layer to compensate for the loss rate of the channel, and to match TCP's sending rate to the rate at which data are actually sent to the receiver. If there is too little March 9, 2012 DRAFT redundancy, we will not receive enough linear combinations to decode (losses are not masked from TCP), leading to timeouts and consequently low throughput.

On the other hand, if the redundancy is too large, losses are recovered, but TCP congestion window advances smoothly, the throughput is reduced due to low code rate and the congestion increases.

Assuming a constant redundancy factor equal to the reciprocal of the probability of successful reception is impractical, as this probability changes over time due to changes on bit error probability of the channel and the congestion in the network.

The main idea of this paper is to adjust dynamically R to an optimal rate based on the actual network conditions, which can be detected by collecting the feedback information available. Our objective is to adjust R in such a way that TCP congestion window slows down its sending rate vigorously to alleviate congestion only when we have an indication of a really congested network, and in the worst case to maintain its rate when loss packets are due to the noisy channel . When the channel is dropping packets we try harder by increasing the redundancy to mask the channel losses from TCP, and we decrease the redundancy when congestion is present, allowing TCP to sense the congestion and reduce its rate to alleviate it. To accomplish this objective, we make use of the TCP Vegas loss predictor to detect when congestion is present in the network, in conjunction with the number of duplicate ACK's generated by the receiver.

1) Vegas loss predictor: TCP Vegas uses a loss predictor to decide whether the network is congested or not based on rate estimators [START_REF] Brakmo | TCP vegas: end to end congestion avoidance on a global Internet[END_REF], [START_REF] Martignon | Loss differentiation schemes for TCP over wireless networks[END_REF], [START_REF] Tian | TCP in wireless environments: problems and solutions[END_REF] , estimating the backlogged packets in the buffer of the bottleneck link. We implement the Vegas Loss Predictor at the NC layer to know when the network experiences congestion and to adjust R in a more intelligent way. As in [START_REF] Brakmo | TCP vegas: end to end congestion avoidance on a global Internet[END_REF], we set BaseRT T to be the RTT of a segment when the connection is not congested (in March 9, 2012 DRAFT practice the minimum of all measured round trip times, which is reset after a time out) as a reference to derive the expected throughput the network can accommodate.

The expected throughput is given by window/BaseRT T , where window is the difference between the SEQs of the newest and oldest byte involved in the linear combinations currently in transit.

The measured throughput is given by windowAcked/RT T , where windowAcked is the number of bytes ACKed (seen by the receiver NC layer) during the last RTT, and RT T is the sample RT T of the received segment.

To estimate the cause of the packet losses, the parameter qv is calculated as

qv = window BaseRT T - windowAcked RT T BaseRT T (1) 
and compared with two thresholds α and β to know the network state. If qv ≥ β, the network is considered congested (too much backlogged), if qv ≤ α, possible losses due to random errors (little backlogged), and finally if α < qv < β, the predictor assumes that the network state is the same as in the previous estimation. In our test the best performance was achieved with the common values used in Unix OS flavor implementations, α = 1 and β = 3.

A detailed accuracy analysis of the Vegas predictor and other loss differentiation algorithms can be found in [START_REF] Martignon | Loss differentiation schemes for TCP over wireless networks[END_REF].

2) New Adaptive algorithm for R: In this algorithm we define a loss differentiation scheme with the help of the Vegas Loss Predictor [START_REF] Brakmo | TCP vegas: end to end congestion avoidance on a global Internet[END_REF], and the number of DUPACKS generated by the receiver to detect if a packet loss is due to the noisy channel or to a congested network by comparing these two measures.

We propose an implicit approach to adjust R based on this differentiation scheme, allowing the sender to react intelligently to the cause of the packet loss, due to either congestion or random March 9, 2012 DRAFT errors, and therefore prevents the network from entering in congestion or an unnecessary decrease of the congestion window.

Basically, each time an ACK is received, the quantity in (1) is evaluated. If the value of ( 1) is below the threshold that indicates a congested network and some DUPACKS have been received, it is because packets are being dropped by the noisy channel and not by buffer overflows in the router queues'. In these situations the correct approach is to increase R to mask the losses. On the other hand, if a network congestion is detected using (1), we decrease R, allowing TCP to also reduce its rate and alleviate the congestion. Initially we set R to a value that takes into account the loss in throughput due to the finiteness of the field to reduce the number of DUPACKS due to dependent linear combinations received at the receiver, and when congestion is detected R is set again to this value. The algorithm is specified below using pseudo-code.

In order to successfully implement Algorithm 1 in the NC layer, some minor improvements are added to the standard TCP/NC protocol. Timer functions regarding the RTT calculation, and variables to keep track of the number of loss events based on the reception of DUPACKS, the value of window and windowAcked in (1) have been implemented.

Our implementation of the TCP/NC protocol with the proposed algorithm is full-duplex, and also supports multiple instances, one for each TCP connection present [START_REF] Stevens | TCP/IP illustrated (vol. 2): the implementation[END_REF], which is identified by the TCP socket. To put it clear, the algorithms for the source and receiver side are shown is pseudo code below. This specification assumes only one instance and one-way TCP flow. The source side algorithm has essentially to respond to two types of events, the arrival of a packet from the source TCP, and the arrival of an ACK from the receiver via IP. On the receiver side, the algorithm has to respond to the arrival of a packet from the source, and the arrival of ACKs from the TCP sink. 

if qv ≥ β then R ← 1.1 else if qv ≥ α then if cntDupAck ≥ 2 then R ← R + 2/10; else if cntDupAck == 1 then R ← R + 1/10 else R ← R -1/10 end if else R ← 1.1 end if

IV. SIMULATION SCENARIO AND RESULTS

A. Simulated Topology

We use a client/server OPNET model to evaluate and compare the performance of TCP/NC with adaptive redundancy vs the standard TCP/NC protocol, TCP-Reno, TCP-NewReno and TCP-Reno with SACK congestion control mechanisms [START_REF] Jacobson | Congestion avoidance and control[END_REF], [START_REF] Fall | Simulation-based comparisons of tahoe, reno and sack TCP[END_REF], [START_REF] Floyd | The NewReno modification to TCP's fast recovery algorithm[END_REF], in a scenario when channel and congestion losses are simultaneously present. 

B. Simulation Setup

In this scenario the network carries traffic from three different applications, FTP, Video, and VoIP. VoIP traffic has PCM quality speech, and Video traffic is a low resolution video streaming, with a frame inter-arrival time of 10 fps and frame size of 128 × 120 pixels.

Each type of traffic is marked with a priority using the IP Type of Service (ToS) field. In this scenario the FTP application begins the connection at time t = 10 s and finishes when the file is totally transferred or by the end of the simulation time which is of 15 minutes. The VoIP and Video Streaming traffic are active between 60 s < t < 110 s and between 80 s < t < 110 s, respectively, generating congestion in the network during that period of time. In the simulation we have also modeled the loss in throughput due to the finiteness of the field (in our case, its size is 256).

March 9, 2012 DRAFT We assume for the rest of the paper a simulation time of 15 minutes, a latency equal to 100ms on the DS1 link, a FIFO queueing discipline with a buffer space equal to 500 in each router interface queue (value that is much larger than the bandwidth-delay product) , and the TCP simulation parameters shown in Table I. The parameters in Table I are used for all the TCP flavors.

Performance parameters as the congestion window size, file download response time and goodput are studied through the simulations.

March 9, 2012 DRAFT In Table II we also compare the download time response experienced by the FTP client since the FTP connection is established, in the case when the loss rate is equal to 3%.

In Figure 6 Finally, in Figure 7 we show the evolution of the TCP congestion window (cwnd in bytes) as a function of the redundancy factor R during first 450s of simulations for a loss rate of 3%, using adaptive R and contant R equal to 1.3. We observe that at the moments when cwnd curve presents almost flat segments there are peaks in redundancy curve. This represents events when DUPACKS are received, caused either by the noisy channel or by the finiteness of the field. It is also important to notice, that our scheme adapts well to a burst of errors, which can be viewed by comparing the oscillating behavior of the cwnd for R = 1.3 and the smoothness of the cwnd using our scheme in some time intervals, without having a too large value for R. Increasing R when DUPACKS are received by non congestion causes prevents the unnecessary reduction of TCP sending rate.

V. CONCLUSIONS AND PERSPECTIVES

This paper considers the issue of adapting over time the redundancy factor R in the original TCP/NC protocol.

We proposed a new adaptive algorithm to dynamically adjust R using packet drops and packets backlogged information based on received DUPACKS and the Vegas Loss Differentiation algorithm, respectively, to discover the underline cause of a packet loss in the network and take the correct action over R.

Simulation results have shown an improvement in the goodput and download FTP time In future work, simulations over heterogenous networks, a mathematical proof of the stability of the TCP/NC protocol with our adaptive redundancy scheme, as well as a characterization of the throughput behavior as a function of the loss rate will be considered.

March 9, 2012 DRAFT

Algorithm 1

 1 Calculate qv α = 1, β = 3, R = 1.1 {Initialization}Each time an ACK is received: Call timer routines and compute qv[START_REF] Ahlswede | Network information flow[END_REF] 
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Algorithm 3 Receiver Side Algorithm

1 Wait state: If any of the following events occurs, respond as follows; else, wait.

2 ACK arrives from TCP sink: If the ACK is a control packet for connection management, deliver it to the IP layer and return to the wait state; else, ignore the ACK. 

C. Simulation Results

Using the simulation setup explained in section IV-B, we first study the effect of the parameter R on the goodput of the standard TCP/NC protocol and our TCP/NC approach as a function of the loss rate of links (the loss rate being the probability of a packet getting lost on the link). Packets in the network are subject to these losses in the forward and the reverse direction.

Figure 4 shows the plot of the TCP/NC goodput as a function of the loss rate when the parameter R is varied between 1.0 and 1.5, as well as when R is dynamic. From this plot, it is clear the important role played by parameter R. We can see that for the range of R and loss rates tested, when R is varied over time according to Algorithm 1, we outperform the standard TCP/NC .

In order to compare the performance obtained with our approach with the standard TCP congestion mechanisms, in Figure 5 is plotted the TCP goodput for TCP-Reno, TCP-NewReno, March 9, 2012 DRAFT