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Abstract

To address the inability of the standard TCP protocol to distinguish between congestive losses and

random packet losses produced by the noisy channel, in this paper we propose an adaptive algorithm

to dynamically adjust the redundancy factor R of the TPC/NC protocol proposed by Sundararajan et

al. by adding some additional functionalities to the original network coding layer. We define a loss

differentiation scheme to adjust R, based on the Vegas Loss Predictor and the collective feedback

information of ACKs and duplicates ACKs, which are both indicators of the network condition. In that

way the source adjusts intelligently R based on the network conditions, avoiding unnecessary TCP rate

reduction due to packet losses induced by the noisy channel and preventing the network from entering in

a congestion state. Our TPC/NC implementation with our adaptive scheme is full-duplex, and can manage

multiple TCP connections simultaneously. Simulation results over realistic network scenarios using
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OPNET Modeler show that our adaptive scheme in conjunction with the standard TCP/NC produces

better TCP-throughputs than the standard TCP/NC, TCP-Reno, TPC New Reno, and TCP Reno with

SACKS.

I. INTRODUCTION

Network Coding (NC) is a technique that offers a lot of potential in today’s applications

by allowing nodes to send out packets that are linear combinations of previously received

information, instead of delivering the information to their destination in the standard store-and-

forward-manner [1], [2]. The main benefits of NC are the potential throughput improvements and

a high degree of robustness, which is translated into loss resilience [3]. Despite all the benefits

of NC , we still lack of many real network coding implementations.

In [4] Sundararajan et al. propose a new TCP-friendly protocol that interfaces network coding

with TCP by introducing a new coding layer in the TCP/IP stack between TCP and IP, with

the idea of using the benefits of NC and to improve TCP throughput. In this layer TCP

segments are encoded at the sender and decoded at the receiver. In [5] the authors also describe

several important practical aspects of incorporating NC with TCP-Reno, as the TCP-compatible

sliding window code, and new rules for acknowledging bytes to the TCP layer. Redundancy of

information added by the sender is used to cover non congestion losses from TCP congestion

control, and simulation results in [4], [5] show an improvement in TCP throughput for a constant

value for R.

Setting R without having an estimation of the network conditions, as the packet loss rate of

the channel and the congestion in the network at any point in time, could lead to TCP times

outs when R is too low to match TPC’s sending rate to the rate at which data is received at

the receiver because of the losses, or, on the other hand, if R is too large, the losses can be
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recovered, the congestion in the network could increase and the TCP throughput decrease . As

the correct approach is to increase the transmission rate when the channel is dropping packets [6],

[7], we would like to increase R in these situations to compensate losses, as for example when

TCP-Reno probing for available bandwidth believes that it has reached the network congestion

state when it wrongly identifies the reception of duplicates ACKs (DUPACKS) caused by the

noisy channel as a sign of congestion, resulting in an unnecessary reduction of the transmission

rate, and in a similar manner decrease R when the reception of DUPACKS are really caused by

a congested network.

We propose a new adaptive algorithm to adjust R that uses the feedback information available

at hand, namely packet drops and packets backlogged based on the Vegas Loss Differentiation

algorithm [8] to define a loss differentiation scheme, and based on this information adjust R,

helping the TCP congestion control mechanism to properly reduce its congestion windows only

when there exists congestion in the network, and reacts to packets drops in a smooth manner.

This paper evaluates the performance of TCP/NC with adaptive R vs the standard TCP/NC

protocol, as well as with the standard TCP congestion control flavors, namely TCP-Reno,

TCP-NewReno, and TCP Reno with SACKS. In what follows, the TCP/NC protocol is briefly

described in Section II, details about the adaptive algorithm are given in Section III, simulation

results are described in Section IV, and some conclusions and future research directions are

drawn in Section V.

II. PRINCIPLES OF TCP/NC PROTOCOL

TCP/NC protocol introduces a network coding layer between TCP and IP in the protocol

stack. The encoder at the sender buffers packets generated by TCP in the coding buffer, and

for every arrival from TCP, it transmits R random linear combinations of the most W recently
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arrived packets in the coding buffer. To convey information about the linear combination, the

NC header is added to the coded packet, which contains information about the coefficients used

to mix the packets, the starting and last byte SEQ of each packet involved in the mix, and the

first byte that has not been ACKed. The original packets are retained in the coding buffer until

an appropriate TCP ACK arrives from the receiver side.

On the receiver side, upon receiving a new linear combination, the decoder places it in a

decoding buffer, appends the corresponding coefficients to the decoding matrix ( which contains

the coefficients used to mix already seen packets received), and performs Gaussian elimination.

This process helps identify the "newly seen" packet (if it exists). Then the receiver sends a TCP

cumulative ACK to the sender requesting the first unseen packet in order, like in conventional

TCP. The Gaussian elimination may result in a new packet being decoded. In this case the

decoder delivers this packet to the receiver TCP. Any ACK generated by the receiver TCP is

suppressed and not sent to the sender. These ACKs may be used for managing the decoding

buffer. An important point is that the introduction of the new NC layer does not require any

change in the basic features of TCP. For more detail, the reader is referred to [5].

III. ADAPTIVE TCP/NC PROTOCOL

A. Adaptive redundancy factor

The main idea behind coding is to mask the losses on the channel from TCP. In other words,

we wish to correct the losses without relying on the ACK’s.

Linear combinations generated using NC should be able to correct any loss of the W packets

involved in the linear combinations that have not yet been ACKed. R linear combinations on

average are sent to the IP layer to compensate for the loss rate of the channel, and to match

TCP’s sending rate to the rate at which data are actually sent to the receiver. If there is too little

March 9, 2012 DRAFT



5

redundancy, we will not receive enough linear combinations to decode (losses are not masked

from TCP), leading to timeouts and consequently low throughput.

On the other hand, if the redundancy is too large, losses are recovered, but TCP congestion

window advances smoothly, the throughput is reduced due to low code rate and the congestion

increases.

Assuming a constant redundancy factor equal to the reciprocal of the probability of successful

reception is impractical, as this probability changes over time due to changes on bit error

probability of the channel and the congestion in the network.

The main idea of this paper is to adjust dynamically R to an optimal rate based on the actual

network conditions, which can be detected by collecting the feedback information available. Our

objective is to adjust R in such a way that TCP congestion window slows down its sending

rate vigorously to alleviate congestion only when we have an indication of a really congested

network, and in the worst case to maintain its rate when loss packets are due to the noisy channel

. When the channel is dropping packets we try harder by increasing the redundancy to mask the

channel losses from TCP, and we decrease the redundancy when congestion is present, allowing

TCP to sense the congestion and reduce its rate to alleviate it. To accomplish this objective, we

make use of the TCP Vegas loss predictor to detect when congestion is present in the network,

in conjunction with the number of duplicate ACK’s generated by the receiver.

1) Vegas loss predictor: TCP Vegas uses a loss predictor to decide whether the network is

congested or not based on rate estimators [8], [9], [10] , estimating the backlogged packets in

the buffer of the bottleneck link. We implement the Vegas Loss Predictor at the NC layer to

know when the network experiences congestion and to adjust R in a more intelligent way. As

in [8], we set BaseRTT to be the RTT of a segment when the connection is not congested (in
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practice the minimum of all measured round trip times, which is reset after a time out) as a

reference to derive the expected throughput the network can accommodate.

The expected throughput is given by window/BaseRTT , where window is the difference

between the SEQs of the newest and oldest byte involved in the linear combinations currently

in transit.

The measured throughput is given by windowAcked/RTT , where windowAcked is the

number of bytes ACKed (seen by the receiver NC layer) during the last RTT, and RTT is

the sample RTT of the received segment.

To estimate the cause of the packet losses, the parameter qv is calculated as

qv =

(
window

BaseRTT
− windowAcked

RTT

)
BaseRTT (1)

and compared with two thresholds α and β to know the network state. If qv ≥ β, the network

is considered congested (too much backlogged), if qv ≤ α, possible losses due to random errors

(little backlogged), and finally if α < qv < β, the predictor assumes that the network state is

the same as in the previous estimation. In our test the best performance was achieved with the

common values used in Unix OS flavor implementations, α = 1 and β = 3.

A detailed accuracy analysis of the Vegas predictor and other loss differentiation algorithms

can be found in [9].

2) New Adaptive algorithm for R: In this algorithm we define a loss differentiation scheme

with the help of the Vegas Loss Predictor [8], and the number of DUPACKS generated by the

receiver to detect if a packet loss is due to the noisy channel or to a congested network by

comparing these two measures.

We propose an implicit approach to adjust R based on this differentiation scheme, allowing the

sender to react intelligently to the cause of the packet loss, due to either congestion or random
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errors, and therefore prevents the network from entering in congestion or an unnecessary decrease

of the congestion window.

Basically, each time an ACK is received, the quantity in (1) is evaluated. If the value of (1) is

below the threshold that indicates a congested network and some DUPACKS have been received,

it is because packets are being dropped by the noisy channel and not by buffer overflows in the

router queues’. In these situations the correct approach is to increase R to mask the losses. On the

other hand, if a network congestion is detected using (1), we decrease R, allowing TCP to also

reduce its rate and alleviate the congestion. Initially we set R to a value that takes into account

the loss in throughput due to the finiteness of the field to reduce the number of DUPACKS due

to dependent linear combinations received at the receiver, and when congestion is detected R is

set again to this value. The algorithm is specified below using pseudo-code.

In order to successfully implement Algorithm 1 in the NC layer, some minor improvements

are added to the standard TCP/NC protocol. Timer functions regarding the RTT calculation, and

variables to keep track of the number of loss events based on the reception of DUPACKS, the

value of window and windowAcked in (1) have been implemented.

Our implementation of the TCP/NC protocol with the proposed algorithm is full-duplex, and

also supports multiple instances, one for each TCP connection present [11], which is identified

by the TCP socket. To put it clear, the algorithms for the source and receiver side are shown is

pseudo code below. This specification assumes only one instance and one-way TCP flow. The

source side algorithm has essentially to respond to two types of events, the arrival of a packet

from the source TCP, and the arrival of an ACK from the receiver via IP. On the receiver side,

the algorithm has to respond to the arrival of a packet from the source, and the arrival of ACKs

from the TCP sink.
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Algorithm 1 Calculate qv
α = 1, β = 3, R = 1.1 {Initialization}

Each time an ACK is received: Call timer routines and compute qv (1)

if qv ≥ β then

R← 1.1

else if qv ≥ α then

if cntDupAck ≥ 2 then

R← R + 2/10;

else if cntDupAck == 1 then

R← R + 1/10

else

R← R− 1/10

end if

else

R← 1.1

end if

IV. SIMULATION SCENARIO AND RESULTS

A. Simulated Topology

We use a client/server OPNET model to evaluate and compare the performance of TCP/NC

with adaptive redundancy vs the standard TCP/NC protocol, TCP-Reno, TCP-NewReno and

TCP-Reno with SACK congestion control mechanisms [12], [13], [14], in a scenario when

channel and congestion losses are simultaneously present.
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Algorithm 2 Source Side Algorithm
1 NUM ← 0.

2 Initialize Algorithm 1 parameters

3 Wait state: If any of the events occurs at points 4 and 5, respond as follows; else, wait

4 Packet arrives from TCP sender

a) If the packet is a control packet used for connection management, deliver it to the

IP layer and return to wait state.

b) If the packet is not already in the coding window, add it to the coding window.

c) NUM ← NUM +R

d) Repeat the following bNUMc times.

i) Generate a random linear combination of the packets in the coding window.

ii) Add the network coding header specifying the set of packets in the coding window

and the coefficients used for the random linear combination

iii) Deliver the packet to the IP layer.

iv) Update the oldest and newest byte SEQs of the linear combinations in flight.

v) NUM ← NUM − bNUMc

vi) Return to the wait state.

5 ACK arrives from receiver:

a) Call Algorithm 1

b) Remove the ACKed packet from the coding buffer

c) Hand over the ACK to the TCP sender.
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Algorithm 3 Receiver Side Algorithm
1 Wait state: If any of the following events occurs, respond as follows; else, wait.

2 ACK arrives from TCP sink: If the ACK is a control packet for connection management,

deliver it to the IP layer and return to the wait state; else, ignore the ACK.

3 Packet arrives from source side.

a) Remove the NC header and retrieve the coding vector.

b) Call Algorithm 1

c) Add the coding vector to the coding coefficient matrix, and perform Gauss Jordan

elimination to update the set of seen packets.

d) Add the payload to the decoding buffer. Perform the operations corresponding to the

Gauss Jordan elimination, on the buffer contents. If any packet gets decoded in the

process, deliver it to the TCP sink and remove it from the buffer.

e) Generate a new TCP ACK with sequence number equal to that of the oldest unseen

packet.

The simulated network topology is presented in Figure 1. It consists of two 100BaseT subnet

LANs, subnet A and B, respectively connected via gateway routers through a WAN Network

represented by the CoreNetwork.

The two gateway routers in subnet A and B are connected using the Point To Point Protocol

(PPP) and Digital Signal 1 (DS1, 1.544 Mbps) links, see Figures 2 and 3, respectively.

Subnet A consists of one FTP server running TCP/NC, one Video Streaming Server, and one

VoIP workstation that are connected to the gateway router by 100 Mbps links (see Figure 2). In

Subnet B there are the FTP client running TCP/NC, the video client, and one VoIP workstation
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Fig. 1. Topology of the wide Area Network

also connected to the gateway router by 100 Mbps links (see Figure 3).

B. Simulation Setup

In this scenario the network carries traffic from three different applications, FTP, Video, and

VoIP. VoIP traffic has PCM quality speech, and Video traffic is a low resolution video streaming,

with a frame inter-arrival time of 10 fps and frame size of 128× 120 pixels.

Each type of traffic is marked with a priority using the IP Type of Service (ToS) field.

FTP traffic is configured to have the best effort service, VoIP and Video streaming traffic with

Interactive Voice service and streaming multimedia service, respectively.

Video Streaming and VoIP use RTP protocols with normal TCP Reno for the control channel.
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Fig. 2. Servers and VoIP client located in subnetA

A 10 MB file is transferred using the FTP application from the NC Server located in subnet A

to the NC Client located in subnet B.

In this scenario the FTP application begins the connection at time t = 10 s and finishes when

the file is totally transferred or by the end of the simulation time which is of 15 minutes. The VoIP

and Video Streaming traffic are active between 60 s < t < 110 s and between 80 s < t < 110 s,

respectively, generating congestion in the network during that period of time. In the simulation

we have also modeled the loss in throughput due to the finiteness of the field (in our case, its

size is 256).
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Fig. 3. Clients Located in Subnet B

We assume for the rest of the paper a simulation time of 15 minutes, a latency equal to 100ms

on the DS1 link, a FIFO queueing discipline with a buffer space equal to 500 in each router

interface queue (value that is much larger than the bandwidth-delay product) , and the TCP

simulation parameters shown in Table I. The parameters in Table I are used for all the TCP

flavors.

Performance parameters as the congestion window size, file download response time and

goodput are studied through the simulations.
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TABLE I

OPNET TCP SIMULATION PARAMETERS

TCP Parameters Value

MSS (bytes) 1500

Slow start initial count (MSS) 2

Receive buffer size (bytes) 65535

Maximum ACK segment 2

Initial RTO (sec) 3.0

Minimum RTO (sec) 1.0

Maximum RTO (sec) 64

RTT gain 0.125

Deviation gain 0.25

RTT deviation coefficient 4.0

Duplicate ACK threshold 3

C. Simulation Results

Using the simulation setup explained in section IV-B, we first study the effect of the parameter

R on the goodput of the standard TCP/NC protocol and our TCP/NC approach as a function

of the loss rate of links (the loss rate being the probability of a packet getting lost on the

link). Packets in the network are subject to these losses in the forward and the reverse direction.

Figure 4 shows the plot of the TCP/NC goodput as a function of the loss rate when the parameter

R is varied between 1.0 and 1.5, as well as when R is dynamic. From this plot, it is clear the

important role played by parameter R. We can see that for the range of R and loss rates tested,

when R is varied over time according to Algorithm 1, we outperform the standard TCP/NC .

In order to compare the performance obtained with our approach with the standard TCP

congestion mechanisms, in Figure 5 is plotted the TCP goodput for TCP-Reno, TCP-NewReno,
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Fig. 4. Goodput vs Loss Rate for TCP/NC and TCP/NC with adaptive R

and TCP-SACKS congestion control for the same range values of the loss rate. We clearly

appreciate the improvement obtained in goodput with our approach.

In Table II we also compare the download time response experienced by the FTP client since

the FTP connection is established, in the case when the loss rate is equal to 3%.

In Figure 6 is shown the evolution of the SEQs sent by the FTP/NC Server as a function

of time for a loss rate equal to 5% for different values for the parameter R. We can observe
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Fig. 5. Goodput vs Loss Rate for TCP/NC with adaptive R and different TCP Flavors

TABLE II

DOWNLOAD FTP RESPONSE TIME FOR A 10MB FILE AND LOSS PROBABILITY EQUAL TO 3%

TCP Variants Download Response Time (s)

Reno 511.70

NewReno 523.85

RenoSACKs 447.30

TCP/NC Adaptive R 232.02
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that for R values between 1.0 and 1.5 we have more almost flat segments in the curve, which

represent drops seen by the TCP congestion window. Their cause is either errors on the noisy

channel or network congestion. With our approach, we identify the underline cause of the loss,

which allows us to take the correct action over R.
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Fig. 6. Sent SEQ vs Time for TCP/NC and TCP/NC with adaptive R

Our algorithm also adapts to the reduction of the throughput due to the finiteness of the

size of the field. Even without errors in the channel and no congestion, there is a non null

probability that the TCP sender rate does not match the TCP receiver rate and we can not
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decode, leading to time outs. If the receiver receives dependent linear combinations, it generates

DUPACKS for the last unseen packet to the source. When the source receives the DUPACKS,

it runs Algorithm 1 and verifies that the received DUPACKS are caused by the noisy channel

(dependent linear combinations received with no congestion) and will increase R to mask losses

and avoid unnecessary reduction in the TCP congestion window.

Finally, in Figure 7 we show the evolution of the TCP congestion window (cwnd in bytes)

as a function of the redundancy factor R during first 450s of simulations for a loss rate of 3%,

using adaptive R and contant R equal to 1.3. We observe that at the moments when cwnd curve

presents almost flat segments there are peaks in redundancy curve. This represents events when

DUPACKS are received, caused either by the noisy channel or by the finiteness of the field. It is

also important to notice, that our scheme adapts well to a burst of errors, which can be viewed

by comparing the oscillating behavior of the cwnd for R = 1.3 and the smoothness of the cwnd

using our scheme in some time intervals, without having a too large value for R. Increasing R

when DUPACKS are received by non congestion causes prevents the unnecessary reduction of

TCP sending rate.

V. CONCLUSIONS AND PERSPECTIVES

This paper considers the issue of adapting over time the redundancy factor R in the original

TCP/NC protocol.

We proposed a new adaptive algorithm to dynamically adjust R using packet drops and

packets backlogged information based on received DUPACKS and the Vegas Loss Differentiation

algorithm, respectively, to discover the underline cause of a packet loss in the network and take

the correct action over R.

Simulation results have shown an improvement in the goodput and download FTP time
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Fig. 7. Evolution of the redundancy and the congestion window for 1 % loss probability

response of TCP/NC with adaptive R over the standard TPC/NC protocol and different standard

flavors of TCP congestion control mechanism.

In future work, simulations over heterogenous networks, a mathematical proof of the stability

of the TCP/NC protocol with our adaptive redundancy scheme, as well as a characterization of

the throughput behavior as a function of the loss rate will be considered.
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