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Reliable Network Coding

Lana Iwaza, Marco Di Renzo, and Michel Kieffer*
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Network coding [2, 42], and more specifically random linear network coding
[39, 13, 26, 28], is a powerful tool for delivering information across a network.
Random coding techniques may be implemented in a distributed way within
network elements, independently of the structure of the network. In [28], it
has been shown that the max-flow capacity of the network can be reached with
probability exponentionally approaching one with the size of the Galois field
in which the random coding operations are performed. This work has led to
a number of practical schemes such as COPE, ANC, MIXIT, and MORE, etc.
[35, 34, 33].

Nevertheless, network coding is very sensitive to transmission errors, packet
losses, and corrupted packets which are intentionally injected by malicious
nodes. Recombinations carried out by each node lead to a progressive con-
tamination of the set of clean packets by the erroneous ones, which makes the
decoding impossible at the receiver side. On the other hand, even in the ab-
sence of errors, losses of packets lead to an insufficient number of packets at the
receiver side, making the use of the already received packets impossible.

Error correcting network coding techniques aim at protecting packets from
transmission errors, form erreneous packets, and/or losses. Error correcting net-
work coding techniques introduce a certain level of redundancy and are similar
in principle to classical error correcting codes. We can distinguish between two
families of codes. The codes introduced in [8, 62] both focus on network coding
and the introduction of redundancy. These codes require an a priori knowl-
edge of the architecture of the network and the way in which network coding
is carried out, see Section 1 for further details. These results are extended to
the framework of random network coding in [28, 4], see Section 2. The tech-
niques introduced in [31, 38, 51, 1] exploit the fact that, in the absence of errors,
random network coding preserves the space vector spanned by the transmitted
packets. The proposed robust network codes have properties that are relatively
independent from the way the network coding is carried out, see Section 3.
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Joint decoding techniques exploit the existing redundancy in the commu-
nication networks [17]. In the case of joint channel-network decoding [25, 53],
temporal or spatial diversity or the presence of channel codes [23, 37] are used to
combat the noise introduced by the communication channels, in particular wire-
less channels, see Section 4. Joint source-network decoding allows the recovery
of all or part of the initial packets, even in the presence of an insufficient num-
ber of received packets, by exploiting the correlation between transmitted data
packets, see Section 5. Therefore, these techniques provide a certain robustness
against packet loss.

1 Coherent network error correction codes

The notations and the content of this section are largely inspired by [63, 58, 62].
For this type of network error correcting codes, the topology of the network as
well as the considered network code are assumed to be known by each destination
node [59, 9].

A communication network is described by a directed acyclical graph G =
{V,€}. Alink e = (i,j) € & represents a channel linking the nodes i € V and
j € V. The set of links emerging from a node ¢ € V is written as O (i), the
set of paths converging at i is written as I (¢). A multicast network is a triple
(G,s,T), where G is a network, s € V is the source and T, the set of destination
nodes. We assume that I (s) =0, O (t) = 0 for every t € T. Let ny, = |O (s)].
Subsequently, F represents the Galois field with ¢ elements.

The source node s encodes the message to transmit as a row vector x =
[Z1,...,2n,] € F™ called a codeword. The set of codewords is written as C.
Each component of x is therefore sent on one of the links of O (s). An error
vector z € FI€l allows us to describe the errors introduced by the links in the
network. If we denote f. and f. as the input and output of the link e and if an
error z. is introduced on the link e € &, then f, = f. + z.. For every subset of
links p € &, we introduce the two vectors f, = [fe,e € p] and f, = [fe,e € p|. A
code for the network G is therefore defined by a set of codewords C C F™s and
a family of local coding functions {Be, ee€ &\O (s)}, with f, : Fll(source(e))] _y
such that

fe = ﬁe (Fl(source(e))) (1)

and where source (e) indicates the node from which e emerges. Assume that
the destination node t receives the vector u; = (ue, e € I (t)). An iterative
application of (2) allows to express u; as a function of x and of the error vector

u, = Fy (x,2). (2)

where Fy; (x,2) represents the set of network coding operations taking place
between the source s and destination ¢. In the case of coherent network codes,
the structure of Fy; (x,z) is assumed to be known at the decoder and is used
to perform the estimation of x from wu;. In order to characterize the error
correction capacity of a network code, it is necessary to introduce the notion of



distance between codewords [62]. For that purpose, consider the set of vectors
that can be received by the node ¢ when the source transmits a codeword x and
the network introduces an error vector z with a Hamming weight wg(z) less
than ¢

O, (x,¢) ={F (x,2) st wy (z) <c}. (3)

It is possible to deduce from @, (x, ¢) a pseudo-distance between two codewords
x and y emitted by the source

Dy (x,y) =min{c; +c2 st |e1 —co| < 1and @y (x,01) NP (x,¢2) # 0} (4)
and a minimal distance for the network code at the node ¢

dmin,t = min {Dt (Xa )’) , X 7é y} . (5)

The decoder seeking the minimum weight error vector (maximum likelihood
decoder if all code words have same probability) can therefore be constructed
in the following way. First, we search for the set P of pairs (x,z) satisfying (2).
In the sub-set P, C P of the pairs (x,z) whose Hamming weight z is minimal,
if all the pairs have same x, then the error is said to be correctable and x is the
estimation of the transmitted message. If this is not the case, the error is not
correctable. Tt has been shown in [57] that the correction capacity of a network
code (with a decoder that searches for the minimum weight error vector) is
| (dmin — 1) /2], where [-| indicates the rounding towards —oo. In the case of
linear network codes, the functions j3, are linear and for every e € £\O (s), we

have -
fe = Z Be’,eFe’ (6)

e'e&

where fSes . is the local coding coefficient of the node e’ towards the node e.
Using (6), [39] has shown that (2) can be written as

u = XFs,t + ZFta (7)

where F,; and F, can be deduced from (2) and are perfectly known. In the
case of linear network codes, (4) becomes

Dy (x,y) =min{cst (x—y)F;, € ®,(c)}, (8)

with
Dy (c) = {th, z € FIé wy (2) < c} , 9)

the set of messages received when the zero code word is sent. The main bounds in
terms of error correction codes have been extended to network codes in [59, 9, 58]
such as the Hamming, the Singleton, and the Gilbert-Varhsamov bound, as well
as in [7] for the Plotkin and Elias bounds. For the Hamming and Singleton
bounds

dmm - %171_1 dmlmt (10)



and
n = min maxflow (s, ). (11)
teT
In the case of a network code for which rank (F,;) = r and dmin¢ > 0, the
Hamming bound may be written as

€] < min ! , (12)
€ Tt T 4
2ito < Z-t ) (¢—1)
with 74 = [(dmin,t — 1) /2. The Singleton bound becomes
€] < gt (13)

for every node t, see [58]. The Singleton bound (13) allows to extend the notion
of MDS (for Mazimum Distance Separable) codes to network codes [60]. A net-
work code where the Singleton bound is reached is said to be MDS. It is optimal
in the sense that it exploits all the redundancy in the network error correcting
code. A code construction method enabling the Singleton bound (13) to be
reached has been proposed in [58]. The technique consists of first constructing
the local coding coefficients which ensure that the rank of matrices F,; is al-
ways sufficient. This can be done using the Jaggi-Sanders algorithm [32]. The
codewords are then generated so that there is sufficient distance between them
regardless of which destination node t is considered. The associated decoding
algorithms are presented in [59, 9]. These techniques will be described in fur-
ther details in the rest of this chapter. See also [47, 62] as well as [4] for further
details on this type of codes.

2 Codes for non-coherent networks, random codes

The random network codes proposed in [26, 28] can be seen as a practical
solution to network coding which can easily adapt to variations in the network
topology since they are decentralized. In the case of random coding, the matrices
F,. and F, introduced in (7) are random. While it is possible to deduce F
from the received packet headers (assuming that they have not been corrupted),
F;, on the other hand, cannot be easily deduced. In the absence of transmission
errors, the probability that a destination node t € T is not capable of decoding
the message received can be expressed as a function of the rank of F ;

P = Pr(rank(Fy) < n,). (14)

The probability that at least one of the destination nodes is incapable of decod-
ing the received message is deduced from (14)

P, =Pr(3t e T st rank(Fy) < n,), (15)



see [28]. If ¢; denotes the min-cut capacity between s and ¢, then §; = ¢; — n,
corresponds to the redundancy at ¢. The probability of errors at the receiver ¢
is therefore bounded as follows

N +0; Li L\ Netdi—i
' 1-— 1 _
po S (1) (- 150) (- (10 52)
? q q

=Ny
(16)
where L indicates the length of the longest path between s and ¢ and p is the
link erasure probability. When the links are perfectly reliable (p = 0), (16)

becomes
S L(Ci—i) L\ ¢
C 1 1
PO <13 (,t)<1—> 1—(1—) : 17
i—o \ ! q q "

In the presence of errors, the results of [62] briefly presented in Section 1 can be
extended. However, for a given code, the minimum distance dmyin ¢ introduced
in (5) becomes a random variable Dy, ¢. Once the code C is fixed, the distance
dwmin,t Will dependent on the (random) elements of Fy,. A partial characteriza-
tion of Dmin,+ has been proposed in [4]

(572 ("7

Pr (Duint <6 +1—d) < W

; (18)

where J C £ is the set of internal nodes in the network. This result allows to
deduce the probability of existence of an MDS code according to the size ¢ of
the Galois field in which the coding operations take place, see [4] for further
details.

3 Codes for non-coherent networks, subspace
codes

The network coding error correcting techniques proposed in [38, 51] are very
different from the ones previously introduced. A non-coherent network model is
considered, where neither the coder nor the decoder need to know the topology of
the network nor the way in which combinations of packets are carried out. This
work is motivated by the fact that, in the absence of errors, network coding
preserves the vector space spanned by the transmitted packets. The coding
operation is carried out via the transmission of a vector space inside a set of
possible vector spaces (which represents the set of codewords). A destination
node must identify the vector sub-space belonging to the code found to be the
closest (in a sense to be defined) to the vector space spanned by the received
packets. The received vector space can be different from the one that has been
transmitted, depending on the packet losses, transmission errors or erroneous
packets deliberately injected by malicious nodes.



3.1 Principle of subspace codes

In this approach, the transmission of information from the source s to a desti-
nation node ¢ is conveyed by the injection into the network of a vector sub-space
V C F™ and by the reception of a sub-space U C F*. Let x = {x1,...,Xy.},
with x; € F™, be the set of vectors (data packets) injected by the source s and
forming a base of V. In the absence of errors, t € T receives a set of packets
u = {uy,...,u,,} formed by linear combinations of {xi,...,%,_}, such that
u; = > 1" hj;x;, where the hj; are random coefficients of F. The effect of po-
tential transmission errors is modeled by the introduction of packets of errors
z = {z1,...,2,, } throughout the network. Since these packets can be injected
into any link or node in the network, at receiver side, one gets

N n,
u; = Z hjix; + Zgjkzkv (19)
i=1 k=1
where the g;;, € F are again random. In matrix form, one obtains

u= Hx + Gz. (20)

The model (19) is close to (7), but in (7), symbols belonging to F are transmitted
while in (19) packets are sent through the network. In (7), F,, and F, are
perfectly known when the network structure and the network coding operations
are known, which is not the case with the coefficients h;; and g, (this is why
we consider here non-coherent network codes). With this type of model, the
aim of the receiver cannot be to precisely identify x, but rather to identify the
vector sub-space V spanned by the vectors of x, based on the knowledge of
the vector sub-space U created by the elements of u. To introduce the notion
of subspace codes, we consider a vector space W of dimension n on F, for
exampleF”. P(W) is the set of all the vector sub-spaces of W. The dimension
of a sub-space V' € P (W) is written as dim (V). We can show that [38] for
every A € P(W) and B € P(W),

d (A, B) = dim (A + B) — dim (AN B) (21)

is a distance between vector sub-spaces. A subspace code is therefore a sub-
set of C C P(W). A codeword of C is a vector sub-space of C. The minimum
distance of C is the minimum distance between two distinct codewords while
using the distance (21)

dmin (C) = X,YEHCl}nX;éY d (Xv Y) . (22)
The maximum dimension of the code words of C is £(C) = maxxec dim (X).
When the dimension of all the codewords of C is the same, then the code is of
constant dimension. Assume that a codeword V € C is sent by the source, that
U is received by a destination ¢ € T, it is possible to describe the behavior of

the network as
U=H,(V)®aZ (23)



with & = dim (U NV), H, (V) is a sub-space of V' with dimension k such that
Hy (V)NV = 0. This type of model illustrates the impact of network coding and
the introduction of errors in terms of operations on vector sub-spaces. With this
model, the network introduces p = dim (V') — k cancellations and n, = dim (Z)
errors. In this case, [38] shows that if 2 (n, + p) < dmin (C), then a decoder with
a minimum distance allows getting V' from U. A generalization of the Singleton
bound is proposed for these codes [38]. A construction of codes on sub-spaces
similar to Reed-Solomon codes allowing the Singleton bound to be reached as
well as a decoding algorithm with minimum distance for this family of codes is
detailed in [38], emphasizing constant dimension codes.

3.2 Recent developments

This research has lead to a number of recent developments. Constant dimen-
sion codes are studied in [55] and applied to network coding by demonstrating
that Steiner structures are optimal constant dimension codes. Johnson-type
bounds are also calculated. In [20], several new codes and bounds exploiting
the distance between sub-spaces (21) are explored. In [51], a wide class of con-
stant dimension codes is studied, a new distance considering the rank metrics
is introduced. Codes associated with this metric are introduced and an effec-
tive decoding algorithm for this family is proposed. Several constant dimension
codes are introduced in [40] with a larger number of codewords than in the case
of the previously examined codes. Performance bounds as well as construction
methods for the code family introduced in [38] are proposed in [1]. An anal-
ysis of the geometric properties of the codes using rank metric is carried out
in [21]. The lower and upper bounds of the cardinality of codes of given rank
are evaluated which enables an analysis of the performance of these codes. In
[19], a new multi-level approach examining the construction of subspace codes
is presented. The authors show that the codes proposed in [38] represent a spe-
cific case of the proposed family of codes. A Gilbert-Varshamov bound relative
to the codes constructed in [52] is introduced in [36], exploiting the injection
metric. Finally, [11] studies the practical implantation of the codes introduced
in [38]. The construction of these codes for small Galois fields and limited error
correction capacity is feasible, and improves the network performance in terms
of throughput.

4 Joint network-channel coding/ decoding

This section aims to show how, in a wireless context, the redundancy existing
at the network level can help to improve channel decoding performance by per-
forming joint network-channel decoding. This joint approach allows to reduce
the number of packets lost due to transmission errors on wireless networks. This
is achieved by using, on one hand, the network spatial diversity and on the other
hand, the redundancy introduced by channel codes on the low layers of commu-
nication protocols. This research is motivated by [18], who highlights the limits



of the coding approaches in which the network and the channel or the source and
the network are separated. Studies carried out on canonical networks demon-
strate that source-channel separation remains valid for some networks although
this is not the case for network-channel separation. In [41], it is also shown
that despite the fact that separation remains valid in some cases, a separate
processing, for example source-network, results in higher costs, for example in
terms of bandwidth or energy, than a joint treatment.

Figure 1: Wireless networks with two sources, two relays and one destination

Wireless networks are a privileged area of application for joint network-
channel decoding techniques. In contrast to wired networks where lower layers
of the protocol stack are supposed to provide error-free links, wireless networks
provide packets which may be erroneous. Joint network-channel decoding tech-
niques exploit the redundancy introduced by the network coding operations in
order to improve the capacity of the channel code to correct transmission er-
rors. Instead of focusing on guaranteeing an error-free transmission on each link,
we are more interested in guaranteeing error-free decoding at the destination
nodes. The latter use the data received from incoming links for decoding. In the
presence of links providing a certain level of redundancy, error-free decodingis
possible even if decoding at the level of each individual link is not possible.
Joint network-channel decoding is therefore only useful when network coding
introduces redundancy. The first practical application of this concept to net-
works with relays has been proposed in [25]. Iterative network-channel decoding
methods for relay networks as well as for multiple access relay channels have
been proposed in[24] and [25].

4.1 Principle

Consider a wireless network topology consisting of two sources S; and Ss, two
intermediate relay nodes R; and Rs, and a destination node D, see Figure 1.



The sources generate two information messages x; and xs of k symbols each,
and protect them using channel codes in order to obtain two independent pack-
ets with n symbols each, p; and ps2, which are then transmitted towards D.
The relays receive the two packets, process them and retransmit them to D. To
simplify, the links are assumed to be without errors and the communications
are carried out on two orthogonal channels where mutual interference is negli-
gible. As a result, D receives four packets from which it attempts to recover
the information messages x; andxs sent by the sources. Assume that the two
packets p; and ps can be expressed as a function of x; and x5 as follows

p1 = x1G1 et p2 = x2Go, (24)

where GG; and G5 are two channel coding matrices with of dimension k x n with
elements belonging to F, a Galois field with ¢ elements. The relay nodes Ry
and Ry directly receive p; and p2 and are therefore capable of decoding them
to obtain x; and xo, which are then re-encoded using a channel code and a
network code to obtain

y1 = a11x1G11 + a12x2G12 (25)

and
y2 = a21X1Ga1 + az2x2Gao (26)

where the a;; are network coding coefficients and where the matrices G;; are
channel code generator matrices used at the relay. As a result, D receives four
packets p1, p2, ¥1 and yo from which it has to estimate x; and x5 transmitted by
the source. By adopting a matrix notation, one obtains the following equations

P1 G 0

P2 | _ 0 Ga X1 | o~ X1

yi | | anGu a12Gio [ X2 ] = Glotnt [ X2 } (27)
Y1 a21Ga1 a22G22

where Gjoint Tepresents the generator matrix for the joint network-channel code.
From (27), one sees that channel and network codes can be considered as a
unique code from the point of view of the network extremities and that the
latter can be represented by a unique generator matrix Gjoine. As a result, in
the presence of transmission errors, the messages x; and x, can be decoded
at the destination by directly exploiting Gjoint Or by the use of an iterative
decoding method, see for example [23].

4.2 Recent developments

Several studies linked to joint network-channel decoding have been proposed in
[24] and [25]. These studies have focused on relaxing some of the hypotheses
introduced in [25], like assuming that the error correction is perfect between the
source and the relays, see for example [5], [56], or [3]. Other results on joint
network-channel decoding and more specifically code optimization can be found
in [61].



5 Joint source-network coding/ decoding

Joint source-network coding and decoding enable all or some of the packets trans-
mitted by the sources to be recovered in the presence of an insufficient number
of received network-coded packets, by exploiting the existing or artificially in-
troduced correlation between the transmitted data packets. These techniques
also enable the distributed compression of correlated messages generated by
geographically distributed sources.

Regarding the robustness against losses, or capacity variations on some of
the links of the network, an alternative solution to the network coding tech-
niques presented in Sections 1 to 3 consists of combining multiple description
coding techniques [?], [22] and network coding. The aim is to exploit the re-
dundancy introduced by these coding techniques in order to allow a progressive
improvement of the quality of data reconstructed with the number of packets
received at the receiver nodes [30]. An already existing correlation between data
generated by the sources can also be exploited in order to obtain a scheme more
robust to packet losses.

Regarding distributed compression, distributed source coding [?, 7, 15] can
perform separate compression of correlated sources and may be as effective
(when there are no losses) as joint compression. This technique is interesting in
the case of sensor networks where it is possible to perform effecient compression
even in the absence of coordination between sensors [14, ?]. This solution does
not, however, allow to completely exploit the capacity of the network and as-
sumes that the sensors have a precise estimate of the level of correlation between
the data they produce. In this context, network coding is a natural solution for
correlated data transmission on a network with diversity. The application of
network coding for the compression of correlated sources has been proposed in
[6, 27, 54] in the case of lossless coding. The proposed techniques provide effe-
cient distributed algorithms which are capable of exploiting diversity whether
at the source or the channel level. In the case of coding with losses, compressed
sensing [16, 10] allows an approximate reconstruction of the source by exploit-
ing its properties of compressibility using random combinations of its samples.
Network coding techniques inspired by compressed sensing have been proposed
in [50] using network codes on the real fields. However, the data taken from
wireless sensor networks are, in general, quantized and network coding in the
case of real fields is therefore questionable.

5.1 Exploiting redundancy to combat loss

In order to combat packet losses in the network, it is possible to exploit the
redundancy existing in the data generated by the source(s). This redundancy
may be introduced artificially, as in [30] or present naturally, as in [29].
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5.1.1 Artificially introduced correlation

Two techniques for introducing redundancy are examined in [30]. The first in-
volves a transformation matrix whose coefficients belong to F after quantization,
see Figure 2.

x GRk yEF]; ZEFZ p=Az T ERk
— Q > T > NC > Estim. —>

Figure 2: Joint source-network coding with redundancy introduced by transfor-
mation

The samples x € R* generated by the source are quantized on ¢ levels and
are then transformed using a redundant transformation 7' € F™** with full rank
k to obtain z = T'y. As a result, there exists a matrixD € F(*~F)*" with full
rank n — k such that

Dz = 0.

The elements of z are then transmitted in the network where the network coding
operations, represented by the matrix A, are performed at the intermediate
nodes. At the decoder side, the matrix

-(3)

is constructed from the received packets. If there exists a sub-matrix B’ of B
such that B’ is full rank k, then the elements of z can be reconstructed by a
simple Gaussian elimination. This approach provides a good robustness against
packet losses with a decoding complexity similar to that of classical network
coding.

The second technique introduces redundancy via a frame expansion [22] of
data generated by the source, see Figure 3.

z€R' ycR' z€Fy p=Az FeR'
— F > Q NC » Estim. —>

Y

Figure 3: Joint source-network coding with redundancy introduced via a frame
expansion

The samples x € R¥ generated by the source are transformed using a frame
expansion F' € R"** in order to obtain y = Fx € R™. A frame on R* is a set
of n > k vectors {(;}i=1..n» such that there is B > 0 and C < oo satisfying for
every x € R¥,

Blz|* <) (z,01)° < Cllzl”, (28)
i=1

11



where (-, -) is the scalar product of R¥. The correlated samples y are then quan-
tized using a uniform quantizer with step size A with ¢ levels to obtain a vector
z € F". The samples of z are placed in independent packets and transmitted
in the network where they undergo network coding operations represented by a
matrix A. When A has full rank n, an estimate x of x can be obtained from the
received packets p by inverting the network coding matrix A, which provides
an estimate

z=Q! (A_lp) , (29)

of z, with Q~! being the quantizer reconstruction function. This estimate is
then used to obtain an estimate of x

%= (FTF)" FTz. (30)

When not enough packets are received, the coding matrix A cannot be inverted.
Since no unique estimate of x can be inferred from received packets p € F™,
one selects the one with the minimal norm

X = argminx’x (31)
under the constraints
p = Az,
y = Fx,
z € " (32)

x—az— <A1,
—x+az+ [ <AL

In (32), the first constraint allows us to take into account the received packets,
the second, the fact that the vector to be estimated have been transformed
using a frame. The third expresses the fact that each component of z belongs
to {0,...,¢ —1}. The two latter constraints allow to take into account the
bounded character of the quantization noise. This constrained optimization is
difficult because it combines the real variables x and z with the components
of z belonging to a Galois field. When the size of the Galois field ¢ is prime,
the network coding operations can be expressed in the ring of integers Z by
introducing an additional vector s € Z™ in order to express the first constraint
as

p = Az +gs. (33)

The solution for (31) under constraints (32) where the first constraint is re-
placed by (33) requires the resolution of a mixed integer quadratic optimization
problem. This type of problem can be modeled with AMPL and solved with
CPLEX. Estimation complexity here is much higher than that of a redundancy
introduction technique using a transformation in a Galois field. However, a part
of the quantization noise can be suppressed when a high number of packets is
received.

12



5.1.2 Existing correlation

In this case, we assume that the source(s) generate correlated data x € RF,
assumed, for example, to be the realization of a Gaussian vector X of mean
zero and a non-diagonal covariance matrix X. A typical scenario corresponds
to several sensors dispersed geographically and taking correlated measures x;,
i = 1,...,k. These measures are quantized in order to obtain the samples
z; € F¥ transmitted on the network where they are coded. The effect of network
coding is represented by a coding matrix A and a set of packets p = Az is
obtained at the collection point. A maximum a posteriori estimator of z from
p is proposed in [29]

7 = arg max P(z|p). (34)

The Gaussian probability distribution and the correlation between samples ofx
are exploited to obtain a new mixed quadratic optimization problem modeled
with AMPL and solved with CPLEX. Robustness against losses increase with
the correlation between the components of x.

5.2 Joint source-network coding

The aim of joint source-network coding in a network of sensors is to simulta-
neously collect and compress data in the network. This section examines the
problem of joint source-network coding in presence of losses. We will consider a
network of sensors described by a directed acyclical graph G = {V,£}. Among
the nodes of this graph, there are source nodes, s € & C V, collector nodes
t € T C V and intermediate nodes belonging to £\ (S U T). Assume that there
is a single collector node |T| = 1, and that for every s € S, there is a path from
s to t. The aim is to estimate in ¢ the dataxy,...,z, with z; € R and n = |S],
exploiting the correlation between z;s, in order to minimize exchanges on the
network. This problem is linked to robust network coding by the fact that the
proposed collection scheme must eventually be robust to losses introduced by
certain edges of the network.

Yy Yo Y3 Ym

’Z'n-ln

Figure 4: Bipartite graph associated with the joint source-network coding prob-
lem
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The lossy coding method proposed in [43] assumes that the correlation be-
tween the x; is known at . The method consists of quantizing x; at each source
using a uniform quantizer on ¢ levels. The quantized data are then sent on the
network where they are network coded. The collector node t receives m < n

coded packets y1, ..., Yy from which it has to estimate z1,...,z,. For this, it
exploits the existing correlation between the x;s. It is possible to formally write
a maximum a posteriori estimator of x = (z1,...,2,) fromy = (y1,...,ym) as
follows

Xyvap = arg maxp (x[y) , (35)

which allows us to take into account all the information that ¢t has. However,
the evaluation complexity of Xyap is exponential in the number of sensors and,
even for small networks, an exact implantation of (35) is not feasible. It is how-
ever possible to represent the relations between components of x and y using a
bipartite graph [49], where the variable nodes are z; and the check nodes are
y;, corresponding to the received packets and the nodes zj allow to account for
the correlation between the components of x, see Figure 4. Belief propagation
algorithms [44, 49] can then be employed to obtain an estimate of the a poste-
riori marginals p (z;|y) from which an a posteriori component by component
approximation can be obtained. This estimation provides an approximate so-
lution of (35). This technique is effecient when the data generated by sensors
are highly correlated. Moreover, the matrix A representing the network coding
operations (and which allows to deduce the links between the z; and y; in the
bipartite graph) should be sufficiently sparse to allow convergence of the belief
propagation algorithm. The way in which network coding must be carried out
to ensure that A has the correct properties remains an unresolved problem to
our knowledge.

6 Conclusion

This chapter has introduced several robust network coding techniques which aim
is to cope with losses and errors introduced by links or nodes of the network.
Coding techniques for coherent networks require the knowledge of the network
structure and a centralized optimization of the way in which network coding is
carried out. These techniques are well adapted to situations where the network
structure is static. The main point of interest is that it is not necessary to
introduce network coding coefficients into the packet headers passing through
the network. Therefore, performance for this type of code is deterministic.
The previous techniques can be extended to a random network coding frame-
work. This means that network coding is performed locally, in a distributed way,
providing good adaptivity to variations in network topology. This type of code
is therefore well adapted to mobile wireless networks. The disadvantage is that
the performance of robust network code for coherent networks in this type of
situation are described by random variables. It is not possible to guarantee a
minimum distance for a robust network code. This requires transmitting the
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network coding coeflicients in the packet headers which leads to an increase in
the amount of data on the links.

The subspace codes represent an interesting alternative to the previously
mentioned techniques, more specifically in a non-coherent network. These tech-
niques are particularly effective against deletions or against erroneous packets
injected deliberately by some of the nodes of the network, see [48]. These tools
can be associated with joint network-channel decoding techniques. The joint
exploitation of the redundancy of the channel code and of the network code
can significantly reduce the number of packets that would be considered as er-
roneous if only one separate process would have been carried out. The cost,
however, is an increase in the decoding complexity at the receiver.

Source-network coding techniques have a particular significance for improv-
ing network robustness to loss. These techniques also allow to have a more
progressive improvement in the quality of decoded messages when the num-
ber of packets received by a destination increases. This can be interesting for
transmitting multimedia contents, for example, in pair-to-pair networks. See
[12, 46, 45] for further details. Finally, network coding can be seen as a highly
significant tool for joint source-network coding since it allows an effective col-
lection of data across sensor networks.
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