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We address the problem of data collection in a wireless sensor network. Network coding is used for data delivery. The correlation between the measurements is exploited to recover the data at the sink, even in case of rank-deficient network matrix. The network coding operations are seen as lossy source compression, achieved by a finite-field random code generated during transmission. Decoding is performed using belief propagation on a factor graph which accounts for the correlation between the sensor measurements. Experimental results illustrate the performance of this technique for various field sizes and correlation levels.

INTRODUCTION

A Wireless Sensor Network (WSN) consists of spatially distributed autonomous sensors, and realizes a low-cost and massive sensing platform to monitor a physical quantity (e.g. temperature, pressure, sound). The task of the network is to collect measurements at the nodes and to convey them to a remote sink. A simple and computationally light transmission strategy is packet routing within the network [START_REF] Al-Karaki | Routing in wireless sensor networks: a survey[END_REF], which fails, however, to exploit the fact that the data is broadcast to enhance the throughput. An effective utilization of the wireless feature is obtained by network coding [START_REF] Ho | A random linear network coding approach to multicast[END_REF], i.e. by allowing the nodes to combine all received packets before forwarding them, thus obtaining data delivery in a distributed and cooperative fashion.

Network coding exhibits an all-or-nothing characteristic in performance: to be able to reconstruct the sensor measurements, the sink requires a number of independent linear combinations equal to the number n of the nodes. Depending on the routing algorithm, it might be necessary to wait until the delivery of much more than n coded packets before being able to perform the decoding operation. This is costly in terms of transmission delays, and hence of global throughput.

In this work we address the problem of the collection of spatially correlated measurements, characteristic of the sensing of physical quantities. We aim to exploit the statistical structure of the quantized measurement vector X to perform reconstruction even for rank-deficient transfer matrix A. Because its element are dependent, X can be thought as a compressible source. When the rank of A is m < n, the observation vector Y = AX at the sink is regarded as a collection of m random projections of X, i.e. a compressed version of X computed as a by-product of the linear network coding operation. The decoding is performed using the belief propagation algorithm, which allows to exploit the knowledge of the statistical structure of X to compensate for the missing linear constraints. This strategy is inspired by [START_REF] Caire | Noiseless Data Compression with Low-Density Parity-Check Codes[END_REF], where compressible sources are encoded using the parity-check matrix of nonbinary LDPC codes. It is to be remarked, however, that in our scenario compression is achieved in a distributed fashion, jointly with network coding, and that the resulting source code is inherently random.

The literature already reports several attempts to exploit the correlation in the measurements to enhance performance. Network coding of compressed packets has been considered in [START_REF] Chen | Distributed file sharing: Network coding meets compressed sensing[END_REF] in the context of file sharing. Distributed lossless compression [START_REF] Slepian | Noiseless coding of correlated information sources[END_REF] within the network has been proposed in [START_REF] Cristescu | Networked Slepian-Wolf: theory, algorithms, and scaling laws[END_REF]. These techniques rely on the separation of the compression and the network coding stages. A joint approach has been explored in connection with the use of compressed sensing tools [START_REF] Candès | An introduction to compressive sampling[END_REF]. Layered network organization have been proposed in [START_REF] Haupt | Compressed sensing for networked data[END_REF]: measurements from sensors in the lower layer are gathered at intermediate collection nodes, which perform random linear combinations to be transmitted to the upper layer, in charge to deliver them to the sink, see also [START_REF] Gupta | Efficient gathering of correlated data in sensor networks[END_REF][START_REF] Oka | Compressed sensing of Gauss-Markov random field with wireless sensor networks[END_REF]. Real-field network coding [START_REF] Shintre | Real and complex network codes: Promises and challenges[END_REF][START_REF] Nguyen | Netcompress: Coupling network coding and compressed sensing for efficient data communication in wireless sensor networks[END_REF] as well relies on compressed sensing. Real-field codes facilitate the recovery of data samples allowing a progressive improvement of the quality of the reconstructed samples with the number of network-coded packets received.

The techniques presented in this paper are as well motivated by concepts similar to the compressed sensing principle. The main difference with respect to known results is the proposition of a coding scheme on a finite (as opposed to the real) field. This is motivated by the way effective network codes are implemented, and by the fact that the measures are usually quantized before transmission, factors precluding the exploitation of compressive sensing methods as such.

The rest of the paper is organized as follows. Section 2.1 presents the considered signal model and the data transmission paradigm. Section 3 describes the reconstruction algorithm at the sink. Section 4 introduces a routing algorithm whose application allows to obtain sparse transfer matrices, well suited for the convergence of the decoding algorithm. Section 5 concludes the paper, presenting simulation results.

MEASUREMENTS COLLECTION AND TRANSMISSION

Signal model

We consider a network composed by n sensors, randomly spread across a designated area A. Each sensor locally measures some physical quantity. All the measurements need to be recovered at the sink node, k. The n measurements are modeled as the realization of a random vector S ∼ N (0, Σ), with σ 2 i = 1, ∀i ∈ {1, • • • , n}. The statistical dependence between S i and S j is completely described by the correlation coefficient ρ ij = E[S i S j ]. Upon sensing, each node applies to the measure the same q-level (with q prime) scalar quantizer, Q : R → GF(q). Let I a denote the interval in R mapped to the index a by Q. The probability mass function (pmf) of the quantized measure X i = Q(S i ) is easily obtained as p X i (a) = ´Ia f S i (s) ds. The joint and conditional pmfs are obtained similarly. In the following, the conditional pmf p X j |X i (b|a) will be often represented by the transition matrix P (j|i)

[q×q] .

Data transmission

The nodes collaborate to rely the packets containing quantized measurements to the sink. This is achieved via linear network coding [START_REF] Koetter | An algebraic approach to network coding[END_REF]. At each transmission instant, the i-th node computes the linear combination of its source packet and of the incoming coded packets via random coefficients drawn on GF(q). The i-th coded packet is hence broadcast, along with the header containing the coefficients of the linear combination. The sink is equipped with a buffer, which stores, at each time instant, the m coded packets received since the beginning of the transmission, along with their headers. Equivalently, the sink node k observes the vector y = [y 1 , • • • , y m ] T of coded packets, evaluated as the projection of the measurement vector

x = [x 1 , • • • , x n ] T on the random matrix A ∈ GF(q) m×n representing the network coding operation y = Ax, y h = n j=1 α hj x j . (1) 

RECONSTRUCTION OF THE SOURCE PACKETS

The sink aims to reconstruct the vector x of the source measures, upon observation of y and A. Perfect recovery of x is possible whenever the transfer matrix A in (1) has rank n [START_REF] Harvey | Deterministic network coding by matrix completion[END_REF]. We exploit the knowledge of the correlation structure of X to devise a reconstruction algorithm for rank(A) < n, which provide an estimate x of the measurement vector.

MAP estimation

The sink observes the received vector y and the rank-deficient transfer matrix A, and has knowledge of the joint pmf p X (x), which we assume estimated during the establishment of the connection between the nodes in the WSN. The reconstruction x is computed as the maximum a posteriori (MAP) estimate of X upon observation of y in (1)

x = arg max x p X|Y (x|y) = arg max x p Y |X (y|x)p X (x), (2) 
where p X (x) and p X|Y (x|y) are, respectively, the marginal and the conditional pmfs of the vector X. One has

P(Y = y | X = x) = 1 if y = Ax 0 else . (3) 
Using ( 3) with (2) gives

x = arg max x∈X (y) p X (x), (4) 
with

X (y) = {x ∈ GF(q) n | y = Ax} . (5) 
Example 1 illustrates the behavior of the MAP estimator (4).

Example 1. Consider a WSN of n = 3 nodes. Data are quantized on q = 5 levels. Assume that the joint pmf factorizes as

p X = p X 2 |X 1 (x 2 |x 1 )p X 3 |X 2 (x 3 |x 2 )p X 1 (x 1 )
, where p X 1 (x 1 ) is uniform and

P (2|1) = P (3|2) = toeplitz(0.8, 0.1, 0, 0, 0.1). Assume further that A = 1 1 0 0 1 1 and y= 1 3 .
The set X (y) of compatible measurement vectors is given by

X (y) = {(0, 1, 2) T , (1, 0, 3) T , (2, 4, 4) T , (3, 3, 0) T , (4, 2, 1) T }.
The probability P(X = x) is maximum for x = (0, 1, 2) T .

The MAP estimation (4) performed via explicit enumeration of all elements of X (y) is only tractable when n, m, and q are very small, which is not verified in large sensor networks.

Approximate MAP estimation via belief propagation

We apply the belief propagation (BP) algorithm on factor graphs to help solve the estimation problem described in the previous section. First we represent the joint distribution f S (s) with a directed acyclic graph (DAG) [START_REF] Lauritzen | Graphical models[END_REF]. To avoid directed cycles, we define an increasing well-numbering 1 of the variables, i.e. we choose to represent the directed graphical model associated to the following factorization

f S (s) = f S 1 (s 1 ) n i=1 f S i |S i-1 ,••• ,S 1 (s i |s i-1 , • • • , s 1 ). (6)
Define the partial correlation coefficient ρ ij|v , with v = {1, • • • , n} \ {i, j}, as the correlation coefficient associated to f S i ,S j |V (s i , s j |v). Since the vector S reflects a spatial correlation structure, several partial correlation coefficients are vanishing. This expresses the fact that measurements at nodes which are physically distant in the network can be considered independent, provided that measurements at intermediate nodes are known. This, for the directed Markov property [START_REF] Lauritzen | Graphical models[END_REF], results in missing edges in the DAG associated to [START_REF] Cristescu | Networked Slepian-Wolf: theory, algorithms, and scaling laws[END_REF], which exhibits a sparse structure. We assume that the selection of the DAG representation of ( 6) is performed by the sink during the establishment of the connection in the WSN, e.g. using the techniques presented in [START_REF] Drton | Multiple testing and error control in Gaussian graphical model selection[END_REF].

Since the vector X is derived by quantization of S, the statistical structure of p X (x) is described by the DAG underlying f S (s). Before the decoding operation the sink expands the graphical model incorporating the observed variables Y . The observation Y i is independent on all the other variables in the graph, conditionally to the measurements involved in the linear combination (indicated by the i-th line of A), which are connected to it with outgoing edges. The resulting DAG corresponds to the factorization of the joint pmf p Z (z) [START_REF] Candès | An introduction to compressive sampling[END_REF] where pa(X i ) is the set of realizations of the parent nodes of the variable X i .

p Z (x 1 , • • • , y m ) = n i=1 m j=1 p(x i |pa(X i )) p(y j |pa(Y j )),
The factor graph associated to the DAG is derived, as described in [START_REF] Kschischang | Factor graphs and the sum-product algorithm[END_REF], by introducing factor nodes connecting variable nodes. The j-th factor node is associated with a function g j (z j ), whose vector of arguments z j is composed by the variables connected by incident edges, which represents one of the local conditional distributions in [START_REF] Candès | An introduction to compressive sampling[END_REF]. The factors accounting for the linear constraints in A are evaluated as p Y j |pa(Y j ) (y|A [j,:] x) = δ(y -A [j,:] x) = δ(yy j ), where y j is the j-th packet received by the sink.

Example 2. A very simple example of the factor graph obtained for the linear mixing estimation problem is depicted 1 It can be proven that the definition of the directed graphical model for jointly Gaussian variables does not depend on the choice of the wellnumbering, which is not unique, see [START_REF] Drton | Multiple testing and error control in Gaussian graphical model selection[END_REF] and references therein.
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Example 2. A very simple example of the factor graph obtained for the linear mixing estimation problem is depicted in 1 It can be proven that the definition of the directed graphical model for jointly Gaussian variables does not depend on the choice of the wellnumbering, which is not unique, see [START_REF] Drton | Multiple testing and error control in Gaussian graphical model selection[END_REF] and references therein. Figure 1. The DAG of the system of random variables is depicted on the left. The factor graph, on the right, connects the factor nodes (depicted by a square) corresponding to the pmf factorization [START_REF] Candès | An introduction to compressive sampling[END_REF] with the correspondent variable nodes.
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The BP algorithm allows to marginalize the joint pmf ( 7): we are interested, in particular, to evaluate p X (x), in order to solve the optimization problem (4). The detailed algorithm can be found in [START_REF] Kschischang | Factor graphs and the sum-product algorithm[END_REF]. BP provides only an approximate solution when the factor graph contains cycles: nevertheless, loopy BP proves very effective in many cases, e.g. in the decoding of LDPC and turbo codes [START_REF] Murphy | Loopy belief propagation for approximate inference: an empirical study[END_REF]. In order to achieve convergence, high sparsity of the factor graph is required, which in general is not true for typical transfer matrices resulting from linear network coding. The following section describes an appropriate routing strategy yielding sparse transfer matrices A, and hence sparse factor graphs.

A SPARSE-TRANSFER ROUTING ALGORITHM

The density η of the network is given by the ratio between the surface of A and the number n of devices. In order to account for the effect of signal attenuation and interference, we assume that the message broadcast by node i can be received only by all nodes lying in the circle of radius θ(η) centered in i. The parameter θ(η) is chosen to guarantee that the probability of one node to be disconnected from the rest of the network is below 0.05.

The nodes exchange linear network-coded packets, as described in Section 2.1. The routing algorithm starts at instant t 0 , when each node broadcasts their coded packet (at this moment containing only the source measurement) to all the nodes within distance θ(η). After a period has elapsed, at instant t 1 , all nodes have computed the adjourned linear combinations, and the new packets are again broadcast. The algorithm fixes at T the maximum number of time periods during which coded packets relative to the same set of measurements are circulating in the network.
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The density η of the network is given by the ratio between the surface of A and the number n of devices. In order to account for the effect of signal attenuation and interference, we assume that the message broadcast by node i can be received only by all nodes lying in the circle of radius θ(η) centered in i. The parameter θ(η) is chosen to guarantee that the probability of one node to be disconnected from the rest of the network is below 0.05.

The nodes exchange linear network-coded packets, as described in Section 2.1. The routing algorithm starts at instant t 0 , when each node broadcasts their coded packet (at this moment containing only the source measurement) to all the nodes within distance θ(η). After a period has elapsed, at instant t 1 , all nodes have computed the adjourned linear combinations, and the new packets are again broadcast. The algorithm fixes at T the maximum number of time periods during which coded packets relative to the same set of measurements are circulating in the network.

The sparsity of the transfer matrix is obtained trying to reduce the degree (i.e. the number of measurements involved in each linear combination) of the coded packets by partial decoding at the intermediate nodes. The maximum degree allowed is fixed to L.

Partial decoding works as follows. If the value of a measurement can be deduced by the linear combinations received by a node (for example because packets are formed by a single element, as it is frequent during the first steps of the routing algorithm, or because all but one measures in one combination have already been locally decoded) the node stores its value. Incoming packets are inspected for known elements, which are purged from the outgoing packet. Local decoding happens only after the computation of the outgoing packet, to ensure that locally decoded measures have been forwarded at least once by the node. In comparison to standard network coding routing, this procedure allows to increase the sparsity of the transfer matrix A, without affecting the rank, after T periods have elapsed.

The algorithm, moreover, fixes at L the maximum degree of coded packets. If the degree of the combination of incoming packets (after removal of known measures) exceeds L, incoming packets are randomly discarded until the degree constraint is met. Discarded packets are not locally decoded, so that they will be forwarded upon later reception. Appropriate tuning of the parameter L allows to attain the target level of sparsity in the transfer matrix A. The rank of the matrix, however, is in general decreased with respect to standard routing. This effect is more severe as the parameter L gets smaller.

Figure 2 shows the simulation performance of the sparsetransfer routing algorithm (marked by dots in the plot), as opposed to the performance of the standard routing algorithm (marked by solid line). The results are obtained for n = 40, q = 61. The blue lines show the normalized rank rank(A)/n of the transfer matrix, as a function of the maximum number of periods T . The red lines show the sparsity of A, measured as the fraction of non-null elements of A, as a function of T .

SIMULATION RESULTS

In what follows, a WSN consisting of n = 40 sensor nodes is considered. Each sensor i generates samples which are realizations of zero-mean unit-variance Gaussian variables S i , i = 1, . . . , n. A simple correlation model is considered, namely

E [S i S j ] = ρ if |i -j| = 1 0 else. (8) 
The S i are quantized using a q-level scalar quantizer. Network coding is assumed to be performed in such a way that A contains in average about γnm non-zero random entries in GF(q), and that no column in A is the zero vector. This ensures that all measurements have been taken into account, either directly, or in a network-coded packet. Performance evaluations are done as a function of the number of received packets. Each point results from 300 realization of the source samples and of the network coding matrix. The maximum number of iterations of the BP algorithm is set to N max = 20.

The performance is evaluated in terms of error rate, corresponding to the proportion of erroneously estimated quantized samples x i and in terms of reconstruction signal-tonoise ratio SNR dB = 10 log 10

n i=1 E[S 2 i ] n i=1 E (Si-Si) 2 ,
where S i obtained from x after inverse quantization.

In Figures 3 and4, ρ = 0.995 and γ = 0.05. One sees that the probability of error gracefully decreases when m increases. Similarly, the SNR increases to reach a maximum when m is between 20 (when q is small) and 25 (for larger values of q). The reception of a number of packets about half of the number of sensors already allows a good reconstruction quality.

Figures 5 and6 illustrate now the impact of the correlation between data measured by the sensors. The larger ρ, the more efficient the estimation. Here, γ = 0.05 and q = 17.

CONCLUSION

This paper shows that network coding of correlated measures may be used to perform lossy source compression, to efficiently collect data at the sink in a WSN, even in case of rank deficient transfer matrix. Contrary to previous works, network codes over finite fields have been considered. The reconstruction of the source packets at the sink is obtained via approximate MAP estimation, performed using belief propagation on factor graphs. The presence of a statistical structure among the source measurements allows to compensate for the missing packets. A variant of random network coding is proposed, to allow the transfer matrix to achieve a target level of sparsity. This facilitates the convergence of the BP algorithm used for reconstruction.
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