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ABSTRACT
We address the problem of data collection in a wireless sensor
network. Network coding is used for data delivery. The corre-
lation between the measurements is exploited to recover the
data at the sink, even in case of rank-deficient network ma-
trix. The network coding operations are seen as lossy source
compression, achieved by a finite-field random code gener-
ated during transmission. Decoding is performed using belief
propagation on a factor graph which accounts for the correla-
tion between the sensor measurements. Experimental results
illustrate the performance of this technique for various field
sizes and correlation levels.
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1. INTRODUCTION

A Wireless Sensor Network (WSN) consists of spatially dis-
tributed autonomous sensors, and realizes a low-cost and
massive sensing platform to monitor a physical quantity (e.g.
temperature, pressure, sound). The task of the network is to
collect measurements at the nodes and to convey them to a
remote sink. A simple and computationally light transmis-
sion strategy is packet routing within the network [1], which
fails, however, to exploit the fact that the data is broadcast
to enhance the throughput. An effective utilization of the
wireless feature is obtained by network coding [2], i.e. by
allowing the nodes to combine all received packets before
forwarding them, thus obtaining data delivery in a distributed
and cooperative fashion.

Network coding exhibits an all-or-nothing characteristic
in performance: to be able to reconstruct the sensor measure-
ments, the sink requires a number of independent linear com-
binations equal to the number n of the nodes. Depending
on the routing algorithm, it might be necessary to wait until
the delivery of much more than n coded packets before be-
ing able to perform the decoding operation. This is costly in
terms of transmission delays, and hence of global throughput.

In this work we address the problem of the collection of
spatially correlated measurements, characteristic of the sens-
ing of physical quantities. We aim to exploit the statistical
structure of the quantized measurement vector X to perform
reconstruction even for rank-deficient transfer matrix A. Be-
cause its element are dependent, X can be thought as a com-
pressible source. When the rank of A is m < n, the observa-
tion vector Y = AX at the sink is regarded as a collection of
m random projections of X , i.e. a compressed version of X
computed as a by-product of the linear network coding oper-
ation. The decoding is performed using the belief propaga-
tion algorithm, which allows to exploit the knowledge of the
statistical structure of X to compensate for the missing lin-
ear constraints. This strategy is inspired by [3], where com-
pressible sources are encoded using the parity-check matrix
of nonbinary LDPC codes. It is to be remarked, however, that
in our scenario compression is achieved in a distributed fash-
ion, jointly with network coding, and that the resulting source
code is inherently random.

The literature already reports several attempts to exploit
the correlation in the measurements to enhance performance.
Network coding of compressed packets has been considered
in [4] in the context of file sharing. Distributed lossless com-
pression [5] within the network has been proposed in [6].
These techniques rely on the separation of the compression
and the network coding stages. A joint approach has been
explored in connection with the use of compressed sensing
tools [7]. Layered network organization have been proposed
in [8]: measurements from sensors in the lower layer are gath-
ered at intermediate collection nodes, which perform random
linear combinations to be transmitted to the upper layer, in
charge to deliver them to the sink, see also [9, 10]. Real-field
network coding [11, 12] as well relies on compressed sens-
ing. Real-field codes facilitate the recovery of data samples
allowing a progressive improvement of the quality of the re-
constructed samples with the number of network-coded pack-
ets received.

The techniques presented in this paper are as well moti-
vated by concepts similar to the compressed sensing princi-
ple. The main difference with respect to known results is the



proposition of a coding scheme on a finite (as opposed to the
real) field. This is motivated by the way effective network
codes are implemented, and by the fact that the measures are
usually quantized before transmission, factors precluding the
exploitation of compressive sensing methods as such.

The rest of the paper is organized as follows. Section 2.1
presents the considered signal model and the data transmis-
sion paradigm. Section 3 describes the reconstruction algo-
rithm at the sink. Section 4 introduces a routing algorithm
whose application allows to obtain sparse transfer matrices,
well suited for the convergence of the decoding algorithm.
Section 5 concludes the paper, presenting simulation results.

2. MEASUREMENTS COLLECTION AND
TRANSMISSION

2.1. Signal model

We consider a network composed by n sensors, randomly
spread across a designated area A. Each sensor locally mea-
sures some physical quantity. All the measurements need to
be recovered at the sink node, k. The n measurements are
modeled as the realization of a random vector S ∼ N (0,Σ),
with σ2

i = 1,∀i ∈ {1, · · · , n}. The statistical dependence
between Si and Sj is completely described by the correla-
tion coefficient ρij = E[SiSj ]. Upon sensing, each node ap-
plies to the measure the same q-level (with q prime) scalar
quantizer, Q : R → GF(q). Let Ia denote the interval in R
mapped to the index a by Q. The probability mass function
(pmf) of the quantized measure Xi = Q(Si) is easily ob-
tained as pXi

(a) =
´
Ia fSi

(s) ds. The joint and conditional
pmfs are obtained similarly. In the following, the conditional
pmf pXj |Xi

(b|a) will be often represented by the transition

matrix P(j|i)
[q×q].

2.2. Data transmission

The nodes collaborate to rely the packets containing quan-
tized measurements to the sink. This is achieved via linear
network coding [13]. At each transmission instant, the i-th
node computes the linear combination of its source packet
and of the incoming coded packets via random coefficients
drawn on GF(q). The i-th coded packet is hence broadcast,
along with the header containing the coefficients of the lin-
ear combination. The sink is equipped with a buffer, which
stores, at each time instant, the m coded packets received
since the beginning of the transmission, along with their
headers. Equivalently, the sink node k observes the vector
y = [y1, · · · , ym]T of coded packets, evaluated as the pro-
jection of the measurement vector x = [x1, · · · , xn]T on the
random matrix A ∈ GF(q)m×n representing the network

coding operation

y = Ax, yh =

n∑

j=1

αhj xj . (1)

3. RECONSTRUCTION OF THE SOURCE PACKETS

The sink aims to reconstruct the vector x of the source mea-
sures, upon observation of y and A. Perfect recovery of x
is possible whenever the transfer matrix A in (1) has rank
n [14]. We exploit the knowledge of the correlation structure
of X to devise a reconstruction algorithm for rank(A) < n,
which provide an estimate x̂ of the measurement vector.

3.1. MAP estimation

The sink observes the received vector y and the rank-deficient
transfer matrix A, and has knowledge of the joint pmf pX(x),
which we assume estimated during the establishment of the
connection between the nodes in the WSN. The reconstruc-
tion x̂ is computed as the maximum a posteriori (MAP) esti-
mate of X upon observation of y in (1)

x̂ = arg max
x

pX|Y (x|y) = arg max
x

pY |X(y|x)pX(x),

(2)
where pX(x) and pX|Y (x|y) are, respectively, the marginal
and the conditional pmfs of the vector X . One has

P(Y = y |X = x) =

{
1 if y = Ax

0 else
. (3)

Using (3) with (2) gives

x̂ = arg max
x∈X (y)

pX(x), (4)

with
X (y) = {x ∈ GF(q)n | y = Ax} . (5)

Example 1 illustrates the behavior of the MAP estimator (4).

Example 1. Consider a WSN of n = 3 nodes. Data are quan-
tized on q = 5 levels. Assume that the joint pmf factorizes as
pX = pX2|X1

(x2|x1)pX3|X2
(x3|x2)pX1

(x1), where pX1
(x1)

is uniform and

P(2|1)= P(3|2)= toeplitz(0.8, 0.1, 0, 0, 0.1).

Assume further that

A =

[
1 1 0
0 1 1

]
and y=

[
1
3

]
.

The set X (y) of compatible measurement vectors is given by

X (y)={(0, 1, 2)T, (1, 0, 3)T, (2, 4, 4)T, (3, 3, 0)T, (4, 2, 1)T}.
The probability P(X = x) is maximum for x̂ = (0, 1, 2)T .

The MAP estimation (4) performed via explicit enumer-
ation of all elements of X (y) is only tractable when n, m,
and q are very small, which is not verified in large sensor
networks.



3.2. Approximate MAP estimation via belief propagation

We apply the belief propagation (BP) algorithm on factor
graphs to help solve the estimation problem described in the
previous section. First we represent the joint distribution
fS(s) with a directed acyclic graph (DAG) [15]. To avoid di-
rected cycles, we define an increasing well-numbering1 of the
variables, i.e. we choose to represent the directed graphical
model associated to the following factorization

fS(s) = fS1
(s1)

n∏

i=1

fSi|Si−1,··· ,S1
(si|si−1, · · · , s1). (6)

Define the partial correlation coefficient ρij|v , with v =
{1, · · · , n} \ {i, j}, as the correlation coefficient associated
to fSi,Sj |V (si, sj |v). Since the vector S reflects a spatial
correlation structure, several partial correlation coefficients
are vanishing. This expresses the fact that measurements
at nodes which are physically distant in the network can be
considered independent, provided that measurements at in-
termediate nodes are known. This, for the directed Markov
property [15], results in missing edges in the DAG associated
to (6), which exhibits a sparse structure. We assume that the
selection of the DAG representation of (6) is performed by
the sink during the establishment of the connection in the
WSN, e.g. using the techniques presented in [16].

Since the vector X is derived by quantization of S, the
statistical structure of pX(x) is described by the DAG under-
lying fS(s). Before the decoding operation the sink expands
the graphical model incorporating the observed variables Y .
The observation Yi is independent on all the other variables in
the graph, conditionally to the measurements involved in the
linear combination (indicated by the i-th line of A), which
are connected to it with outgoing edges. The resulting DAG
corresponds to the factorization of the joint pmf pZ(z)

pZ(x1, · · · , ym)=

n∏

i=1

m∏

j=1

p(xi|pa(Xi)) p(yj |pa(Yj)), (7)

where pa(Xi) is the set of realizations of the parent nodes of
the variable Xi.

The factor graph associated to the DAG is derived, as de-
scribed in [17], by introducing factor nodes connecting vari-
able nodes. The j-th factor node is associated with a func-
tion gj(zj), whose vector of arguments zj is composed by
the variables connected by incident edges, which represents
one of the local conditional distributions in (7). The factors
accounting for the linear constraints in A are evaluated as
pYj |pa(Yj)

(y|A[j,:]x) = δ(y − A[j,:]x) = δ(y − yj), where
yj is the j-th packet received by the sink.

Example 2. A very simple example of the factor graph ob-
tained for the linear mixing estimation problem is depicted

1It can be proven that the definition of the directed graphical model
for jointly Gaussian variables does not depend on the choice of the well-
numbering, which is not unique, see [16] and references therein.
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Figure 1. The DAG of the system of random variables is de-
picted on the left. The factor graph, on the right, connects the
factor nodes (depicted by a square) corresponding to the pmf
factorization (7) with the correspondent variable nodes.

The BP algorithm allows to marginalize the joint pmf (7):
we are interested, in particular, to evaluate pX(x), in order to
solve the optimization problem (4). The detailed algorithm
can be found in [17]. BP provides only an approximate so-
lution when the factor graph contains cycles: nevertheless,
loopy BP proves very effective in many cases, e.g. in the de-
coding of LDPC and turbo codes [18]. In order to achieve
convergence, high sparsity of the factor graph is required,
which in general is not true for typical transfer matrices re-
sulting from linear network coding. The following section de-
scribes an appropriate routing strategy yielding sparse trans-
fer matrices A, and hence sparse factor graphs.

4. A SPARSE-TRANSFER ROUTING ALGORITHM

The density η of the network is given by the ratio between
the surface of A and the number n of devices. In order to ac-
count for the effect of signal attenuation and interference, we
assume that the message broadcast by node i can be received
only by all nodes lying in the circle of radius θ(η) centered
in i. The parameter θ(η) is chosen to guarantee that the prob-
ability of one node to be disconnected from the rest of the
network is below 0.05.

The nodes exchange linear network-coded packets, as de-
scribed in Section 2.1. The routing algorithm starts at in-
stant t0, when each node broadcasts their coded packet (at
this moment containing only the source measurement) to all
the nodes within distance θ(η). After a period has elapsed, at
instant t1, all nodes have computed the adjourned linear com-
binations, and the new packets are again broadcast. The algo-
rithm fixes at T the maximum number of time periods during
which coded packets relative to the same set of measurements
are circulating in the network.

The sparsity of the transfer matrix is obtained trying to
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algorithm fixes at T the maximum number of time periods
during which coded packets relative to the same set of mea-
surements are circulating in the network.

The sparsity of the transfer matrix is obtained trying to
reduce the degree (i.e. the number of measurements involved
in each linear combination) of the coded packets by partial
decoding at the intermediate nodes. The maximum degree
allowed is fixed to L.

Partial decoding works as follows. If the value of a mea-
surement can be deduced by the linear combinations received
by a node (for example because packets are formed by a sin-
gle element, as it is frequent during the first steps of the rout-
ing algorithm, or because all but one measures in one combi-
nation have already been locally decoded) the node stores its
value. Incoming packets are inspected for known elements,
which are purged from the outgoing packet. Local decoding
happens only after the computation of the outgoing packet, to
ensure that locally decoded measures have been forwarded at
least once by the node. In comparison to standard network
coding routing, this procedure allows to increase the sparsity
of the transfer matrix A, without affecting the rank, after T
periods have elapsed.

The algorithm, moreover, fixes at L the maximum degree
of coded packets. If the degree of the combination of incom-
ing packets (after removal of known measures) exceeds L, in-
coming packets are randomly discarded until the degree con-
straint is met. Discarded packets are not locally decoded, so
that they will be forwarded upon later reception. Appropriate
tuning of the parameter L allows to attain the target level of
sparsity in the transfer matrix A. The rank of the matrix, how-
ever, is in general decreased with respect to standard routing.
This effect is more severe as the parameter L gets smaller.

Figure 2 shows the simulation performance of the sparse-
transfer routing algorithm (marked by dots in the plot), as
opposed to the performance of the standard routing algo-
rithm (marked by solid line). The results are obtained for
n = 40, q = 61. The blue lines show the normalized rank

rank(A)/n of the transfer matrix, as a function of the max-
imum number of periods T . The red lines show the sparsity
of A, measured as the fraction of non-null elements of A, as
a function of T .

5. SIMULATION RESULTS

In what follows, a WSN consisting of n = 40 sensor nodes
is considered. Each sensor i generates samples which are re-
alizations of zero-mean unit-variance Gaussian variables Si,
i = 1, . . . , n. A simple correlation model is considered,
namely

E [SiSj ] =

{
ρ if |i− j| = 1

0 else.
(8)

The Si are quantized using a q-level scalar quantizer.
Network coding is assumed to be performed in such a way

that A contains in average about γnm non-zero random en-
tries in GF(q), and that no column in A is the zero vector.
This ensures that all measurements have been taken into ac-
count, either directly, or in a network-coded packet. Perfor-
mance evaluations are done as a function of the number of
received packets. Each point results from 300 realization of
the source samples and of the network coding matrix. The
maximum number of iterations of the BP algorithm is set to
Nmax = 20.

The performance is evaluated in terms of error rate, cor-
responding to the proportion of erroneously estimated quan-
tized samples xi and in terms of reconstruction signal-to-
noise ratio

SNRdB = 10 log10

( ∑n
i=1 E[S2

i ]∑n
i=1 E

[
(Si−Ŝi)

2
]) ,

where Ŝi obtained from x̂ after inverse quantization.
In Figures 3 and 4, ρ = 0.995 and γ = 0.05. One sees

that the probability of error gracefully decreases when m in-
creases. Similarly, the SNR increases to reach a maximum
when m is between 20 (when q is small) and 25 (for larger
values of q). The reception of a number of packets about half
of the number of sensors already allows a good reconstruction
quality.

Figures 5 and 6 illustrate now the impact of the correla-
tion between data measured by the sensors. The larger ρ, the
more efficient the estimation. Here, γ = 0.05 and q = 17.

6. CONCLUSION

This paper shows that network coding of correlated measures
may be used to perform lossy source compression, to effi-
ciently collect data at the sink in a WSN, even in case of rank
deficient transfer matrix. Contrary to previous works, net-
work codes over finite fields have been considered. The re-
construction of the source packets at the sink is obtained via
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approximate MAP estimation, performed using belief propa-
gation on factor graphs. The presence of a statistical structure
among the source measurements allows to compensate for the
missing packets. A variant of random network coding is pro-
posed, to allow the transfer matrix to achieve a target level of
sparsity. This facilitates the convergence of the BP algorithm
used for reconstruction.
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