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ABSTRACT
With energy-efficient resource allocation, mobile users and
base station have different objectives. While the base station
strives for an energy-efficient operation of the complete cell,
each user aims to maximize its own data rate. To obtain this
individual benefit, users may selfishly adjust their Channel
State Information (CSI) reports, reducing the cell’s energy
efficiency. To analyze this conflict of interest, we formalize
energy-efficient power allocation as a utility maximization
problem and present a simple algorithm that performs close
to the optimum. By formulating selfish CSI reporting as a
game, we prove the existence of an unique equilibrium and
characterize energy efficiency with true and selfish CSI in
closed form. Our numerical results show that, surprisingly,
energy-efficient power allocation in small cells is more ro-
bust against selfish CSI than cells with large transmit pow-
ers. This and further design rules show that our paper pro-
vides valuable theoretical insight to energy-efficient networks
when CSI reports cannot be trusted.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
Energy Efficiency, Power Allocation, Feedback, Game The-
ory

1. INTRODUCTION
Reducing the energy consumption of cellular networks is
a challenging task for network operators and telecommu-
nication equipment vendors. One relevant approach is the
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energy-efficient allocation of wireless resources such as band-
width, time and transmit power. By carefully allocating
these resources to the mobile users, a base station can re-
duce the energy consumption of the complete cell [12, 9].

However, such centralized form of energy-efficient resource
allocation raises two problems. The first problem results
from the time-variant nature of the wireless fading channel.
To adapting to the users’ varying channels, the base station
has to update the resource allocation frequently, e.g., once
per millisecond in most LTE systems [2, Fig. 5.1-1]. This
renders computational complex approaches infeasible. The
second problem results from fading and interference, causing
most wireless channels to be non-reciprocal. Consequently,
the channel state is only known at the mobile user and needs
to be transferred to the base station. The accuracy of this
CSI feedback is crucial for the quality of the resource allo-
cation decision. If users report inaccurate CSI, the resource
allocation does not reflect the actual channel states and the
performance of the overall network may degrade.

In this paper, we analyze energy-efficient resource allocation
when users and base station have different interests. While
the base station strives for energy efficiency of the whole cell,
each users aims to maximize its individual Signal-to-Noise
Ratio (SNR). Note that in a perfect cellular network the
base station would simply overrule the users’ interest. In
practice, however, the base station controls the CSI format
[1, Sec. 7.2] but not how mobile users generate the reported
CSI values. Thus, mobile users can selfishly report CSI that
provides them an individual benefit while the performance
of the overall network suffers.

This makes it necessary to analyze the effect of selfishly cho-
sen CSI on the performance of the wireless cell. To do so,
we apply a game theoretical approach. Here, the mobile
users are reflected as players who selfishly choose their CSI
to maximize their individual performance. For all users, the
base station computes the resource allocation by maximizing
a utility function. This function expresses the energy effi-
ciency of the complete cell. Limiting our analysis to power
allocation allows us to formally compare centralized power
allocation with true CSI to the allocation with selfishly cho-
sen CSI. Consequently, our results provide significant insight
to energy-efficient cellular networks in which the CSI accu-
racy cannot be trusted.



1.1 Contributions
In particular, we make the following contributions:

1. We analyze the optimization problem, where the base
station maximizes the cell’s energy efficiency under
power constraints. We obtain an optimality condition
and propose a simple power allocation algorithm whose
energy efficiency is close to the optimum in general.

2. We prove that there exists a unique equilibrium for
the users’ selfish choice of the CSI reports. This allows
studying the network in a stable state, where no user
has an unilateral interest to report a different CSI.

3. We compare the performance with true and selfish CSI
reporting. For both types of reports, we provide a
closed-form result for the cell’s energy efficiency. Nu-
merical results surprisingly show that small cells are
more robust to selfish CSI than cells with large trans-
mit power constraints.

All in all, our paper provides the theoretical insight to cope
with selfish CSI reports in cellular networks with energy-
efficient power allocation.

1.2 Paper Structure
Our paper is structured as follows. After discussing the nov-
elty of our study with respect to related work in Sec. 2,
we describe the studied cellular system in Sec. 3.1. En-
ergy efficiency is formalized in terms of a constrained utility
maximization problem in Sec. 3.2. Using this function, we
formulate the non-convex optimization problem in Sec. 4.
Having discussed further properties of this problem, we pro-
vide an optimality condition and derive a power allocation
algorithm. Sec. 5 is devoted to the game theoretical study
of selfish CSI reports. Therein, we prove the existence of an
unique equilibrium for the proposed energy-efficient power
allocation. Finally, the numerical results in Sec. 6 point out
by how much a selfish choice of CSI reduces the energy effi-
ciency of the system and by how much it increases the users’
individual SNRs.

2. RELATED WORK AND NOVELTY
Our paper joins two fields of research. The first field is
energy-efficient power control, where often transmit power
is minimized under Quality of Service (QoS) constraints
[5, 13]. We do not follow this common approach in our
work. Instead, we maximize of the ratio between throughput
and transmit power. This utility function was introduced
in [6] and was used in [10, 4] for Code-Division-Multiple-
Access (CDMA) systems. With CDMA, employed such util-
ity function for power allocation results in a game where the
players interact via the interference term. Our work differs,
as the players interact via the power allocation algorithm
of the base station. Such centralized resource allocation is
common with cellular systems such as LTE and has not been
studied with the utility functions from [6] so far.

The second related field is scheduling with non-cooperative
mobile users. Typically, a centralized scheduler at the base
station allocates wireless channel resources to maximize the
instantaneous sum throughput of its cell. As such allocation
is based on CSI reports, some users may not report their ac-
tual channel gains to obtain more resource from the base

station. In [7], Kavitha et al. model this selfish choice of
CSI as a signaling game [11]. Here, even the base station
is considered as a player that knows which mobile users co-
operate and which not. The same authors take a similar
approach in [8] for α-fair scheduling. Here, a signaling game
cannot be used since each resource allocation is affected by
the scheduling history.

Although we focus on selfish CSI reporting, our work differs
significantly. Unlike the above papers, we do not include
the base station in the set of players. Instead, the base
station performs centralized power allocation under its own
general objective – energy efficiency per cell. This objective
differs from the users’ aim, which strive for maximizing their
individual SNR. This conflict of interest between the user’s
individual objective and the base station’s objective per cell
has not been studied so far.

3. SYSTEM MODEL
3.1 Wireless Scenario
We study a single wireless cell where one base station allo-
cates transmit power to K mobile users during the downlink.
An arbitrary user is denoted by k ∈ K = {1, . . . ,K} and the
downlink transmit power is pk ∈ [0, P ] Watts for each user.
Time is divided into slots and power allocation is done once
per slot. To focus on the effect of power allocation and to
provide tractable results we ignore subband and time slot al-
location. Consequently, each user has its own, fixed subband
of bandwidth W and inter-cell interference is ignored.

For each subband, the wireless channel from the base sta-
tion to the user is assumed to experience quasi-static, time-
selective fading with channel coefficient hk. The fading pro-
cess is assumed to be i.i.d. Rayleigh, which leads to expo-
nentially distributed channel gains |hk|2. For each mobile
user k ∈ K, we can write the instantaneous SNR as

γ
(
pk, |hk|2

)
=
pk|hk|2

σ2
, (1)

with σ2 the variance of the noise for user k. To perform
power allocation, the base station requires a CSI report from
every mobile user per time slot. In this work, we require that
this feedback is equivalent to the channel gain |hk|2, ∀k ∈ K.

3.2 Energy-Efficient Utility of the Cell
The base station performs power allocation, taking into ac-
count the energy efficiency associated with each of the mo-
bile users. There are many common uses of the term energy
efficiency. Here, we precisely refer to the notion introduced
by Goodman and Mandayam in [6], i.e., the energy efficiency
is the ratio between the effective throughput of the mobile
user and the transmit power spent to attain this throughput.
Contrary to [6] in which power control is considered for the
uplink, we perform power allocation in the downlink. Hence,
the transmit power considered in the energy efficiency is not
the power from the mobile user but the power allocated to

the mobile user by the base station. We denote u
(k)
BS the

energy-efficient utility associated with the kth mobile user.
It writes

u
(k)
BS(pk) =

Rf
(
γk
(
pk, |hk|2

))
pk

, (2)



with R being a fixed transmission rate of the base station
in bit/s, and f is an S-shaped function taking its values in
[0, 1] which represents the packet success rate during trans-
mission. This function depends on the expected SNR of each
mobile user k ∈ K. The power pk is expressed in Watt, the
unit of the utility is hence bit/Joule. Similarly to Belmega
and Lasaulce work in [3], for the particular case of SISO
channel, the efficiency function f is defined as

f
(
γk
(
pk, |hk|2

))
= 1− Pout

(
γk
(
pk, |hk|2

)
, a
)
,

= exp

Å
− a

γk(pk, |hk|2)

ã
,

(3)

with a = 2R/W − 1 as the threshold under which the SNR
causes an outage. It is important to notice that there is an
approximation here, as Pout should depend on the expecta-
tion of the channel gain, and not on the instantaneous value
of the channel gain. The justification of this approxima-
tion is that power allocation is performed every time slot.
Consequently, instantaneous channel gains are required to
take into account the variations of the characteristics of the
channels from one time slot to another.

Fig. 1 illustrates the typical shapes of this energy-efficient
utility per user, for three different values of the channel gain.
It represents the energy-efficient utility associated with one
mobile user (in bit/Joule) with respect to the power allo-
cated to that user. Energy-efficient utility maximization
does not necessarily correspond to rate maximization. In-
deed, contrary to a rate maximization, it occurs that it is
not always optimal to use all the power available to max-
imize energy efficiency. It is also interesting to note that
for the same transmit power, the energy-efficient utility per
user increases with the channel gain. Regarding individual
optimal power, we can check that the energy-efficient util-
ity per user can be maximized with a lower power when the
channel gain is higher. For a cellular energy-efficient power
allocation perspective, it means that it is more interesting
to allocate power to mobile users with a good channel gain,
as these mobile users require less power and offer a better
energy-efficient utility.

The energy-efficient utility per cell is the sum of all the
energy-efficient utilities per user, i.e.,

uBS(p) =
∑
k∈K

u
(k)
BS(pk), (4)

where the vector p contains all power values allocated by
the base station.

Applying these utility functions for optimal power alloca-
tion requires to understand their properties. For each user,

energy efficiency is expressed by (2). This function u
(k)
BS(pk)

is continuous with respect to pk. Consequently, the sum (4)
is continuous with respect to p. Nonetheless, such similar-
ity cannot be found for another property of the functions:

although each of the individual functions u
(k)
BS(pk) is quasi-

concave, their sum is neither concave nor quasiconcave.

4. ENERGY-EFFICIENT POWER ALLOCA-
TION

4.1 Optimization Problem
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Figure 1: Energy-efficient utility per user with re-
spect to the allocated power for three different chan-
nel gains. Parameters are a = 1, and σ2 = 5 × 10−14

W.

The objective of the base station is to allocate at most P
Watts among the different mobile users in order to maximize
the energy-efficient utility per cell (4). The optimization
problem is

maximize
p∈RK

∑
k∈K

u
(k)
BS(pk),

subject to
∑
k∈K

pk ≤ P,

pk ≥ 0, ∀k ∈ K.

(5)

The problem is solved by choosing the optimization variables
p1, . . . , pk such that the K + 1 constraints hold. These con-
straints ensure that the optimization set is compact convex.
The energy-efficient utility per cell uBS being continuous
with respect to p, we know that uBS has at least one maxi-
mum in the set delimited by the power constraints. Hence,
there exists at least one optimal solution to this problem.
But due to the utility uBS being not quasiconcave, this op-
timization problem is hard to solve.

4.2 Optimality Conditions
Optimality conditions can be obtained by the study of the
Lagrangian associated with (5). It writes

L(p, λ, µ) =
∑
k∈K

u
(k)
BS(pk)−λ

Å∑
k∈K

pk−P
ã

+
∑
k∈K

µkpk. (6)

The optimality conditions write ∀k ∈ K

du
(k)
BS(p̄k)

dpk
= λ− µk, (7)

with p̄ an optimal power allocation. These optimality con-
ditions lead to a partition of the set K in K′ and K′′. The
set K′ is the subset of users for which power is allocated,

leading to µk = 0 and
du

(k)

BS
(pk)

dpk
= λ. The set K′′ is the

subset of users with no power allocated (p̄k = 0), for which
µk = λ. In other words, in an optimal energy-efficient power
allocation, there is a slope equality condition for a subset of
the users, and the remaining users are given no power.



4.3 Algorithm Design Principle
Here we do not provide an optimal power allocation scheme
to solve (5). Instead, we propose a simple suboptimal algo-
rithm with a performance that is very close to the optimum.
If the sum power constraint is not saturated, λ = 0, K′ = K.
Then, the proposed algorithm even provides the optimal al-
location per cell.

The idea behind the proposed algorithm is that, without
the sum power constraint, (5) can be divided into K sim-
ple quasiconcave optimization problems. For each of these
K problems, the individual optimal power is known. As
given in [3], ∀k ∈ K, the power p∗k(|hk|2) that maximizes the
energy-efficient utility of mobile user k is

p∗k(|hk|2) = arg max
pk

f
(
γk
(
pk, |hk|2

))
pk

,

= min

ß
σ2a

|hk|2
, P

™
.

(8)

This power is called individual optimal power. If the sum
of all these individual optimal powers is less than the sum
power constraint P , expression (8) provides the solution of
the optimization problem . If the sum exceeds P , the base
station cannot allocate the individual optimal power p∗k for
each mobile user. Then it has to choose which mobile users
to serve and which users to exclude in order to maximize
the energy-efficient utility per cell while satisfying the sum
power constraint. How to make this choice is justified by
Lemma 1.

Lemma 1. ∀i, j ∈ K, i 6= j, |hi|2 ≥ |hj |2 is equivalent to

p∗i (|hi|2) ≤ p∗j (|hj |2), (9)

and

u
(i)
BS

(
p∗i (|hi|2), |hi|2

)
≥ u(j)

BS

(
p∗j (|hj |2), |hj |2

)
. (10)

This means that a high individual optimal power offers a
poor outcome in terms of energy-efficient utility, whereas a
low individual optimal power offers a good outcome. Hence,
from the base station perspective, it is more interesting to
allocate the power budget for the users with the lower indi-
vidual optimal power values. Note that contrary to water-
filling, the individual optimal power associated with a mo-
bile user with a good channel gain is less than the individ-
ual optimal power associated with a mobile user with a low
channel gain. This is due to the fact that energy efficiency
is maximized instead of sum capacity.

4.4 Algorithm
Based on the observations of Sec. 4.3, we propose the follow-
ing algorithm to allocate power in the cell, assuming that
the coefficients provided by (8)

(
p∗1(|h1|2), . . . , p∗K(|hK |2)

)
are in increasing order (to simplify the notation, we only
write (p∗1, . . . , p

∗
K) in what follows). The power allocated

to mobile user k by the base station with that particular
algorithm is denoted by p̃k.

The algorithm is designed the following way. First, allocated
power values are initialized to 0 (line 1). While allocated
power does not exceed P , the allocation of power continues

Algorithm 1

Require: (p∗1, . . . , p
∗
K), P .

1: (p̃1, . . . , p̃K) = (0, . . . , 0)
2: i← 1
3: while

∑K
k=1 p̃k < P do

4: if p∗i < p∗i+1 then

5: if
∑i

k=1 p
∗
k < P then

6: p̃i ← p∗i
7: else
8: p̃i ← P −

∑i−1
k=1 p̃k

9: end if
10: i← i+ 1
11: else
12: j ← i
13: while p∗i == p∗i+1 do
14: i← i+ 1
15: end while
16: if

∑j−1
k=1 p̃k +

∑i
k=j p

∗
k < P then

17: ∀k ∈ {j, . . . , i}, p̃k ← p∗k
18: else

19: ∀k ∈ {j, . . . , i}, p̃k ←
P−
∑j−1

k=1
p∗
k

i−j+1
20: end if
21: i← i+ 1
22: end if
23: end while
24: return (p̃1, . . . , p̃K)

(line 3). If the individual optimal power of mobile user i is
strictly less than the individual optimal power of the next
mobile user (line 4),

• if the sum of the individual optimal power of mobile
user i to the power values already allocated does not
exceed P , this individual optimal power is allocated
(line 6),

• if the sum of the individual optimal power of mobile
user i to the power values already allocated exceeds P ,
only the remaining power is allocated (line 8).

If the individual optimal power of mobile user i is equal to
the individual optimal power of the next mobile user (line
11), the number of successive equal individual optimal power
values is counted (line 13),

• if the sum of these optimal power values to the previ-
ously allocated power values does not exceed the con-
straint, these optimal power values are allocated (line
17),

• if the sum of these optimal power values to the pre-
viously allocated power values exceeds the constraint,
the remaining power is fairly shared (line 19).

Note that the algorithm takes into account the case in which
several individual optimal power values are equal. Such an
event occurs with almost null probability when the channel
gains are considered to be continuous and follow an expo-
nential distribution law.
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Figure 2: Energy-efficient performance comparison
of the optimal power allocation and the proposed
allocation.

For the same sum power constraint, Fig. 2 illustrates the
performance gap between the outcome of the proposed al-
gorithm and the optimal power allocation. The figure on top
compares the optimal power allocation and the proposed al-
location in a cell with three mobile users. For each user,
the associated energy-efficient utility is represented, and the
power allocations are given for the optimal and suboptimal
cases. While both allocations saturate the sum power con-
straint, the optimal allocation verifies the slopes equality, in
accordance with Sec. 4.2, whereas the proposed allocation
gives the individual optimal power values to the two mobile
users with the best channel gains, and only the remaining
power for the third mobile user. The figure below repre-
sents the energy efficiency in the cellular cell for the two
allocations, for various amount of mobile users in the cell.
For each number of mobile users, the channel gains and the
sum power constraint are chosen such that the two alloca-
tions differ the most. It can be considered as a worst-case
scenario for the proposed algorithm.

5. SELFISH CHANNEL STATE REPORTING
5.1 Definition of a game
This section focuses on the behavior of the mobile users. The
main difference with the base station behavior is that mo-
bile users are not concerned with energy efficiency in down-
link as they do not provide transmit power themselves. In-
stead, they are only concerned about their individual SNR.
From an operator perspective, the energy consumed at the
base station dominates the one needed by the mobile users.
Therefore, it makes sense to consider that only the base sta-
tion is concerned by energy efficiency while the mobile users
are only concerned about their SNR. For each mobile user,
this SNR is proportional to the power allocated by the base
station. Sec. 4 shows that this power depends on the chan-
nel gain the considered user reports to the base station, but
also on the channel gains reported by of all the other users.
Considering that each mobile user prefers to have a high al-
located power, it can try to twist the channel gain it reports
to the base station in order to get higher allocated power.
Hence, we assume that the mobile users have the freedom
of sending whatever channel gain feedback they want to the
base station, and we use game theory to study what are the

outcomes of such a scenario. For each mobile user k ∈ K,
two values of the channel gain are important:

• its actual channel gain |hk|2, as the actual performance
of the mobile user depends on this gain;

• the value it reports to the base station that is denoted
by gk ∈ [0, G], with G the maximum gain a mobile
user can report. Power is allocated to the mobile user
based on this value.

Both terms appear in the utility of each mobile user, which is
the SNR after power allocation by the base station. ∀k ∈ K,

uk(gk, g−k) =
p̃k(gk, g−k)|hk|2

σ2
. (11)

With a slight abuse of notation (gk, g−k) emphasizes the
feedback of mobile user k compared to the CSI reports of
all the other mobile users. We can now properly define the
game under study.

Definition 1. The channel feedback game is defined by the
triplet G = (K,R, {uk}k∈K) in which

• K is the set of players of the game, which represents
the mobile users.

• Ak = [0, G] is the set of actions for player k. In this
game, an action gk ∈ Ak is the report to the base
station. The set of actions profiles is denoted by A =
×Kk=1Ak, and the cardinal product of the actions sets
of all players except player k is denoted by A−k =
×i 6=kAi.

• The utility of player k is

uk(gk, g−k) =
p̃k(gk, g−k)|hk|2

σ2
.

It is its SNR given the power allocated by the base
station knowing all the reported channel gains.

5.2 Characterization of the Nash Equilibrium
Generally, an important concept to study the outcome of a
game is the Nash equilibrium.

Definition 2. In the game G, a Nash equilibrium is an
action profile (g∗1 , . . . , g

∗
K) such that ∀k ∈ K

∀gk 6= g∗k, uk(gk, g
∗
−k) ≤ uk(g∗k, g

∗
−k). (12)

In other words, it is an action profile from which no player
has interest to deviate unilaterally. It is a selfish equilibrium.
Interestingly, in the game G, we can prove that there exists
at least a pure Nash equilibrium.

Proposition 1. There is a unique Nash equilibrium in

the game G. It is g∗ = (g∗, g∗, . . . , g∗) with g∗ = Kaσ2

P
such

that

arg max
p

f(γ(p, g∗))

p
=
P

K
. (13)
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At this equilibrium, power is uniformly allocated among the
mobile users and the SNR of player k ∈ K is

uk(g∗) =
P |hk|2

Kσ2
. (14)

It is interesting to note that this equilibrium depends only on
the number of mobile users in the cell, and the sum power
constraint. The actual channels gains are absolutely not
involved in the expression of this equilibrium.

Proof. First, we show that the action profile (g∗, g∗, . . . , g∗)
is a Nash equilibrium. Assume that player k deviates from
the action g∗, it chooses an action gk 6= g∗. The action
profile is then (gk, g

∗
−k).

• If gk < g∗ then p∗k >
P
K

, and∑
i∈K

p∗i = (K − 1)
P

K
+ p∗k > P. (15)

Hence, according to the allocation algorithm, p̃k is set
to P−(K−1) P

K
= P

K
, i.e., the SNR of player k remains

unchanged.

• If gk > g∗ then p∗k <
P
K

, then∑
i∈K

p∗i = (K − 1)
P

K
+ p∗k < P. (16)

In this case, all the players are given the individual
optimal power. Hence player k gets p̃k = p∗k <

P
K

, and
its SNR decreases.

We have proven that ∀k ∈ K, player k has no interest in
deviating from the power profile (g∗, g∗, . . . , g∗), hence it is
a Nash equilibrium. We now prove that this equilibrium is
unique.

• If the sum of individual optimal power values is below
the sum power constraint, i.e.,∑

k∈K

p∗k < P, (17)

then if one player k decreases gk, it gets a higher p̃k.
Hence there can be no equilibrium when the maximum
total power constraint is not active.

• If the sum of individual optimal power values is higher
than the sum power constraint, and ∃k ∈ K such that
p̃k = 0. Then player k can increase its report gk in
order to have some power allocated. Hence player k
has interest in deviating.

• If the sum of individual optimal power values is higher
than the sum power constraint, if no player gets zero
power allocated, and ∃(i, j) ∈ K2 such that p̃i < p̃j ,
then player i can slightly decrease gi in order to get
more power from the base station.

• If the sum of individual optimal power value is higher
than the sum power constraint, and ∀(i, j) ∈ K2, p̃i =
p̃j , then ∀i ∈ K, p̃i = P

K
. If ∃i ∈ K such that p∗i >

P
K

,
then any other player j 6= i can report gj such that
p∗j ∈] P

K
, p∗i [. In that case, player j receives more power

from the base station.

We have proven that there cannot be any other equilibrium
than the case for which the sum of individual optimal power
values saturates the sum power constraint, and ∀i ∈ K, p̃i =
p∗i = P

K
.

Given that at this equilibrium, mobile users do not report
their actual channel gains, there are two energy-efficient util-
ities per cell of interest. First, the energy-efficient utility per
cell the base station is convinced to have, given the equilib-
rium reports of the mobile users. This is not the actual value
of the energy-efficient utility per cell. It writes

uBS(
P

K
, g∗) =

∑
k inK

K

P
exp(−aKσ

2

Pg∗
),

=
K2

P
exp(−1).

(18)

Once again, we can check that this utility depends only on
the total number of mobile users in the cell and the power
constraint. The second energy-efficient utility per cell of
interest is of course the actual energy efficiency of the cell,
which takes into account the true channel gains. This utility
writes

uBS(
P

K
, |hk|2) =

K

P

∑
k∈K

exp(− g∗

|hk|2
). (19)

Hence, the ratio between the actual energy-efficient perfor-
mance of the cell and the believed performance is

uBS( P
K
, |hk|2)

uBS( P
K
, g∗)

=
1

K

∑
k∈K

exp(1− g∗

|hk|2
). (20)

6. NUMERICAL RESULTS
In Fig. 4, a scenario with two mobile users is considered.
For both of them, the channel gains are set to −112 dB,
and we study how the energy-efficient utility per cell varies
for all the possible combinations of allocated power values.
Hence, the energy-efficient utility per cell is represented with
respect to SNR of each of the mobile users. The constraint
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Figure 4: Energy-efficient utility of the cell with re-
spect to the SNR of users 1 and 2. The color bar rep-
resents the cell energy-efficient utility in bit/Joule.
Parameters are a = 10, |h1|2 = |h2|2 = −112 dB, P = 1
W, and σ2 = 5× 10−14 W.

on the total transmit power is P = 1W . On the one hand, we
can check that the energy efficiency of the cell is maximized
when mobile users report their actual channel gain. But
at this point, the sum power constraint is not saturated.
Hence, it is not Pareto-optimal for the mobile users. On the
other hand, when the mobile users report the equilibrium
channel gains, a Pareto optimal point is reached. But in
this configuration, the energy efficiency of the cell is not a
maximum.

In Fig. 5, the energy-efficient utility of the cell is represented
as a function of the number of mobile users in the cell. The
variance of the noise, σ2 is set to 5× 10−14 W. The param-
eter a is set to 6. Channel gains are assumed to be expo-
nentially distributed. For each number of mobile users, 104

realizations are computed, and the presented results are the
mean over these realizations. Similarly to Fig. 4, we com-
pare the case in which mobile users actually report their
channel gains, and the case in which they twist their reports
in order to maximize their own utilities. In addition, two
power constraints are considered P = 0.1 W, and P = 1 W.
With no surprise, for both power constraints, the energy-
efficient utility of the cell is higher when mobile users report
their actual channel gains. This utility increases with the
number of mobile users simply because it is a sum over the
mobile users. Interestingly, when mobile users report their
actual channel gains, there is no significant gap between the
two power constraints. There are two explanations for this
phenomenon. First, when the sum power constraint is not
saturated, the power allocation is exactly the same what-
ever the power constraint. Second, we recall that mobile
users with bad channel gains are not interesting in terms of
energy efficiency as their individual optimal power is high
and the associated energy efficiency is low. Hence, allocat-
ing power or not to these mobile users does not make a
significant difference in terms of energy efficiency. Another
interesting phenomenon is when mobile users report equi-
librium channel gains, the energy-efficient utility of the cell
is worse for P = 1 W than for P = 0.1 W. We recall that
at the equilibrium, the sum power constraint is saturated.
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Figure 5: Energy-efficient utility of the cell with re-
spect to the number of mobile users.
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Figure 6: Mean SNR of one mobile user with respect
to the number of mobile users.

Hence, there is more power allocated to the mobile users in
the case with P = 1 W. But after a certain threshold, in-
creasing power decreases the energy efficiency of the overall
system.

In Fig. 6, the mean SNR of a mobile user is represented with
regard to the number of mobile users for the same scenario
as Fig. 5. The SNR of the mobile user is given in dB, and
for both power constraints, this SNR is higher when mobile
users report equilibrium channel gains. As the SNR of the
mobile user at the equilibrium is proportional to the sum
power constraint, we can check there is a gain between the
two sum power constraints. When mobile users report their
actual channel gains, their SNR is lower. But a higher sum
power constraint allows the base station to serve more users.
Thus the mean SNR of the mobile users with actual channel
gains increases with the sum power constraint.

7. CONCLUSION
In this paper we studied the conflict of interest between (i)
mobile users that selfishly choose their CSI reports to in-
crease their SNR and (ii) a base station that aims to max-
imize the cell’s energy efficiency by power allocation. We
formulated power allocation as a non-convex optimization



problem, stated its optimality conditions, and derived a low
complexity algorithm. Formulating selfish CSI reporting as
a game allowed us to prove the existence of a unique equi-
librium from which no user has interest to deviate. Conse-
quently, we obtained a stable system for which we derived
energy efficiency with and without true CSI in closed form.

We illustrate this powerful theoretical framework by numer-
ical results. Naturally, these results show that selfish CSI re-
ports allow mobile users to increase their own SNR while the
cell’s energy efficiency decreases. Interestingly, this degra-
dation diminishes for smaller sum power constraints and for
a larger number of users. Consequently, small cells are more
robust to selfish CSI reports than cells with large power con-
straints and few users.

As future work, we aim to extend this framework by an
optimal power allocation algorithm, energy-efficient utilities
not only for the base station but for the mobile users, as well
as by a practical, discrete set of CSI values.

8. REFERENCES
[1] 3GPP. E-UTRA physical layer procedures (release 9).

Technical Specification TS 36.213 V9.0.1, 3GPP, 2009.

[2] 3GPP. E-UTRA and E-UTRAN overall description
(stage 2, release 9). Technical Specification TS 36.300
V9.2.0, 3GPP, 2010.

[3] E. V. Belmega and S. Lasaulce. Energy-efficient
precoding for multiple-antenna terminals. IEEE Trans.
on Signal Processing, 59(1):329–340, January 2011.

[4] S. Buzzi and D. Saturnino. A game-theoretic approach
to energy-efficient power control and receiver design in
cognitive CDMA wireless networks. Journal of Selected
Topics in Signal Processing, 5(1):137–150, 2011.

[5] G. J. Foschini and Z. Milijanic. A simple distributed
autonomous power control algorithm and its
convergence. IEEE Trans. on Vehicular Technology,
42(4):641–646, 1993.

[6] D. J. Goodman and N. B. Mandayam. Power control
for wireless data. IEEE Person. Comm., 7:48–54, 2000.

[7] V. Kavitha, E. Altman, R. E. Azouzi, and
R. Sundaresan. Opportunistic scheduling in cellular
systems in the presence of noncooperative mobiles.
IEEE Transactions on Information Theory,
58(3):1757–1773, 2012.

[8] V. Kavitha, E. Altman, R. El-Azouzi, and
R. Sundaresan. Fair scheduling in cellular systems in
the presence of noncooperative mobiles. In Proceedings
of the 29th conference on Information
communications, INFOCOM’10, pages 2615–2623,
Piscataway, NJ, USA, 2010. IEEE Press.

[9] I. Koutsopoulos, S. Stanczak, and A. Feistel. Transmit
rate control for energy-efficient estimation in wireless
sensor networks. In Proc. IEEE Global Telecommun.
Conf. (GLOBECOM), June 2010.

[10] F. Meshkati, M. Chiang, H. V. Poor, and S. C.
Schwartz. A game-theoretic approach to
energy-efficient power control in multi-carrier CDMA
systems. IEEE Journal on Selected Areas in
Communications, 24(6):1115–1129, 2006.

[11] J. Sobel. Signaling games. In Encyclopedia of
Complexity and Systems Science, pages 8125–8139.

2009.

[12] C. W. Tan, D. Palomar, and M. Chiang.
Energy-robustness tradeoff in cellular network power
control. IEEE/ACM Trans. Networking,
17(3):912–925, May 2009.

[13] R. D. Yates. A framework for uplink power control in
cellular radio systems. IEEE J. Sel. Areas Comm.,
13(7):1341–1347, Sep. 1995.


