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ABSTRACT example of such problems. Lgt= (y1, 2, ..., y~)" be a vector

This paper addresses the problem of summarizing the posteri®f IV observations, where the supersctiptands for vector transpo-
distributions that typically arise, in a Bayesian framework, whensition. In signal decomposition problems, the model space is a finite
dealing with signal decomposition problems with unknown numbe©r countable set of modelgyt = { M, k € K}, whereK C Nis
of components. Such posterior distributions are defined over unio@n index set. It is assumed here that, undi¢g, there arek com-
of subspaces of differing dimensionality and can be sampled frorRonents with vectors of component-specific paramefigrss ©*,
using modern Monte Carlo techniques, for instance the increasingyhere® C R*. In a Bayesian framework, a joint posterior distribu-
popular RJ-MCMC method. No generic approach is avai|ab|e’ howtion is obtained through Bayes‘ formula for the model indeand
ever, to summarize the resulting variable-dimensional samples arthe vector of component-specific parameters, after assigning prior
extract from them component-specific parameters. distributions on them :

We propose a novel approach to this problem, which consists in
approximating the complex posterior of interest by a “simple”—but f(k, k) o< ply |k, 0k)p Ok k)p (k)
still variable-dimensional—parametric distribution. The distancewherec indicates proportionality. This joint posterior distribution,
between the two distributions is measured using the Kullbackgefined over a union of subspaces of differing dimensionality, com-
Leibler divergence, and a Stochastic EM-type algorithm, driven byyletely describes the information (and the associated uncertainty)
the RJ-MCMC sampler, is proposed to estimate the parameters. Thgovided by the dats about the candidate models and the vector
proposed algorithm is illustrated on the fundamental signal procesgf unknown parameters.
ing example of joint detection and estimation of sinusoids in white

Gaussian noise. 1.1. lllustrative example: sinusoid detection

Index Terms— Bayesian inference; Posterior summarization;

Trans-dimensional MCMC; Label-switching; Stochastic EM. In this example, it is assumed that undef;;, y can be written

as a linear combination of sinusoids observed in white Gaus-
sian noise. The unknown component-specific parameters are
1. INTRODUCTION 0. = {ap,ws, ¢}, Whereay, w, and ¢ are the vectors of
) ) amplitudes, radial frequencies and phases, respectively. We use

Nowadays, owing to the advent of Markov Chain Monte Carloye" hierarchical model, prior distributions, and Reversible Jump
(MCMC) sampling .methods [1], Ba_yeS|an Cjata analy5|s is considypicmc (RI-MCMC) sampler [3] proposed in [4] for this problem:
ered as a conventional approach in machine leaming, signal anflg jnterested reader is thus referred to [3, 4] for more details.
image processing, and data mining problems—to name but a few. iy re 1 represents the posterior distributions of both the num-
Nevertheless, in many applications, practical challenges remain iggr of components and the sortedradial frequenciessy, given k
the process of extracting, from the generated samples, quantities ghained using the RJ-MCMC sampler. Each row is dedicated to one
interest to summarize the posterior distribution. . value ofk, for 2 < k < 4; observe that, other models have negligi-

_ Summarization consists, loosely speaking, in providing a few,e hosterior probabilities. In the experiment, the observed signal of
simple yet interpretable parameters and/or graphics to the e”d'us@hgthN — 64 consists of three sinusoids with amplitudes —

of a statistical method. For instance, in the case of a scalar paramgy;”¢ 39 20)t and radial frequenciesy, = (0.63,0.68,0.73)".
ter with a unimodal posterior distribution, measures of location and_ N IDy.apl? - ' X
the SNR = == is setto the moderate value DfiB, where

dispersion (e.g., the empirical mean and the standard deviation, i ) ) X ; )
the median and the interquartile range) are typically provided in adDx iS the design matrix and” is the noise variance.

dition to a graphical summary of the distribution (e.g., a histogram ~ Roughly speaking, two approaches co-exist in the literature for
or a kernel density estimate). In the case of multimodal distribuSuch situations: Bayesian Model Selection (BMS) and Bayesian
tions summarization becomes more difficult but can be carried ou¥odel Averaging (BMA). The BMS approach ranks models ac-
using, for instance, the approximation of the posterior by a Gaussia#Prding to their posterior probabilitigs(k|y), selects one model,
Mixture Model (GMMs) [2]. and then summarizes the posterior under the (fixed-dimensional)

This paper addresses the problem of summarizing posterior di§€lected model. This is at the price of loosing valuable information
trlbutlpns in the case of trans-dlmensmnal problems, 1.e. “the prob= 1owing to the invariance of both the likelihood and the priader per-
lems in which the number of things that we don’t know is one of they, tation of the components, component-specific marginal postare all

things that we don't know” [3]. The problem of signal decompo- equal: this is the “label-switching” phenomenon [5, 6, 7entfiability con-
sition when the number of components is unknown is an importandtraints (such as sorting) are the simplest way of dealiniy thit issue.




proach using the sinusoid detection example already discussed in the
introduction. Finally, Section 4 concludes the paper and gives direc-
tions for future work.

[265]

2. PROPOSED ALGORITHM

Let F' denote the target posterior distribution, defined on the
variable-dimensional spacgé = ’;"jg {k} x ®*. We assume
that F admits a probability density function (pdf), with respect to
the kd-dimensional Lebesgue measure on efich x ", k € K.
| To keep things simple, we also assume Bat R
| Our objective is to approximate the exact posterior dengity
| using a “simple” parametric mode},,, where n is the vector
0.5 0.75 of parameters defining the model. The pgf will also be de-

wk fined on the variable-dimensional spa¥e(i.e., it is not a fixed-
dimensional approximation as in the BMS approach). We assume
Fhat a Monte Carlo sampling method is available, e.g. a RJ-MCMC
sampler [3], to generatd/ samples fromf, which we denote

by x(* = (k“),el(:()i)),fori =1,...,M.

%8°0¢

= L

Fig. 1: Posteriors of: (left) and sorted radial frequencies;,, given
k (right). The true number of components is three. The vertical
dashed lines in the right figure locate the true radial frequencies.

. . . ) 2.1. Variable-dimensional parametric model
provided by the other (discarded) models. For instance, in the ex-

ample of Figure 1, all information about the small—and thereforelLet us describe the proposed parametric model from a generative
harder to detect—middle component is lost by selecting the mogpoint of view. As in a traditional GMM, we assume that there is a
a posteriori probable mode/Ms. The BMA approach consists in certain numbet., of “Gaussian components” in the (approximate)
reporting results that are averaged over all possible models; it igosterior, each generatinglavariate Gaussian vector with mean
therefore, not appropriate for studying component-specific paramend covariance matrix;, 1 <1 < L.
ters, the number of which changes in each madel An X-valued random variable = (k,80x), with0 < k < L,

More information concerning these two approaches can bés generated as follows. First, each of the&eomponents can be ei-
found in [3] and references therein. To the best of our knowledgether present or absent according to a binary indicator varigbte
no generic method is currently available, that would allow to sum-{0, 1}. These Bernoulli variables are assumed to be independent,
marize the information that is so easily read on Figure 1 for thisand we denote by; € (0; 1] the “probability of presence” of thé"
very simple example: namely, thilere seem to be three sinusoidal Gaussian component. Second, given the indicator variables,
components in the observed noisy signal, the middle one having Ele & Gaussian vectors are generated by the Gaussian compo-

smaller probability of presence than the others nents that are preserdt (= 1) and randomly arranged in a vectdy.
We denote by, the pdf of the random variable that is thus
1.2. Outline of the paper generated, withy, = (11, 3, ™) the vector of parameters of tifé

o I N o Gaussian component,< [ < L, andn = (n1,...,m¢).
In this paper, we propose a novel approach to summarize the poste- . .
rior distributions over variable-dimensional subspaces that typically emark. In ‘?O”tr?‘St with .GMMS‘ whgre only one component_ IS
arise in signal decomposition problems with an unknown numbeFresent atatime (i.ek = 1in o_u_r_notatlons), there is no constraint
of components. It consists in approximating the complex posterio ere on the sum of the probabilities of presence.
distribution with a parametric model (of varying-dimensionality),
by minimization of the Kullback-Leibler (KL) divergence between 2.2. Estimating the model parameters
th_e two distributions. A Stochastic EM (SEM)-type aIgorithm_[S], One way to fit the parametric distributioq, (x) to the poste-
driven by the output of an RQ-MCMC sampler, is used to eSt'mat‘?iorf(x) is to minimize the KL divergence of from g,,, denoted by
the parameters of the approximate model. = _ Dic(f(x)llgn(x)). Thus, we define the criterion to be minimized

Our approach shares some similarities with the relabeling algos4
rithms proposed in [6, 7] to solve the “label switching” problem, and
also with the EM algorithm used in [9] in the context of adaptive  7(p) 2 D, (F(x)|lgn(x)) = /f (x) log f(x) dx.

X

MCMC algorithms (both in dixeddimensional setting). The main an(x)

contribution of this paper is the introduction of an original variable-USing samples generated by the RI-MCMC sampler, this criterion
dimensional parametric model, which allows to tackle directly the '

can be approximated as
difficult problem of approximating a distribution defined over a pproxi

union of subspaces of differing dimensionality—and thus provides . 1 M )
a first solution to the “trans-dimensional label-switching” problem, Jmn) =~ Jn) = M Z log (%(X )) +C.
so to speak. i=1

The paper is organized as follows. Section 2 introduces the prayhere( is a constant that does not dependmpnOne should note
posed model and stochastic algorithm. Section 3 illustrates the aps ;¢ minimizing.7 () amounts to estimating such that

2See, however, the intensity plot provided in Section 3 (n@dalbt on

M
Figure 4) as an example of a BMA summary related to a componenifispe A = argmax Z log (q (X(i) )) ) 1)
parameter. n n

i=1



th ; . 2.3. Robustified algorithm
At the r'" iteration,

. (ir) @) A(r—1) Preliminary experiments with the model and method described in the
S-step draw allocation vectorg™"’ ~ p ( xn ) previous sections proved to be disappointing. To understand why, it
fori =1,..., M. must be remembered that the pgf we are looking for is only an
M-step estimate " such that approximatiqr(hopefully a good one). of the.true posterjbrFor.in-
M stance, for high values @&f, the posterior typically involves a diffuse
ﬁ“) = argmax, Zlog P (x(i), z") |n) . part which can not properly represented by the parametric model
i=1 (this can be seen quite clearly fér= 4 on Figure 1). Therefore,

for any i, some samples generated by the RJ-MCMC sampler are
outlierswith respect tay, (i.e., the true posterior can be considered
as acontaminatedversion ofg,) which causes problems when using

a maximum likelihood-type estimate such as (1).

These robustness issues were solved, in this paper, using two
modifications of the algorithm (only in the one-dimensional case up
components contained i,. At this point, it is natural to introduce to now). _First,_ ro_bus_t estimates [10] of the means and v_ariances pf
allocation vectors(® corresponding to thé' observed sampte®®, a Gaussian dlstr!butlon, based on t_he median and the _|nterqu§rtlle

) ) ) o range, are used instead of the empirical means and variances in the
fori = 1,..., M, as latent variables. The elemerjt’ = { indi- M-step. Second, a Poisson process component (with uniform inten-
cates thaki.” is allocated to thé" Gaussian component. sity) is added to the model, in order to account for the diffuse part

Hence, given the allocation vectst’ and the parameters of the Of the posterior and allow for a numbérof Gaussian components
modeln, the conditional distribution of the observed samples, i.e.Which is smaller than the maximum observed.

the model's likelihood, is Remark. Similar robustness concerns are widespread in the cluster-

Fig. 22 SEM algorithm.

Now, we assume that each element of ifeobserved sam-

plex!”, forj = 1, ..., k', has arisen from one of the Gaussian

£(D ing literature; see, e.g., [11] and the references therein.
px 129, m) = TN w0, B,0)-
=1 J J 3. RESULTS

_ Itwrns out that the EM-type algorithms, which have been used, yhis section, we will investigate the capability of the proposed
in similar works_[6, 7, 9], are not_ appropnate for s_olymg this prob- algorithm for summarizing variable-dimensional posterior distribu-
Iem,_ as computing the expectation in Fhe E-step is intricate. Morg,,q e emphasize again that the output of the trans-dimensional
gxpllpltly, in our problem the computanna} burden Of. the summary 40 Carlo sampler, e.g. RJ-MCMC in this paper, is considered as
FIOI’I in the E-step over the set of all possible allocation vectors the observed data for our algorithm. Regarding the fact that in this
increases very rapidly with. In fa}ct, even for moderate values paper we provide results for the sinusoids’ radial frequencies, the
of k _say,k = 10, the Slémmatlon IS fgr too expensive to Compmeproposed parametric model consists of univariate Gaussian compo-
as it involvesk! ~ .3'6 10 terms. In th'.s paper, we propose to US€ nents. In other words, the space of component-specific parameters
SEM [8] , a variation of the EM algorithm in which the E-step is g _ (0; w) C R. But we believe that our algorithm is not limited to

substituted with stochastic simulation of the latent variables fromy,, problems with one-dimensional component-specific parameters
their conditional posterior distributions given the previous estimateq-herefore in this section. it is assumed that each Gaussian compo.-

of the gnknown pa(ri?meters. In other word(s;),qfqﬁ(r)l, B M, th? nent has a meapn, a variances?, and a probability of presenceto
allocation vectorg'*’ are drawn fromp(- |x'*, n*"”). This step is be estimated

called the Stochastic (S)-step. Then, these ra_ndo.m sampl_es are used Before launching the algorithm, first, we need to initialize the
to construct the so-called pseudo-completed likelihood which read?)arametric model. It is natural to deduce the numbef Gaussian

(D components from the posterior distribution lof Here, we set it
2 i P th : .
p (X( ) g™ \77) _ HN (X;z) ey EZW) to t_hg_90_ percentile to keep all the pr’obable model_s in the2 play.
ol J j To initialize the Gaussian components’ parameters, jeand s-,

o ‘ we used the robust estimates of the posterior of the sorted radial
y 1z(z") W&}” (1—n )(1_55“) @ frequencies givelt = L.
k(@)1 paley ! ! ’ We ran the “robustified” stochastic algorithm introduced in Sec-
- tion 2 on the specific example shown in Figure 1, for 50 iterations,
whereZ is the set of all allocation vectors agf’ = 1ifand only ~ With L = 3 Gaussian components (the posterior probabilityiof<
if there is aj € {1, .. .7k(i)} such thatz;.“ — 1. The termk(1 3} is approximately 90.3%). Figure 3 illustrates the evolution of

in (2) comes from the random permutation of components’ Iabelsmodel parameterg together with the criterioy. Two substantial
: -H‘acts can be deduced from this figure; first, the decreasing behav-

"I:'ii;irr;r%r.)osed SEM-type algorithm for our problem is described i lor qf the criterion.7, which is almost constant after tH®*" it- .
Direct sampling fromp( - | x(, ("), as required by the S-step, eration. Second, the convergence of the parameters of parametric
is unfortunately not feasible. Instead, since model, esp. meansand probabilities of presen}?t_-: though using a
naive initialization procedure. Indeed after " iteration there is
p(z? x4y x p(x®, 2® m(?“)) no significant move in the parameter estimates. Table 1 presents the
summaries provided by the proposed method along with the ones
can be computed up to a normalizing constant, we devised agbtained using the BMS approach. Contrary to BMS, the method
Independent Metropolis-Hasting (I-MH) algorithm to construct athat we proposed has enabled us to benefit from the information of
Markov chain withp(z”) | x(”, #(")) as its stationary distribution.  all probable models to give summaries about the middle harder to
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sinusoid detection example. There are three Gaussian components

in the model.
evance of the proposed algorithm, both for summarizing and for re-
Comp | pu S ™ HBMS | SBMS labeling variable-dimensional posterior distributions, has been illus-
1 062 | 0.017 | 1 0.62 | 0.016 trated on the problem of detecting and estimating sinusoids in Gaus-
2 0.68 | 0.021 | 0.22 — — sian white noise.
3 0.73 | 0.011 | 0.97 | 0.73 | 0.012 We believe that this algorithm can be used in the vast domain

of signal decomposition and mixture model analysis to enhance in-
Table 1: Summaries of the variable-dimensional posterior distribuference in trans-dimensional problems. For this purpose, generaliz-
tion shown in Figure 1; The proposed approach vs. BMS. ing the proposed algorithm to the multivariate case and analyzing its
convergence properties is considered as future work. Another impor
tant point would be to use a more reliable initialization procedure.
detect component. Turning to the results of our approach, it can be
seen that the estimated means are compatible with the true radicFé
frequencies. Furthermore, the estimated probabilities of presence eferences
are consistent with uncertainty of them in the variable-dimensional[1] C.P. Robert and G. Casellaylonte Carlo Statistical Methods (second edition)
posterior shown in Figure 1. Note the small estimated standard de-  SPringer Verlag, 2004.

. L e : [2] M. West, “Approximating posterior distributions by mixture]’ Roy. Stat. Soc. B
viations which indicate our robustifying strategies have been useful ™ v V5[ 55 ho. 2, pp. 409-422, 1993.

The pdf’s of the estimated Gaussian components are shown ing] p. J. Green, “Reversible jump MCMC computation and Bayesian model determi-
Figure 4 (top). Comparing with the posterior of sorted radial fre- nation,” Biometrikg vol. 82, no. 4, pp. 711-732, 1995. _ o
quencies shown in Figure 1, it can be inferred that the proposed all4l C. Andrieu and A. Doucet, “Joint Bayesian model selection and estimation of

. X . . noisy sinusoids via reversible jump MCMCJEEE Trans. Signal Processvol.
gorithm has managed to remove the label-switching phenomenon in 47 no. 10, pp. 2667-2676, 1999.

a variable-dimensional problem. Furthermore, the intensity plot of[5] S. Richardson and P. J. Green, “On Bayesian analysis of mixtures with an un-
the allocated samples to the point process component is depicted in ';gciwgggUng of components,J. Roy. Stat. Soc. B Metvol. 59, no. 4, pp.
Flg,ure 4 (bottom). Thls.presents the OUtIIe,rS in the observed sample ] M. Stephens, “Dealing with label switching in mixture model3, Roy. Stat. Soc.
which cannot be described by the Gaussian components. Note that' B wmet, pp. 795-809, 2000.

without the point process component these outliers would be allo{7] M. Sperrin, T. Jaki, and E. Wit, “Probabilistic relabelling strategies far label
cated to the Gaussian components which can, consequently, yield in switching problem in bayesian mixture model§tat. and Computvol. 20, pp.

L . . . 357-366, 2010.
a S|gn|f|cant deterioration of parameter estimates. [8] G. Celeux and J. Diebolt, “The SEM algorithm : a probabilistic teachendlgo
derived from the EM algorithm for the mixture problen§bmp. Statis. Quaterly

vol. 2, pp. 73-82, 1985.
4. CONCLUSION [9] Y. Bai, R. V. Craiu, and A. F. Di Narzo, “Divide and conquer: a mixture-based
approach to regional adaptation for MCMQ,” Comput. Graph. Stat, no. 0, pp.
1-17, 2011.
In this paper, we have proposed a novel algorithm to summarize PO$ro] P. J. Huber and E. M. RonchetRobust statistics (2nd Editionyviley., 2009.
terior distributions defined over union of subspaces of differing diq11] R.N. Daw and R. Krishnapuram, *“Robust clustering methods: a unified view;”
mensionality. For this purpose, a variable-dimensional parametric  |EEE Trans. Fuzzy Syscol. 5, no. 2, pp. 270-293, 1997.
model has been designed to approximate the posterior of interest.
The parameters of the approximate model have been estimated by
means of a SEM-type algorithm, using samples from the postérior
generated by an RJ-MCMC algorithm. Modifications of our initial
SEM-type algorithm have been proposed, in order to cope with the
lack of robustness of maximum likelihood-type estimates. The rel-



