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ABSTRACT
This paper addresses the problem of summarizing the posterior

distributions that typically arise, in a Bayesian framework, when
dealing with signal decomposition problems with unknown number
of components. Such posterior distributions are defined over union
of subspaces of differing dimensionality and can be sampled from
using modern Monte Carlo techniques, for instance the increasingly
popular RJ-MCMC method. No generic approach is available, how-
ever, to summarize the resulting variable-dimensional samples and
extract from them component-specific parameters.

We propose a novel approach to this problem, which consists in
approximating the complex posterior of interest by a “simple”—but
still variable-dimensional—parametric distribution. The distance
between the two distributions is measured using the Kullback-
Leibler divergence, and a Stochastic EM-type algorithm, driven by
the RJ-MCMC sampler, is proposed to estimate the parameters. The
proposed algorithm is illustrated on the fundamental signal process-
ing example of joint detection and estimation of sinusoids in white
Gaussian noise.

Index Terms— Bayesian inference; Posterior summarization;
Trans-dimensional MCMC; Label-switching; Stochastic EM.

1. INTRODUCTION

Nowadays, owing to the advent of Markov Chain Monte Carlo
(MCMC) sampling methods [1], Bayesian data analysis is consid-
ered as a conventional approach in machine learning, signal and
image processing, and data mining problems—to name but a few.
Nevertheless, in many applications, practical challenges remain in
the process of extracting, from the generated samples, quantities of
interest to summarize the posterior distribution.

Summarization consists, loosely speaking, in providing a few
simple yet interpretable parameters and/or graphics to the end-user
of a statistical method. For instance, in the case of a scalar parame-
ter with a unimodal posterior distribution, measures of location and
dispersion (e.g., the empirical mean and the standard deviation, or
the median and the interquartile range) are typically provided in ad-
dition to a graphical summary of the distribution (e.g., a histogram
or a kernel density estimate). In the case of multimodal distribu-
tions summarization becomes more difficult but can be carried out
using, for instance, the approximation of the posterior by a Gaussian
Mixture Model (GMMs) [2].

This paper addresses the problem of summarizing posterior dis-
tributions in the case of trans-dimensional problems, i.e. “the prob-
lems in which the number of things that we don’t know is one of the
things that we don’t know” [3]. The problem of signal decompo-
sition when the number of components is unknown is an important

example of such problems. Lety = (y1, y2, . . . , yN )t be a vector
of N observations, where the superscriptt stands for vector transpo-
sition. In signal decomposition problems, the model space is a finite
or countable set of models,M = {Mk, k ∈ K}, whereK ⊂ N is
an index set. It is assumed here that, underMk, there arek com-
ponents with vectors of component-specific parametersθk ∈ Θk,
whereΘ ⊂ R

d. In a Bayesian framework, a joint posterior distribu-
tion is obtained through Bayes’ formula for the model indexk and
the vector of component-specific parameters, after assigning prior
distributions on them :

f (k, θk) ∝ p (y | k, θk) p (θk | k) p (k) ,

where∝ indicates proportionality. This joint posterior distribution,
defined over a union of subspaces of differing dimensionality, com-
pletely describes the information (and the associated uncertainty)
provided by the datay about the candidate models and the vector
of unknown parameters.

1.1. Illustrative example: sinusoid detection

In this example, it is assumed that underMk, y can be written
as a linear combination ofk sinusoids observed in white Gaus-
sian noise. The unknown component-specific parameters are
θk = {ak,ωk,φk}, whereak, ωk and φk are the vectors of
amplitudes, radial frequencies and phases, respectively. We use
the hierarchical model, prior distributions, and Reversible Jump
MCMC (RJ-MCMC) sampler [3] proposed in [4] for this problem;
the interested reader is thus referred to [3, 4] for more details.

Figure 1 represents the posterior distributions of both the num-
ber of componentsk and the sorted1 radial frequenciesωk givenk
obtained using the RJ-MCMC sampler. Each row is dedicated to one
value ofk, for 2 ≤ k ≤ 4; observe that, other models have negligi-
ble posterior probabilities. In the experiment, the observed signal of
lengthN = 64 consists of three sinusoids with amplitudesak =
(20, 6.32, 20)t and radial frequenciesωk = (0.63, 0.68, 0.73)t.

TheSNR ,
‖Dk.ak‖2

Nσ2 is set to the moderate value of7 dB, where
Dk is the design matrix andσ2 is the noise variance.

Roughly speaking, two approaches co-exist in the literature for
such situations: Bayesian Model Selection (BMS) and Bayesian
Model Averaging (BMA). The BMS approach ranks models ac-
cording to their posterior probabilitiesp(k|y), selects one model,
and then summarizes the posterior under the (fixed-dimensional)
selected model. This is at the price of loosing valuable information

1Owing to the invariance of both the likelihood and the prior under per-
mutation of the components, component-specific marginal posteriors are all
equal: this is the “label-switching” phenomenon [5, 6, 7]. Identifiability con-
straints (such as sorting) are the simplest way of dealing with this issue.
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Fig. 1: Posteriors ofk (left) and sorted radial frequencies,ωk, given
k (right). The true number of components is three. The vertical
dashed lines in the right figure locate the true radial frequencies.

provided by the other (discarded) models. For instance, in the ex-
ample of Figure 1, all information about the small—and therefore
harder to detect—middle component is lost by selecting the most
a posterioriprobable modelM2. The BMA approach consists in
reporting results that are averaged over all possible models; it is,
therefore, not appropriate for studying component-specific parame-
ters, the number of which changes in each model2.

More information concerning these two approaches can be
found in [3] and references therein. To the best of our knowledge,
no generic method is currently available, that would allow to sum-
marize the information that is so easily read on Figure 1 for this
very simple example: namely, thatthere seem to be three sinusoidal
components in the observed noisy signal, the middle one having a
smaller probability of presence than the others.

1.2. Outline of the paper

In this paper, we propose a novel approach to summarize the poste-
rior distributions over variable-dimensional subspaces that typically
arise in signal decomposition problems with an unknown number
of components. It consists in approximating the complex posterior
distribution with a parametric model (of varying-dimensionality),
by minimization of the Kullback-Leibler (KL) divergence between
the two distributions. A Stochastic EM (SEM)-type algorithm [8],
driven by the output of an RJ-MCMC sampler, is used to estimate
the parameters of the approximate model.

Our approach shares some similarities with the relabeling algo-
rithms proposed in [6, 7] to solve the “label switching” problem, and
also with the EM algorithm used in [9] in the context of adaptive
MCMC algorithms (both in afixed-dimensional setting). The main
contribution of this paper is the introduction of an original variable-
dimensional parametric model, which allows to tackle directly the
difficult problem of approximating a distribution defined over a
union of subspaces of differing dimensionality—and thus provides
a first solution to the “trans-dimensional label-switching” problem,
so to speak.

The paper is organized as follows. Section 2 introduces the pro-
posed model and stochastic algorithm. Section 3 illustrates the ap-

2See, however, the intensity plot provided in Section 3 (middle plot on
Figure 4) as an example of a BMA summary related to a component-specific
parameter.

proach using the sinusoid detection example already discussed in the
introduction. Finally, Section 4 concludes the paper and gives direc-
tions for future work.

2. PROPOSED ALGORITHM

Let F denote the target posterior distribution, defined on the
variable-dimensional spaceX =

⋃kmax
k=0 {k} × Θk. We assume

thatF admits a probability density function (pdf)f , with respect to
thekd-dimensional Lebesgue measure on each{k} × Θk, k ∈ K.
To keep things simple, we also assume thatΘ = R

d.
Our objective is to approximate the exact posterior densityf

using a “simple” parametric modelqη, where η is the vector
of parameters defining the model. The pdfqη will also be de-
fined on the variable-dimensional spaceX (i.e., it is not a fixed-
dimensional approximation as in the BMS approach). We assume
that a Monte Carlo sampling method is available, e.g. a RJ-MCMC
sampler [3], to generateM samples fromf , which we denote
by x(i) =

(

k(i),θ
(i)

k(i)

)

, for i = 1, . . . ,M .

2.1. Variable-dimensional parametric model

Let us describe the proposed parametric model from a generative
point of view. As in a traditional GMM, we assume that there is a
certain numberL of “Gaussian components” in the (approximate)
posterior, each generating ad-variate Gaussian vector with meanµl

and covariance matrixΣl, 1 ≤ l ≤ L.
An X-valued random variablex = (k,θk), with 0 ≤ k ≤ L,

is generated as follows. First, each of theL components can be ei-
ther present or absent according to a binary indicator variableξl ∈
{0, 1}. These Bernoulli variables are assumed to be independent,
and we denote byπl ∈ (0; 1] the “probability of presence” of thelth

Gaussian component. Second, given the indicator variables,k =
∑L

l=1 ξl Gaussian vectors are generated by the Gaussian compo-
nents that are present (ξl = 1) and randomly arranged in a vectorθk.

We denote byqη the pdf of the random variablex that is thus
generated, withηl = (µl,Σl, πl) the vector of parameters of thelth

Gaussian component,1 ≤ l ≤ L, andη = (η1, . . . ,ηL).

Remark. In contrast with GMMs, where only one component is
present at a time (i.e.,k = 1 in our notations), there is no constraint
here on the sum of the probabilities of presence.

2.2. Estimating the model parameters

One way to fit the parametric distributionqη(x) to the poste-
rior f(x) is to minimize the KL divergence off from qη, denoted by
DKL(f(x)‖qη(x)). Thus, we define the criterion to be minimized
as

J (η) , DKL (f(x)‖qη(x)) =

∫

X

f (x) log
f(x)

qη(x)
dx.

Using samples generated by the RJ-MCMC sampler, this criterion
can be approximated as

J (η) ≃ Ĵ (η) = −
1

M

M
∑

i=1

log
(

qη(x
(i))

)

+ C.

whereC is a constant that does not depend onη. One should note
that minimizingĴ (η) amounts to estimatingη such that

η̂ = argmaxη

M
∑

i=1

log
(

qη(x
(i))

)

. (1)
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Fig. 2: SEM algorithm.

Now, we assume that each element of theith observed sam-
plex

(i)
j , for j = 1, . . . , ki, has arisen from one of theL Gaussian

components contained inqη. At this point, it is natural to introduce
allocation vectorsz(i) corresponding to theith observed samplex(i),
for i = 1, . . . ,M , as latent variables. The elementz

(i)
j = l indi-

cates thatx(i)
j is allocated to thelth Gaussian component.

Hence, given the allocation vectorz(i) and the parameters of the
modelη, the conditional distribution of the observed samples, i.e.,
the model’s likelihood, is

p(x(i) | z(i), η) =

k(i)
∏

j=1

N (x
(i)
j |µ

z
(i)
j

, Σ
z
(i)
j

).

It turns out that the EM-type algorithms, which have been used
in similar works [6, 7, 9], are not appropriate for solving this prob-
lem, as computing the expectation in the E-step is intricate. More
explicitly, in our problem the computational burden of the summa-
tion in the E-step over the set of all possible allocation vectorsz

increases very rapidly withk. In fact, even for moderate values
of k, say,k = 10, the summation is far too expensive to compute
as it involvesk! ≈ 3.6 106 terms. In this paper, we propose to use
SEM [8] , a variation of the EM algorithm in which the E-step is
substituted with stochastic simulation of the latent variables from
their conditional posterior distributions given the previous estimates
of the unknown parameters. In other words, fori = 1, . . . , M , the
allocation vectorsz(i) are drawn fromp(· |x(i), η̂(r)). This step is
called the Stochastic (S)-step. Then, these random samples are used
to construct the so-called pseudo-completed likelihood which reads

p
(

x
(i)
, z

(i) |η
)

=

k(i)
∏

j=1

N

(

x
(i)
j |µ

z
(i)
j

, Σ
z
(i)
j

)

×
1Z(z

(i))

k(i)!

L
∏

l=1

π
ξ
(i)
l

l (1 − πl)
(1−ξ

(i)
l

)
, (2)

whereZ is the set of all allocation vectors andξ(i)
l = 1 if and only

if there is aj ∈ {1, . . . , k(i)} such thatz(i)j = l. The termk(i)!
in (2) comes from the random permutation of components’ labels.
The proposed SEM-type algorithm for our problem is described in
Figure 2.

Direct sampling fromp( · |x(i), η̂(r)), as required by the S-step,
is unfortunately not feasible. Instead, since

p(z(i) |x(i)
, η̂

(r)) ∝ p(x(i)
, z

(i) | η̂(r))

can be computed up to a normalizing constant, we devised an
Independent Metropolis-Hasting (I-MH) algorithm to construct a
Markov chain withp(z(i) |x(i), η̂(r)) as its stationary distribution.

2.3. Robustified algorithm

Preliminary experiments with the model and method described in the
previous sections proved to be disappointing. To understand why, it
must be remembered that the pdfqη we are looking for is only an
approximation(hopefully a good one) of the true posteriorf . For in-
stance, for high values ofk, the posterior typically involves a diffuse
part which can not properly represented by the parametric model
(this can be seen quite clearly fork = 4 on Figure 1). Therefore,
for anyη, some samples generated by the RJ-MCMC sampler are
outlierswith respect toqη (i.e., the true posterior can be considered
as acontaminatedversion ofqη) which causes problems when using
a maximum likelihood-type estimate such as (1).

These robustness issues were solved, in this paper, using two
modifications of the algorithm (only in the one-dimensional case up
to now). First, robust estimates [10] of the means and variances of
a Gaussian distribution, based on the median and the interquartile
range, are used instead of the empirical means and variances in the
M-step. Second, a Poisson process component (with uniform inten-
sity) is added to the model, in order to account for the diffuse part
of the posterior and allow for a numberL of Gaussian components
which is smaller than the maximum observedk(i).

Remark. Similar robustness concerns are widespread in the cluster-
ing literature; see, e.g., [11] and the references therein.

3. RESULTS

In this section, we will investigate the capability of the proposed
algorithm for summarizing variable-dimensional posterior distribu-
tions. We emphasize again that the output of the trans-dimensional
Monte Carlo sampler, e.g. RJ-MCMC in this paper, is considered as
the observed data for our algorithm. Regarding the fact that in this
paper we provide results for the sinusoids’ radial frequencies, the
proposed parametric model consists of univariate Gaussian compo-
nents. In other words, the space of component-specific parameters
Θ = (0;π) ⊂ R. But we believe that our algorithm is not limited to
the problems with one-dimensional component-specific parameters.
Therefore, in this section, it is assumed that each Gaussian compo-
nent has a meanµ, a variances2, and a probability of presenceπ to
be estimated.

Before launching the algorithm, first, we need to initialize the
parametric model. It is natural to deduce the numberL of Gaussian
components from the posterior distribution ofk. Here, we set it
to the90th percentile to keep all the probable models in the play.
To initialize the Gaussian components’ parameters, i.e.µ ands2,
we used the robust estimates of the posterior of the sorted radial
frequencies givenk = L.

We ran the “robustified” stochastic algorithm introduced in Sec-
tion 2 on the specific example shown in Figure 1, for 50 iterations,
with L = 3 Gaussian components (the posterior probability of{k ≤
3} is approximately 90.3%). Figure 3 illustrates the evolution of
model parametersη together with the criterionJ . Two substantial
facts can be deduced from this figure; first, the decreasing behav-
ior of the criterionJ , which is almost constant after the10th it-
eration. Second, the convergence of the parameters of parametric
model, esp. meansµ and probabilities of presenceπ, though using a
naive initialization procedure. Indeed after the40th iteration there is
no significant move in the parameter estimates. Table 1 presents the
summaries provided by the proposed method along with the ones
obtained using the BMS approach. Contrary to BMS, the method
that we proposed has enabled us to benefit from the information of
all probable models to give summaries about the middle harder to
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Fig. 3: Performance of the proposed summarizing algorithm on the
sinusoid detection example. There are three Gaussian components
in the model.

Comp µ s π µBMS sBMS

1 0.62 0.017 1 0.62 0.016
2 0.68 0.021 0.22 — —
3 0.73 0.011 0.97 0.73 0.012

Table 1: Summaries of the variable-dimensional posterior distribu-
tion shown in Figure 1; The proposed approach vs. BMS.

detect component. Turning to the results of our approach, it can be
seen that the estimated means are compatible with the true radial
frequencies. Furthermore, the estimated probabilities of presence
are consistent with uncertainty of them in the variable-dimensional
posterior shown in Figure 1. Note the small estimated standard de-
viations which indicate our robustifying strategies have been useful.

The pdf’s of the estimated Gaussian components are shown in
Figure 4 (top). Comparing with the posterior of sorted radial fre-
quencies shown in Figure 1, it can be inferred that the proposed al-
gorithm has managed to remove the label-switching phenomenon in
a variable-dimensional problem. Furthermore, the intensity plot of
the allocated samples to the point process component is depicted in
Figure 4 (bottom). This presents the outliers in the observed samples
which cannot be described by the Gaussian components. Note that
without the point process component these outliers would be allo-
cated to the Gaussian components which can, consequently, yield in
a significant deterioration of parameter estimates.

4. CONCLUSION

In this paper, we have proposed a novel algorithm to summarize pos-
terior distributions defined over union of subspaces of differing di-
mensionality. For this purpose, a variable-dimensional parametric
model has been designed to approximate the posterior of interest.
The parameters of the approximate model have been estimated by
means of a SEM-type algorithm, using samples from the posteriorf

generated by an RJ-MCMC algorithm. Modifications of our initial
SEM-type algorithm have been proposed, in order to cope with the
lack of robustness of maximum likelihood-type estimates. The rel-
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Fig. 4: The pdf of fitted Gaussian components (top), the histogram
intensity of all radial frequencies samples (middle), and the his-
togram intensity of the allocated samples to the Poisson point pro-
cess component (bottom).

evance of the proposed algorithm, both for summarizing and for re-
labeling variable-dimensional posterior distributions, has been illus-
trated on the problem of detecting and estimating sinusoids in Gaus-
sian white noise.

We believe that this algorithm can be used in the vast domain
of signal decomposition and mixture model analysis to enhance in-
ference in trans-dimensional problems. For this purpose, generaliz-
ing the proposed algorithm to the multivariate case and analyzing its
convergence properties is considered as future work. Another impor-
tant point would be to use a more reliable initialization procedure.

References
[1] C.P. Robert and G. Casella,Monte Carlo Statistical Methods (second edition),

Springer Verlag, 2004.
[2] M. West, “Approximating posterior distributions by mixture,”J. Roy. Stat. Soc. B

Met., vol. 55, no. 2, pp. 409–422, 1993.
[3] P. J. Green, “Reversible jump MCMC computation and Bayesian model determi-

nation,” Biometrika, vol. 82, no. 4, pp. 711–732, 1995.
[4] C. Andrieu and A. Doucet, “Joint Bayesian model selection and estimation of

noisy sinusoids via reversible jump MCMC,”IEEE Trans. Signal Process., vol.
47, no. 10, pp. 2667–2676, 1999.

[5] S. Richardson and P. J. Green, “On Bayesian analysis of mixtures with an un-
known number of components,”J. Roy. Stat. Soc. B Met., vol. 59, no. 4, pp.
731–792, 1997.

[6] M. Stephens, “Dealing with label switching in mixture models,”J. Roy. Stat. Soc.
B Met., pp. 795–809, 2000.

[7] M. Sperrin, T. Jaki, and E. Wit, “Probabilistic relabelling strategies for the label
switching problem in bayesian mixture models,”Stat. and Comput., vol. 20, pp.
357–366, 2010.

[8] G. Celeux and J. Diebolt, “The SEM algorithm : a probabilistic teacher algorithm
derived from the EM algorithm for the mixture problem,”Comp. Statis. Quaterly,
vol. 2, pp. 73–82, 1985.

[9] Y. Bai, R. V. Craiu, and A. F. Di Narzo, “Divide and conquer: a mixture-based
approach to regional adaptation for MCMC,”J. Comput. Graph. Stat., , no. 0, pp.
1–17, 2011.

[10] P. J. Huber and E. M. Ronchetti,Robust statistics (2nd Edition), Wiley., 2009.
[11] R.N. Dav́e and R. Krishnapuram, “Robust clustering methods: a unified view,”

IEEE Trans. Fuzzy Sys., vol. 5, no. 2, pp. 270–293, 1997.


