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ABSTRACT

Digital Subtraction Rotational Angiography (DSRA) is a
clinical protocol that allows three-dimensional (3D) visual-
ization of vasculature during minimally invasive procedures.
C-arm systems that are used to generate 3D reconstructions in
interventional radiology have limited sampling rate and thus,
contrast resolution. To address this particular subsampling
problem, we propose a novel iterative reconstruction algo-
rithm based on compressed sensing. To this purpose, we ex-
ploit both spatial and temporal sparsity of DSRA. For com-
putational efficiency, we use a proximal implementation that
accommodates multiple ¢;-penalties. Experiments on both
simulated and clinical data confirm the relevance of our strat-
egy for reducing subsampling streak artifacts.

Index Terms— Rotational angiography, Compressed
sensing, X-ray tomography, Iterative algorithms, Sparsity,
Proximal operators

1. INTRODUCTION

Compressed sensing provides a new framework for signal
recovery, which under certain assumption could surpass the
fundamental Shannon-Nyquist sampling limit [1]. Three-
dimensional interventional radiology faces sampling issues,
since C-arm technology is currently limited by coarse angu-
lar sampling. Rotation speed of the device must be set as
high as safely possible to minimize the acquisition (scan)
duration, while the detector acquisition frame rate limits the
total number of views. We investigate the sampling problem
in a well-defined clinical practice called DSRA, which con-
sists in performing two scans in a single protocol: a mask
scan, which is acquired without injection, and a contrast
scan, which is acquired after injecting vessels with contrast
medium. Subtraction of the mask from the contrast enhances
vasculature visualization in presence of dense structures such
as bones. The sampling limitations of C-arm systems give
rise to typical subsampling structures known as streak arti-
facts that degrade the overall quality of all three reconstructed

volumes. In particular, whereas subsampling has finally little
incidence on the visualization of highly contrasted structures,
streak artifacts generated by these latter might hide weakly
contrasted structures such as soft tissues, thus limiting the
usability of the technique.

Sparsity is modeled with ¢;-norms, whose minimization
under a data constraint generates sparse signal approxima-
tions. An extension of the iterative filtered backprojection
(iFBP) that deals with sparse penalties was introduced in [2].
Several works, among which [3] and references therein, have
focused on the reconstruction of piecewise constant approx-
imations of more clinically relevant type of objects, show-
ing streak artifact reduction, but at the expense of an overall
change in the image appearance, that may not be clinically ac-
ceptable. In the DSRA case, sparsity assumptions on the sub-
tracted volume — which seems realistic since vessels are natu-
rally sparse — promotes redundancy of the nonopacified struc-
tures captured in both scans. Such an approach eliminates
the need for identical sampling of the mask and the contrast
scans, and therefore makes possible to double the sampling of
the nonopacified structures by adopting scans that sample two
sets of equiangular-spaced interleaved positions as illustrated
in Fig.1. In the non-subtracted case, it is possible to reduce
streaks of sparse structures over a non-sparse background by
progressively relaxing a sparse constraint on the solution as
demonstrated in [4].

Fig. 1. Contrast and mask scans sample two sets of
equiangular-spaced interleaved positions.

We propose in the following a novel multiple penalty for
DSRA reconstruction, that follows the compressed sensing



theory and relies on the three previously cited approaches [2—
4]. This strategy requires to generate a solution that satisfies
several priors simultaneously and thus minimize a functional
including multiple /1 -terms. The next section presents the ap-
plication of proximal splitting to the reconstruction problem
with a sparse multiple penalty dedicated to DSRA. The rele-
vance of our approach is then evaluated in parallel geometry
on simulated data and in cone-beam geometry on real clinical
data. We discuss remaining limitations and perspectives of
our work in the final section.

2. METHODOLOGY

It has been shown in [1] that perfect reconstruction of a piece-
wise constant image is achievable through minimization of its
total variation (TV). These results have highlighted the inter-
est of casting the reconstruction problem as an optimization
problem constrained with a suitable sparse penalization.

2.1. /;-penalized reconstruction

We define f = (fc,fu)? as the vector containing re-
spectively the contrast volume and the mask volume, p =
(pc,par)T as the vector containing respectively the injected
projections and the mask projections, and R = diag{ R¢, Ras}
as the block-diagonal matrix describing the trajectory of re-
spectively the contrast and the mask scans.

Let @ be the quadratic term that reflects the data acquisi-
tion process Rf = p. Here, we define () as the distance
between p and projections of f weighted by W: Q(f) =
W (Rf — p) 3. The introduction of W allows the inte-
gration of statistical information or of a filtering step [5] that
boosts convergence if required. For computational efficiency,
we choose W such that W2 = D, where D is the ramp filter
in the Fourier domain. The minimization of the correspond-
ing expression of () is referred to as iFBP. Let x be a sparsity
penalty with weight o > 0. We consider the following con-
strained reconstruction problem:

arg;nin Q(f) + ax(®f) )

where @ is a linear operator that can be for instance gradient
(TV-penalization) or wavelet transform. Proximal splitting
methods [6] allows for building a sequence that converges to
to the minimum of eq.1. As it was done in [2], we use the
forward-backward scheme given below:

£ = prox ( £ — v f(”))) @)

where the proximal operator denoted prox.,, u is the unique
minimum of T7ax(-) + 3| - —u/|3 and parameter 7 > 0 corre-
sponds to the gradient descent step. Proximal operators gen-
eralize the class of projectors onto convex sets to include stan-
dard image processing tools such as TV filtering and wavelet
filters with soft-thresholding.

2.2. Compressed sensing reconstruction

In the subsampling case, there are many minimizers of the
quadratic term and compressed sensing enables to identify the
solution as the sparsest minimizer. This approach is distinct
from regularization, which consists in finding the best trade-
off between the fitting term and a given sparse penalty. How-
ever, it is possible to perform compressed sensing reconstruc-
tion by defining a set of weights: A = {a,|n =1,--- ,N},
such that the regularization strength is decreased at each iter-
ation: o1 > --- > any = 0, where N is the total number of it-
erations. This strategy is known as “continuation” or “homo-
topy” in the convex optimization community [7]. It allowed
for processing sparse structures over a non-sparse background
when used with soft-background subtraction (SBS) operator

[4].

2.3. Multiple sparse penalty dedicated to DSRA

We propose to constrain DSRA reconstruction with a sparse
penalty x(f) that is expressed as the combination of:

e a temporal component ¢;(f): to mix background in-
formation from the contrast and the mask without los-
ing vessel quantification, we apply the one-dimensional
(1D) Haar wavelet transform H; to isolate the tempo-
ral component. In the case of DSRA, it simply captures
the vascular structures that are filled by the contrast and
contained in the subtracted volume fs = fo — fas;

e a spatial component . (f): to remove streaks from
the contrast volume and prevent the transfer of vessel-
related information (including streaks) in the mask, we
penalize both the mask and the contrast volumes 11-
norms.

Moreover, positivity of all three volumes fs, fo and fg is
ensured with the indicator function ¢ (-). Overall, the DSRA
reconstruction problem is constrained with the following mul-
tiple sparse penalty:

X(f) = @myz(f) + Spt(f)
‘PwyZ(f> = aa:yZHf”l +14-(f) 3)
ee(f) = oullHeflli + e (He f)

where oy, and o are regularization parameters such that
Oizy- 18 linearly decreased to zero during the minimization
process, while o is set to a fixed value. The proximal opera-
tor that is associated to the spatial term . (f) (respectively,
the temporal term ¢;(f)) is simply the SBS operator with
threshold .7 (respectively ;7). The computation of the
proximal operator associated to a multiple sparsity constraint
of the form x(f) = 22{21 @k (f) is handled by the Dykstra-
like proximal algorithm [6]. An overview of its parallel im-
plementation in pseudocode is given hereafter. The compu-
tation of prox., is integrated in the forward-backward algo-
rithm given in eq.2 by setting input u = £ — 7VQ(f™)
and output f(*+1) = y(M+1).



Set v(!) = ¢ and hgl) =...= h](:) =M

for m < 1to M do
for k£ < 1to K do
t g](cm) = PIroX,, h,(cm)
U(m+1) — Z;cnzl g](cm)
for k + 1to K do
t h’(€m+1) — plm+1) 4 h}(;n) . glgm)

Algorithm 1: Parallel Dykstra-like proximal algo-
rithm scheme

3. RESULTS

We evaluated our approach on both simulated and clinical
data. Intensities are given in positive Hounsfield Unit (HU),
i.e. airis O instead of -1000 HU. Reconstruction settings are as
follows: iFBP algorithm was used with N = 20 iterations and
a gradient step 7 = 1. Note that the computation cost of an
iFBP iteration is about twice that of FBP. For decreasing SBS,
aiz)z was initialized at agy)z equal to 95 % of the maximum
value of the filtered backprojection (FBP) reconstruction and

linearly decreased to agz) =0.

For our simulation, we used a 512 x 512 cerebral CT
cross-section as mask image. We simulated the contrast
image by adding to the mask synthetic disks that represent
opacified arteries. The value of the simulated injected vessels
varies from 2000 to 3000 HU, while soft tissue values (around
1000 HU) and bone values (around 2000 HU) are those of the
original CT slice. We produced interleaved mask and contrast
scans in parallel geometry with settings that fit DSRA routine,
in which the C-arm system records projections at 30 frames/s
during an approximately 200 ° rotation at 40 °/s delivering
150 views in total. We compare the reconstruction quality of
the background structures in Fig.2. Root mean square devi-
ation (RMSD) between the reconstruction and the true mask
image f over the J, pixels of the background structures are
also given to appreciate image quality in a quantitative man-

N2
ner: d= J% Z}]bﬂ ( fi— fj) . Standard reconstruction

of the mask with a double sampling (300 views) is shown in
Fig.2a as reference: its level of streaks is the lowest level that
can be achieved with the approach we developed (d = 9 HU).
Subsampled standard reconstruction (150 views) yields streak
artifacts that, in particular, makes cerebral sulci visualization
difficult, as shown in Fig.2b. This degradation was confirmed
by an increased RMSD value d = 25 HU. The contrast image
(see Fig.2c) presents additional streaks due to the injected
vessels. Figure 2d displays mask reconstruction penalized
by the temporal constraint o;(f) only, with weight oy = 5,
which was the reconstruction method proposed by [2]. It
allows for removing the background streaks and for recov-

ering a background resolution similar to the reference one.
Nevertheless, we notice that a small amount of the injected
vessel intensity is transferred from the contrast to the mask
(vessel marks). Vessel mark streaks affect the background
similarly to vessel streaks — the deterioration is less important
though (d = 15HU). Streaks are especially visible near the
skull bone on the right side of the image. Vessel marks and
streaks are not visible anymore in Fig.2e that was produced
with the multiple penalty x(f). We measured d = 11 HU,
which confirms the actual image quality improvement. True
vessel intensity is recovered, which would not be the case if
we simply computed the average reconstruction of the mask
and the contrast volume. For all reconstructions, sparsity of
the subtracted volume (not shown here) is preserved. We
used oy = O rather than a low threshold to avoid both bias
and vessel transfer from the contrast to the mask.

(e |

(d)

Fig. 2. DSRA reconstruction from simulated data (HU range:
1020 to 1100). (a) Mask iFBP reconstruction with double
sampling (300 views). (b) Mask iFBP reconstruction. (c)
Contrast iFBP reconstruction. (d) Mask iFBP reconstruction
penalized by ¢;(f) only, with a; = 5. (e) Mask iFBP recon-
struction penalized by x(f) with az =0

We also evaluated the reconstruction quality of the pro-
posed algorithm on clinical data acquired on an Innova 3100
C-arm system (GE Healthcare, Chalfont St. Giles, UK). We
now face the additional challenges of 3D cone-beam geom-
etry, short-scan acquisition and truncated subsampled data.
Since there exists no clinical protocols with interleaved scans,
we built an interleaved acquisition pattern with 75 views for
each scan by taking one view every two views with a shift
of one view when starting the contrast scan as illustrated in
Fig.1. TIterative FBP dedicated to cone-beam geometry re-
lies on the Feldkamp approximated inversion (FDK) and is
referred to as iterative Feldkamp (iFDK). For all reconstruc-
tions, a volume of 3203 voxels was computed. Figure 3 com-
pares standard reconstruction (iFDK with a positivity con-
straint, displayed in the first line) and iFDK with the multiple
sparse penalty x(f) (displayed in second line). In agreement
with the simulated results, our algorithm yields significantly



less streaks than standard reconstruction. The resulting reso-
lution improvement is best seen in the petrous part of the left
temporal bone (right side of the slice, detail zoomed in Fig.3b)
that contains the inner ear: thin details such as tympanic cav-
ity, canals, and sutures are more accurate. The observations
are confirmed when computing the mean and standard devi-
ation in a region of interest of 900 voxels within soft tissues,
which gives 1308 £243 HU for the standard reconstruction
and 1077 £166 HU for our reconstruction. This corresponds
to a 20% Signal-to-Noise-Ratio (SNR) increase (6.5 vs. 5.4).
Note that an SNR value of 10.0 (1116 £112 HU) is found for
the standard reconstruction with 150 views (not shown here).
Looking at the subtracted volume of Fig.3c, we notice that
even if our approach yields sparser structures than standard
reconstruction, the whole volume is not very sparse, which
limits the extension of the background structures where mask
and contrast volumes can be mixed and sampling improved.

(a) (b)

Fig. 3. DSRA reconstruction from clinical data. First line:
Mask iFDK reconstruction with spatial positivity constraint.
Second line: Mask iFDK reconstruction penalized by x(f)
with ¢y = 0. (a) Axial slice (HU range: 250 to 5350). (b)
Detail of the petrous part of the left temporal bone in (a). (c)
Subtracted slice (HU range: -500 to 1500).

4. DISCUSSION AND CONCLUSION

We proposed a novel multiple sparsity constraint that pro-
motes both spatial and temporal sparsity of the data — by
using the ¢;-penalized iFBP scheme — for performing com-
pressed sensing DSRA reconstruction. Our implementation
relies on proximal splitting methods, which has proven to be
a very efficient strategy for ¢;-penalized minimization. The
results that we obtained on both simulated and clinical data
showed that our approach outperforms standard reconstruc-
tion in terms of background restoration and streak removal.
Unlike reconstruction regularized by Total Variation (TV),
which has been proven to be an efficient method to get rid

of the streak artifacts and converges to a piecewise-constant
approximation of the solution, our approach does not change
image appearance. Moreover, this quality improvement is
performed at a reasonable cost of 20 iterations and a small
change in the acquisition protocol so that both scans sample
interleaved angular positions. The small amount of iterations
required to reach convergence let us think that it could be re-
alistic to use such iterative algorithm in clinical practice.
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