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Abstract: This paper presents a MAP estimator for some vector x from its quantized and noisy
linear measurements. The complexity of the optimal MAP estimator is intractable in general.
Two suboptimal solutions have been proposed, one of which being iterative to be able to handle
large-scale problems. Leveraging on techniques from interval analysis, it is possible to quickly
eliminate solutions which are not consistent with the signal model, and the quantization noise.
These techniques have been applied to the estimation of the input signal of an OFB using
noisy measurements of its quantized subbands. The experimental results show that when the
channel is noisy, this approach performs better in terms of reconstruction SNR than classical

least-squares reconstruction.

1. INTRODUCTION

This paper considers mazimum a posteriori (MAP) esti-
mation of the realization x of some random (correlated)
vector X from the noisy observations r of quantized linear
measurements y = Hx, where H is an M x N matrix.
This estimation problem known as a linear mixing prob-
lem has been already handled using belief propagation to
evaluate the marginal posterior probability distribution of
each entry of the vector x knowing r, see, e.g., Rangan
[2010, 2011]. An implementation of this technique based
on message passing (MP) algorithms on a graph Kschis-
chang et al. [2001], Donoho et al. [2009] is very complex
as it involves high-dimensional integration. This issue is
addressed using Gaussian approximations Rangan [2011].
Nevertheless, correlation in the components of x is difficult
to take into account as it leads to many cycles in the
graph representing the relation between variables, which
is detrimental to MP algorithms.

In the particular case of an expansion, i.e., when M > N,
the linear dependencies between the samples of y can be
exploited jointly with the bounded quantization noise to
perform a consistent MAP estimation with a reasonable
complexity. This paper shows that this problem can be
formulated as a constrained optimization problem to which
a suboptimal solution can be delivered by solving several
linear programs or by using tools from interval analysis
Jaulin et al. [2001].

Schemes operating such signal expansion are for example
oversampled filter banks (OFB) Vaidyanathan [1993]. The
output subbands generated by the OFB provide an over-
complete representation of the signal placed at its input.

* This work was partly supported the ANR CPP project. Michel
Kieffer is partly supported by the Institut Universitaire de France.

The quantized subbands are usually transmitted through
a noisy or lossy channel. The redundancy introduced in
the subbands can then be used at the receiver side to
correct the transmission errors, see, e.g., Redinbo [2000],
Labeau et al. [2005], Abid et al. [2011] or to compensate
the erasures, see, e.g., Goyal et al. [2001], Kovacevi¢ et al.
[2002], Rath and Guillemot [2004], Akbari and Labeau
2010].

This paper presents the MAP estimator for the linear
mixing problem. Two suboptimal implementations of the
MAP estimator are introduced. A first implementation is
suitable for small-size input vectors. A second iterative
suboptimal implementation is able to perform the estima-
tion of large input signals with a manageable complexity.
This algorithm is well-suited to the estimation of the input
of an OFB from its noisy output.

The rest of the paper is organized as follows. The estima-
tion problem is presented in Section 2. The formulation
of the optimal MAP estimator is developed in Section 3.
Suboptimal implementations are detailed in Section 4.
Finally two examples are presented in Sections 5 and 6
before providing some conclusions.

2. PROBLEM STATEMENT

Assume that some random vector X € RY has to be
transmitted from a source through a channel to a receiver,
see Figure 1. The probability density function (pdf) of
X is px(x). Prior to transmission, an expansion of X is
performed using an M x N matrix H with M > N of rank
N to get Y € RM with

Y = HX, (1)

see Goyal [2002]. Each component Y,, of Y is then quan-
tized with a scalar quantizer q of rate p. The quantization



intervals [sg]...[s2,—1] form a partition of R. At quan-
tizer output, one gets a random vector Z of quantization
indexes, with

Zm =q(Ym) =2 Y, €[s,], 2€{0...2°=1}. (2)
These indexes are then transmitted through some noisy
channel, assumed to be memoryless. This channel rep-
resents the binarization, channel coding and modulation
steps as well as the physical channel and the correspond-
ing demodulation and channel decoding steps Anderson
[2005]. The memoryless channel assumption holds pro-
vided that proper interleaving is performed, e.g., prior
to channel coding. The channel output related to Z,, is
assumed to be described by a real or complex random
vector R,,, m = 1... M. The effect of the channel is then
described by the channel transition probability pg|z(r|z).

The aim of this paper is to evaluate the MAP estimate
of the realization x of X from the observation of r,,,
=1...M at channel output,

XMAP = arg max py|g(x|ri.n), (3)
where for a set of vectors a; ...ay, al,, = (al'...al).
b d Yy 4 r X

—> H > q

Channel >

Receiver ——»

Fig. 1. Considered transmission scheme

3. MAP ESTIMATOR

Using Bayes’ rule, one may rewrite (3) as
XMAP = arg m)?XpR|X(r1:M|X>pX (x), (4)
where

PRIx (T1:0m[x) ZpRle(rleaz1:M|X)

Z1:M

= Z Prizx (r1:M|Z1:M»X)pZ|X(Z1:M|X)-

Zi:Mm
(5)
In (5), once z1.ps is known, x does not bring additional
knowledge on ry.ps, and since the channel is memoryless,
one gets

M

Prizx (T1:m|Z1:0m,X) = H PR|Z(Tm|2m)- (6)
m=1

Moreover, since a scalar quantization has been considered,

one has
M

)= [ pzix(2mbLx),

m=1
(7
where h! is the m-th row of H. According to (2), one has
pzx (2mlhix) = Iy, j(hyx), (8)
where the indicator function is

Ig(@) = {1 if z € [s],

Pzix (21:1[X) = pz|x (z1:0|Hx

(9)

0 else.

Finally, combining (5)—(9) in (4) one obtains

Z H PRIz rm|zm)I[s,,,,](h?nX)‘
z1; v m=1
(10)

XMAP = arg maXpX

For a given x, by definition of the indicator function and
due to the fact that the quantization intervals form a
partition of R, the sum over z;.); consists of a single non-

zero term when z,, = q(hlx), m = 1... M. Thus (10)
becomes
XMAP = arg maxpy (x H PRz (tmla(hy,x)).  (11)
m=1
Obtaining Xypap requires the maximization of
M
f(x,r10) = px(x) H priz(mlathlx))  (12)
m=1

over all possible x. The evaluation of f(x,ry.p) is easy,
however, due to the quantization, this function is only
piecewise-continuous, which makes its maximization very
difficult, especially when N is large.

4. SUBOPTIMAL IMPLEMENTATIONS
4.1 Negligible channel noise

Assume first that the noise introduced by the channel is
very small. It is likely that pg)z (|2 ) will be vanishing
for all values of z,, except for some 2}, € {0...2° — 1},
which is very likely to correspond to the actual transmitted
quantization index q(y,,). In this case, when considering
in (10) the sum over zj.,;, only the term corresponding to
z}.,, may be kept and one gets

H PRIz I'm|2 )I[s x ](h X)

m=1
(13)
Now, Hf\le PR|z(Tm|2y,) does not depend any more of x
and (13) may be written as a constrained optimization
problem

XMAP = arg mapr

XMAP = arg max px (%)
sthixe[s..], m=1...M, (14)
which may be written with linear constraints as follows

XMAP = arg mjciXpX(X)

st Hx < 8(z7.5/), (15)
—Hx < —s(z1.m);
where §(z1.0) = (5., ... 5,,,)" and s(z1.0) = (s, ... 8,,,)"

with 5., and s, the upper and lower bounds of the

interval [s,, |.

4.2 General case

Now assume that the noise introduced by the chan-
nel is no more negligible. The vector zj.,, maximizing
PR|z(T1:Mm|Z1:0) May not necessarily correspond to the
vector of transmitted indexes ¢(y1.ps). It may even not
correspond to a vector of quantization indexes that may
be obtained from a given Hx, due to the relation between
the entries of Hx. The idea of the proposed suboptimal im-
plementation of (3) is then to keep in (10) in the sum over
z1.m only the vector zi ,, maximizing Pr|z(T1:Mm|Z1:01)
and such that there exists some feasible x € RY, i.e., some
x satisfying ¢(Hx) = z{ ;. Then (15) is solved with z!_,,.



Assume that the values of zq.); are sorted in decreasing
value of ppz(ri.a|21:0) to get (zgll)\/f sz]\Z) e, U1 <
{o implies

(16)

with L = 2°M. To determineewhether there exists some
x € RV satisfying ¢(Hx) = Z1(:;w’ one may, e.g., solve the
following linear program

T

maxa- X,
X

st Hx < (z(ﬁw)
—Hx < —s(zgezw)
with increasing ¢ until a feasible solution is found, a being
any non-zero vector. One could try to directly solve (15)
with Zg?\/f’ starting from ¢ = 1 and increasing ¢ until a

solution exists. Nevertheless, solving first (17) for various

z%v, with increasing ¢ is much less complex than solving

(15), especially if px (x) is a general pdf.

¢ ¢
PR|Z(T1:M|Z§:}\21) > PR|Z(1‘1:M|Z§5\2/),

(17)

A suboptimal test to determine whether (17) admits a
feasible x involves the following property. Since H is of
rank N, there exists an (M — N) x M matrix P of rank
(M — N) such that

PHx = 0 for all x € RY. (18)

In what follows, P is called a parity-check matrix for H.
The matrix H can be seen as a generator matrix for a real-
valued channel code Redinbo [2000]. If Py = 0 for some
y € RM  there exists some x € R such that y = Hx.

([Szge)] e [SZ%)])T

Pls(z\"},)] that can be evaluated using basic interval
additions and multiplications Jaulin et al. [2001] is such
that

Consider the box [s (zﬁl)] = . The box

{Py with y € [s(2{})]} C Pls(zi3)l.  (19)

Thus,
0 ¢ Pls(zi)] = 0 ¢ {Py withy € [s(zi),)]}  (20)
and if 0 ¢ PJs (Z%\/j)] then there is no solution to (17)
for de}\/{ The inconsistency test 0 ¢ P[s(z %\4)] has a

complexity between O(M) and O(M (M — N)), which is
in general lower than solving directly (17).

4.8 Practical implementation

The number of possible values of z1.5s to sort in Section 4.2
is 2°M which may be intractable even for moderate values
of M. For m = 1...M, one may sort the possible
values of z,, in decreasing order of pg|z(rm,|zm). One
then keeps only the N,, values of z,, associated to the

largest pp|z(Tm|zm). This leads to H%I:l N,, possible
combinations of values for zj.p;, which may then be
sorted in decreasing order of pg|z(r1.a|Z1:01). Again, only

the best N’ vectors zg?])\/f...zﬂi,_l) may be kept. The

procedure described in Section 4.2 may then be applied
to these N’ vectors.

The choice of N,, and N’ depends on the level of the
channel noise, of the relative values of pr|z(rm|zm), and
of the targeted complexity-efficiency trade-off.

4.4 Iterative implementation

When N and M are large, even the practical implementa-
tion of Section 4.3 may be difficult to put at work due to
the number of z;.)s that have to be considered. A recursive
implementation of (3) is considered here, assuming that H
has the following form

H o0 - o0
H, H, 0 :
H=| g, , (21)
o - o
N & o H, Hy 0
0 0 Hx_ - --- H Hg

Such structure may be found, e.g., when considering finite
impulse response filter banks Vaidyanathan [1993].

In (21), for k=0... K — 1, Hy is an M x N matrix with
M > N and H is assumed to be of full rank. One may
write (1), where now X = 2/ € RN and
Y = (YHT...(Y M Wlth V some positive
integer. Using (21) one obtalns

=Y HX"™" v=1...V, (22)

with XV =0if v <0

The aim is again to estimate the source outcome x from
some channel output vector r = ((r')7 ... (r¥)")T, when
H is described by (21). An iterative algorithm may be
considered to get an approximate solution to (3). Assume,
at iteration v, that estimates X! ...X"~! for the N(v — 1)
first components of x have been obtained. One chooses
here to evaluate the MAP estimate

Sl /\U—l)
b

[SHYIS SR < (23)

U v
XMmap = g H}cé}xpxm(x

of x¥, using the knowledge of r¥,,, and x!...xv~!. Using
Bayes’ rule, one gets

Xyap = arg mapr|X(rqf‘M|X”,§E1 LLxvh
xv N
px (xR0, (24)

where

PrIx (r1. 01X, <. .xvh

= Z pRZ|X(r11]:M7 zl:M|Xv7 §1 ce §U_1)
Zi:M
= priz(Y|Z10)pz x (2 [x°, R LRV
Zi: M
(25)
Then
pz|X(Z1:M|Xv,§1 LR =
K—1
pz|x(Z1 M| Hox" + Z H,x"™"). (26)
u=1

According to (2), one has



Table 1. Values of p(r,,|zm)

p(rmlzm) | 2m =0 | 2m =1 | 2zm =2 | 2m =3
m=1 0.1984 0.1335 0.3993 0.2688
m=2 0.0183 0.0010 0.9310 0.0497
m=3 0.0400 0.0260 0.5663 0.3678
K-1
pZ|X(Z1:M|HOXv + Z Huiv_u)
u=1
K—-1
= i) (Hox" + ) H,X'™Y),
u=1
= I[S’(ZLM)] (H()XU). (27)
where
[8'(z1:01)] = [8(21:1) Z H,x""",8(z1.m) Z H,x"™"]

One finally gets
Xhiap = argmaxpx (x"[%' ... ")
> priz (Y20 I () (HoxY). (28)

Zi:Mm

Using the same approximation for the sum over all possible
z1. as in Section 4.2, one gets the approximate linearly-
constrained optimization problem derived from (28)

Xhiap = argmaxpy (x'[x' ... X"

K-1
st Hox" < S(z3.,/) Z H,x" 7%, (29)
u=1

K—1
— Hox" < —s(z].51) —|—ZHU)A(” v

where z7,;, is the value of z;.)s maximizing pg|z (r{.,|21:0)-

The estimation of x! at initialization is performed as in
Section 4.2, using ri.,, only and H = Hp.

5. FIRST (TOY) EXAMPLE

In the following example, N =2, M = 3, and

1 0
H= [ -1/2 v3/2
~1/2 —V/3/2

A parity-check matrix associated to His P = (1,1,1). As-
sume that X ~ N (0, I5) and that x = (—1.0279,0.1167)%
is placed at the input of H to get y = Hx =
(—1.0279,0.6150,0.4129)T. A 2-bit quantizer is consid-
ered with [sg] =] — 00, —0.6852], [s1] = [—0.6852,0.0000],
[s2] = [0.0000,0.6852], and [s3] = [0.6852,+0c[. Then
z = q(y) = (0,2,2)" is transmitted over some noisy
channel. From the channel output, assume that one ob-
tains the values of p(r,,|2z,) reported in Table 1. One may
then determine whether there exists some feasible x for
various combinations of z;.3 sorted by decreasing value of
p(r1.:3|21.3), see Table 2. The consistency test using interval
analysis (20) is used for that purpose.

Finally, one selects zY) = (0,2,2) to solve (15) where
instead of maximizing px(x), one minimizes x7x, since

Table 2. The 5 most likely z1.5; and the corre-
sponding consistency test

z1:3 p(ri1:3]z1:3) | consistency test
z() = (2,2,2) 0.2105 0 ¢ P[s(z)
z(?) = (3,2,2) 0.1417 0 ¢ P[s(z®)
203 = (2,2,3) 0.1367 0 ¢ P[s(z®)]
2z =(0,2,2) 0.1046 0 € P[s(z™)]
z®) = (3,2,3) 0.0920 0 ¢ P[s(z®)]

X ~ N(0,I5). One thus gets a simple quadratic program
with linear constraints. The solution is

Xmap = (—0.6853,0)7,
which is reasonably close to x = (—1.0279,0.1167)7.

6. SECOND EXAMPLE

This section illustrates the recursive implementation of the
MAP estimator of Section 4.4. The expansion is performed
by an OFB performing simultaneously decorrelation of the
samples of the input signal and redundancy introduction,
due to the overcomplete representation provided by the
output subbands, see Vaidyanathan [1993]. The estimation
of the input signal of the OFB from noisy observation
of its quantized subbands may be cast in the general
estimation framework presented in Section 2, where the
transform matrix H is as in (21). Some basic notions on
OFBs are first recalled before illustrating the algorithm of
Section 4.4.

Figure 2 represents an OFB consisting of M analysis filters
{hm(n),n € N}, m = 0...M — 1, followed by a set of
decimators with a decimation rate N < M.

so(n) Yo(4)
> ho(n) > ¢ NH—>
- ’ s1(n) Y1 (9)
z(n) | u(n) > ¢N—>
—>
» hin-1(n) SM_I(n)= iN yibl( )

Fig. 2. Representation of an OFB

The input signal z(n), n € N, goes first through the
analysis filters and M output signals {s,,(n),n € N},
m = 0...M — 1 are obtained. The n-th sample of the
m-~th analysis filter output, s,,,(n) is expressed as

Jio hm (k)x(n — k).

k=—o00

(30)

When the analysis filters have finite impulse responses
(FIR) and are of maximal length L, (30) becomes

L
n) = Z hm(K)z(n — k).
k=1

After downsampling with a decimation factor N < M, one
obtains the downsampled signals

Zh

(31)

2(iN — k). (32)



6.1 Polyphase representation

One can see from (32) that the computation of the terms
Sm(n) is not necessary when n is not a multiple of N.
The polyphase representation of the OFB in which the
downsampling operation is performed before the filtering
can then be considered, see Figure 3.

z(n) NI z(iN) > Yo(i)
| e eiN-1) v
z‘l‘:' - ‘N | H(2) -
»—1 I—PJLN :L‘(’LN — N+ 1)= yM—l(i)

Fig. 3. Polyphase representation of an OFB

Without loss of generality, one can take L as the smallest
multiple of N that is greater than the largest length of the
subband impulse response (zeros may be added to impulse
responses if necessary). Then L = N x K for some positive
integer K. Introducing the matrices
ho(kN) ho((k+1)N —1)
Hy = : : :
har—1(EN) -+ hpy—1((k+1)N —1)
where £k = 0... K — 1, the temporal relation between the
input and the output of the OFB can be written as in (22)
where forv =1...V

x¥ = (z((v = 1)N +1)...z(vN))7T,
and

y'=(y((v—1M+1)...y(wM)T.

One may also introduce the polyphase matrix of the
considered OFB given by
K—
H(z) = Hpz™".
k=0

—

(33)

6.2 Parity-check matrix

In order to enable perfect reconstruction the columns of
H(z) must be of rank N. In this case H(z) admits a Smith-
McMillan decomposition

He) =) (A ) wie)

where U(z) and W(z) are invertible matrices of size M x
M and N x N respectively and A(z) is a N x N diagonal
matrix Labeau et al. [2005]. One can put the inverse of
U(z) in the following form

—1_ ( V(2)

v (5
where V(z) and P(z) are matrices of size N x M and
(M — N) x M respectively and the rows of P(z) are of rank

M — N. The matrix P(z) is the parity-check polyphase
matrix associated to H(z) and it verifies

P(z)H(z) =0,Vz e C

(34)

(35)

When H(z) is the polyphase matrix of an FIR filterbank,
the parity check matrix P(z) is also associated to an FIR
filterbank and can be written as follows:

K'—1

P(z) = Z Pz "
k=0

where Py, k =0... K’ are (M — N) x M matrices. Writing
(35) in the temporal domain for each output y of the OFB
leads to

(36)

K'—1
Z Pktyv_k =0,
k=0

where y¥ = 0, if v < 0. The relation (37) defines a
set of M — N equations, which may be used to check
whether a subband signal could have been generated by
the OFB. They are referred to as the parity-check test
(PCT) equations.

(37)

6.3 Quantization and transmission

Each component y¥, m = 1...M, of the vector yv,
v = 1...V, is quantized using a scalar quantizer g,, of
step 0., and of rate p,,. The quantization intervals defined
in (2) are then expressed as follows

[s0] =] — 00, ¢, (0) + 6 /2],
[s:] = [a;"(2) = 0m /2, 43 (2) 4+ 6, /2], 2 =1...2°m —2
[$20m 1] = [g7 (2P — 1) — 6, /2, +00],

where ¢! is the inverse quantizer associated to g,. The
resulting quantization indexes are then binarized. The
binarization of each z,, provides a sequence b(z,,) of pp,
bits that is modulated using a BPSK modulation p to get
a sequence (b(zp)) = {ud, ... ufm=1} € {—1,1}#=. The
sequence f(b(zp,)) is then transmitted over a memoryless
channel characterized by its transition probability g(r|b).
At the channel output the vector rp, = (r0, ...rfm=1)Tof
real or complex values is obtained. Using the fact that b
and p are deterministic and that the channel is memory-
less, the likelihood of a particular quantization index z,,
is evaluated as

pR|Z(rm|2m) = pR|Z(rm|M(b(zm)))
Pm—1

= [T 9Crilbi). (38)
=0

6.4 Estimation algorithm

The estimation of the input x can be operated using the
iterative algorithm of Section 4.4. A possible implementa-
tion is as follows.

(1) Sort the N’ best values of z;.)s in terms of pgz (ry, |21.11)

and store them in £ :{zg?])w e zi{\;\/[l)}
(2) k=05
(3) Do

(a) I 0 € Po[s(z}),)] + 310, ' P

(b) Solve (29)
(c) If a feasible solution XV is found, return XV;
(d) Else k =k + 1;

(4) While k < N,

(5) Return error.

Note that Step 3(a) involves basic operations on intervals.
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Fig. 5. SNR of the reconstructed signal as a function of the
channel SNR for a continuous-valued one-dimensional
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6.5 Experimental results

Consider an OFB with M = 6 and N = 4 with H defined
as in (21) with K =2 and

1100 0000
0000 0011
1100 0000

Ho=| 1 go0 |- ™ =100 01
0000 0110
0000 0-110

Two types of signals have been considered: a discrete-
valued signal formed by 4 lines of Lena.pgm and a
continuous-valued one corresponding to the realizations
of a zero-mean unit variance correlated Gaussian noise
with correlation coefficient ¢ = 0.9. The first NV = 2000
samples have been kept for each signal, V' = 500. The
output vector y is then of length MV = 3000. The m-
th component of the vector y¥, v = 1...V, is quantized
with a rate p,, = 4 for m € {1,2,4,5} and p,, = 2 for
m € {3,6}. A BPSK modulation of the resulting quantized
indexes has been performed before their transmission over
an AWGN channel with SNR level between 6 dB and
11 dB. The estimation algorithm presented in Section
6.4 has been used with N/ = 20. The results have been
averaged over 250 noise realizations for both signals.

Figures 4 and 5 show the average SNR of the reconstructed
signal as a function of the channel SNR. The noiseless
signal reconstructed after inverse quantization (in green)
serves as reference. The signal estimated using the algo-
rithm presented in Section 6.4 (in red) has a higher SNR
than the one estimated using the value of the quantization
indexes z1.yy maximizing ppz(ry./|z1:0), v =1...V (in
black).

7. CONCLUSIONS

This paper presents a MAP estimator for some vector x
from its quantized and noisy linear measurements. The
complexity of the optimal MAP estimator is intractable
in general. Two suboptimal solutions have been proposed,
one of which being iterative to be able to handle large-scale
problems. Leveraging on techniques from interval analysis,
it is possible to quickly eliminate solutions which are not
consistent with the signal model, and the quantization
noise.

These techniques have been applied to the estimation of
the input signal of an OFB using noisy measurements of its
quantized subbands. The experimental results show that
when the channel is noisy, this approach performs better
in terms of reconstruction SNR than classical least-squares
reconstruction.
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